1
|
Biricioiu MR, Sarbu M, Ica R, Vukelić Ž, Kalanj-Bognar S, Zamfir AD. Advances in Mass Spectrometry of Gangliosides Expressed in Brain Cancers. Int J Mol Sci 2024; 25:1335. [PMID: 38279335 PMCID: PMC10816113 DOI: 10.3390/ijms25021335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Gangliosides are highly abundant in the human brain where they are involved in major biological events. In brain cancers, alterations of ganglioside pattern occur, some of which being correlated with neoplastic transformation, while others with tumor proliferation. Of all techniques, mass spectrometry (MS) has proven to be one of the most effective in gangliosidomics, due to its ability to characterize heterogeneous mixtures and discover species with biomarker value. This review highlights the most significant achievements of MS in the analysis of gangliosides in human brain cancers. The first part presents the latest state of MS development in the discovery of ganglioside markers in primary brain tumors, with a particular emphasis on the ion mobility separation (IMS) MS and its contribution to the elucidation of the gangliosidome associated with aggressive tumors. The second part is focused on MS of gangliosides in brain metastases, highlighting the ability of matrix-assisted laser desorption/ionization (MALDI)-MS, microfluidics-MS and tandem MS to decipher and structurally characterize species involved in the metastatic process. In the end, several conclusions and perspectives are presented, among which the need for development of reliable software and a user-friendly structural database as a search platform in brain tumor diagnostics.
Collapse
Affiliation(s)
- Maria Roxana Biricioiu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
- Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania
| | - Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
| | - Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Alina D. Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
- Department of Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania
| |
Collapse
|
2
|
Ion Mobility Mass Spectrometry Reveals Rare Sialylated Glycosphingolipid Structures in Human Cerebrospinal Fluid. Molecules 2022; 27:molecules27030743. [PMID: 35164008 PMCID: PMC8839488 DOI: 10.3390/molecules27030743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Gangliosides (GGs) represent an important class of biomolecules associated with the central nervous system (CNS). In view of their special role at a CNS level, GGs are valuable diagnostic markers and prospective therapeutic agents. By ion mobility separation mass spectrometry (IMS MS), recently implemented by us in the investigation of human CNS gangliosidome, we previously discovered a similarity between GG profiles in CSF and the brain. Based on these findings, we developed IMS tandem MS (MS/MS) to characterize rare human CSF glycoforms, with a potential biomarker role. To investigate the oligosaccharide and ceramide structures, the ions detected following IMS MS separation were submitted to structural analysis by collision-induced dissociation (CID) MS/MS in the transfer cell. The IMS evidence on only one mobility feature, together with the diagnostic fragment ions, allowed the unequivocal identification of isomers in the CSF. Hence, by IMS MS/MS, GalNAc-GD1c(d18:1/18:1) and GalNAc-GD1c(d18:1/18:0) having both Neu5Ac residues and GalNAc attached to the external galactose were for the first time discovered and structurally characterized. The present results demonstrate the high potential of IMS MS/MS for biomarker discovery and characterization in body fluids, and the perspectives of method implementation in clinical analyses targeting the early diagnosis of CNS diseases through molecular fingerprints.
Collapse
|
3
|
Gangliosides as Biomarkers of Human Brain Diseases: Trends in Discovery and Characterization by High-Performance Mass Spectrometry. Int J Mol Sci 2022; 23:ijms23020693. [PMID: 35054879 PMCID: PMC8775466 DOI: 10.3390/ijms23020693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Gangliosides are effective biochemical markers of brain pathologies, being also in the focus of research as potential therapeutic targets. Accurate brain ganglioside mapping is an essential requirement for correlating the specificity of their composition with a certain pathological state and establishing a well-defined set of biomarkers. Among all bioanalytical methods conceived for this purpose, mass spectrometry (MS) has developed into one of the most valuable, due to the wealth and consistency of structural information provided. In this context, the present article reviews the achievements of MS in discovery and structural analysis of gangliosides associated with severe brain pathologies. The first part is dedicated to the contributions of MS in the assessment of ganglioside composition and role in the specific neurodegenerative disorders: Alzheimer’s and Parkinson’s diseases. A large subsequent section is devoted to cephalic disorders (CD), with an emphasis on the MS of gangliosides in anencephaly, the most common and severe disease in the CD spectrum. The last part is focused on the major accomplishments of MS-based methods in the discovery of ganglioside species, which are associated with primary and secondary brain tumors and may either facilitate an early diagnosis or represent target molecules for immunotherapy oriented against brain cancers.
Collapse
|
4
|
Glycation Interferes with the Expression of Sialyltransferases in Meningiomas. Cells 2021; 10:cells10123298. [PMID: 34943806 PMCID: PMC8699175 DOI: 10.3390/cells10123298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Meningiomas are the most common non-malignant intracranial tumors and prefer, like most tumors, anaerobic glycolysis for energy production (Warburg effect). This anaerobic glycolysis leads to an increased synthesis of the metabolite methylglyoxal (MGO) or glyoxal (GO), which is known to react with amino groups of proteins. This reaction is called glycation, thereby building advanced glycation end products (AGEs). In this study, we investigated the influence of glycation on sialylation in two meningioma cell lines, representing the WHO grade I (BEN-MEN-1) and the WHO grade III (IOMM-Lee). In the benign meningioma cell line, glycation led to differences in expression of sialyltransferases (ST3GAL1/2/3/5/6, ST6GAL1/2, ST6GALNAC2/6, and ST8SIA1/2), which are known to play a role in tumor progression. We could show that glycation of BEN-MEN-1 cells led to decreased expression of ST3Gal5. This resulted in decreased synthesis of the ganglioside GM3, the product of ST3Gal5. In the malignant meningioma cell line, we observed changes in expression of sialyltransferases (ST3GAL1/2/3, ST6GALNAC5, and ST8SIA1) after glycation, which correlates with less aggressive behavior.
Collapse
|
5
|
Fabris D, Karmelić I, Muharemović H, Sajko T, Jurilj M, Potočki S, Novak R, Vukelić Ž. Ganglioside Composition Distinguishes Anaplastic Ganglioglioma Tumor Tissue from Peritumoral Brain Tissue: Complementary Mass Spectrometry and Thin-Layer Chromatography Evidence. Int J Mol Sci 2021; 22:ijms22168844. [PMID: 34445547 PMCID: PMC8396361 DOI: 10.3390/ijms22168844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/23/2022] Open
Abstract
Gangliosides serve as antitumor therapy targets and aberrations in their composition strongly correlate with tumor growth and invasiveness. Anaplastic ganglioglioma is a rare, poorly characterized, malignant neuronal–glial tumor type. We present the first comparative characterization of ganglioside composition in anaplastic ganglioglioma vs. peritumoral and healthy brain tissues by combining mass spectrometry and thin-layer chromatography. Anaplastic ganglioglioma ganglioside composition was highly distinguishable from both peritumoral and healthy tissue despite having five to six times lower total content. Ten out of twelve MS-identified ganglioside classes, defined by unique glycan residues, were represented by a large number and considerable abundance of individual species with different fatty acid residues (C16–C24) in ceramide portions. The major structurally identified class was tumor-associated GD3 (>50%) with 11 species; GD3 (d18:1/24:0) being the most abundant. The dominant sphingoid base residue in ganglioside ceramides was sphingosine (d18:1), followed by eicosasphingosine (d20:1). The peritumoral tissue ganglioside composition was estimated as normal. Specific ganglioside composition and large variability of ganglioside ceramide structures determined in anaplastic ganglioglioma demonstrate realistic ganglioside expression patterns and correspond to the profile of high-grade malignancy brain tumors.
Collapse
Affiliation(s)
- Dragana Fabris
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (I.K.); (S.P.)
- Correspondence: (D.F.); (Ž.V.)
| | - Ivana Karmelić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (I.K.); (S.P.)
| | - Hasan Muharemović
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Tomislav Sajko
- Department of Neurosurgery, University Hospital Center “Sestre Milosrdnice”, Vinogradska cesta 29, 10000 Zagreb, Croatia; (T.S.); (M.J.)
| | - Mia Jurilj
- Department of Neurosurgery, University Hospital Center “Sestre Milosrdnice”, Vinogradska cesta 29, 10000 Zagreb, Croatia; (T.S.); (M.J.)
| | - Slavica Potočki
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (I.K.); (S.P.)
| | - Ruđer Novak
- Department for Protemics, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Šalata 11, 10000 Zagreb, Croatia;
| | - Željka Vukelić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (I.K.); (S.P.)
- Correspondence: (D.F.); (Ž.V.)
| |
Collapse
|
6
|
Plumb RS, McDonald T, Rainville PD, Hill J, Gethings LA, Johnson KA, Wilson ID. High-Throughput UHPLC/MS/MS-Based Metabolic Profiling Using a Vacuum Jacketed Column. Anal Chem 2021; 93:10644-10652. [PMID: 34279080 DOI: 10.1021/acs.analchem.1c01982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In UHPLC, frictional heating from the eluent flowing through the column at pressures of ca. 10-15 Kpsi causes radial diffusion via temperature differences between the center of the column and its walls. Longitudinal dispersion also occurs due to temperature gradients between the inlet and outlet. These effects cause band broadening but can be mitigated via a combination of vacuum jacketed stainless steel tubing, reduced column end nut mass, and a constant temperature in the column from heating the inlet fitting. Here, vacuum jacketed column (VJC) technology, employing a novel column housing located on the source of the mass spectrometer and minimized tubing from the column outlet to the electrospray probe, was applied to profiling metabolites in urine. For a 75 s reversed-phase gradient separation, the average peak widths for endogenous compounds in urine were 1.2 and 0.6 s for conventional LC/MS and VJC systems, respectively. The peak tailing factor was reduced from 1.25 to 1.13 when using the VJC system compared to conventional UHPLC, and the peak capacity increased from 65 to 120, with a 25% increase in features detected in urine. The increased resolving power of the VJC system reduced co-elution, simplifying MS and MS/MS spectra, providing a more confident metabolite identification. The increased LC performance also gave more intense MS peaks, with a 10-120% increase in response, improving the quality of the MS data and detection limits. Reducing the LC gradient duration to 37 s gave peak widths of ca. 0.4 s and a peak capacity of 84.
Collapse
Affiliation(s)
- Robert S Plumb
- Scientific Operations, Waters Corporation, IMMERSE, Cambridge, Massachusetts 02142, United States
| | - Thomas McDonald
- Global Research, Waters Corporation, IMMERSE, Cambridge, Massachusetts 02142, United States
| | - Paul D Rainville
- Scientific Operations, Waters Corporation, IMMERSE, Cambridge, Massachusetts 02142, United States
| | - Jason Hill
- Global Research, Waters Corporation, IMMERSE, Cambridge, Massachusetts 02142, United States
| | - Lee A Gethings
- Scientific Operations, Waters Corporation, Stamford Ave, Wilmslow SK9 4AX, U.K
| | - Kelly A Johnson
- Global Research, Waters Corporation, IMMERSE, Cambridge, Massachusetts 02142, United States
| | - Ian D Wilson
- Computational & Systems Medicine, Imperial College, Exhibition Rd, London SW7 2AZ, U.K
| |
Collapse
|
7
|
Sarbu M, Ica R, Zamfir AD. Developments and applications of separation and microfluidics methods coupled to electrospray mass spectrometry in glycomics of nervous system gangliosides. Electrophoresis 2021; 42:429-449. [PMID: 33314304 DOI: 10.1002/elps.202000236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 01/19/2023]
Abstract
Gangliosides are particularly abundant in the nervous system (NS) where their pattern and structure in a certain milieu or a defined region exhibit a pronounced specificity. Since gangliosides are useful biomarkers for diagnosis of NS ailments, a clear-cut mapping of individual components represents a prerequisite for designing ganglioside-based diagnostic procedures, treatments, or vaccines. These bioclinical aspects and the high diversity of ganglioside species claim for development of specific analytical strategies. This review summarizes the state-of-the-art in the implementation of separation techniques and microfluidics coupled to MS, which have contributed significantly to the advancement of the field. In the first part, the review discusses relevant approaches based on HPLC MS and CE coupled to ESI MS and their applications in the characterization of gangliosides expressed in healthy and diseased NS. A considerable section is dedicated to microfluidics MS and ion mobility separation MS, developed for the study of brain gangliosidome and its changes triggered by various factors, as well as for ganglioside biomarker discovery in neurodegenerative diseases and brain cancer. In the last part of the review, the benefits and perspectives in ganglioside research of these high-performance techniques are presented.
Collapse
Affiliation(s)
- Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Physics, West University of Timisoara, Timisoara, Romania
| | - Alina D Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, Arad, Romania
| |
Collapse
|
8
|
Kori M, Aydin B, Gulfidan G, Beklen H, Kelesoglu N, Caliskan Iscan A, Turanli B, Erzik C, Karademir B, Arga KY. The Repertoire of Glycan Alterations and Glycoproteins in Human Cancers. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:139-168. [PMID: 33404348 DOI: 10.1089/omi.2020.0210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer as the leading cause of death worldwide has many issues that still need to be addressed. Since the alterations on the glycan compositions or/and structures (i.e., glycosylation, sialylation, and fucosylation) are common features of tumorigenesis, glycomics becomes an emerging field examining the structure and function of glycans. In the past, cancer studies heavily relied on genomics and transcriptomics with relatively little exploration of the glycan alterations and glycoprotein biomarkers among individuals and populations. Since glycosylation of proteins increases their structural complexity by several orders of magnitude, glycome studies resulted in highly dynamic biomarkers that can be evaluated for cancer diagnosis, prognosis, and therapy. Glycome not only integrates our genetic background with past and present environmental factors but also offers a promise of more efficient patient stratification compared with genetic variations. Therefore, studying glycans holds great potential for better diagnostic markers as well as developing more efficient treatment strategies in human cancers. While recent developments in glycomics and associated technologies now offer new possibilities to achieve a high-throughput profiling of glycan diversity, we aim to give an overview of the current status of glycan research and the potential applications of the glycans in the scope of the personalized medicine strategies for cancer.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Busra Aydin
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Hande Beklen
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Nurdan Kelesoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Ayşegul Caliskan Iscan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.,Department of Pharmacy, Istinye University, Istanbul, Turkey
| | - Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Can Erzik
- Department of Medical Biology and School of Medicine, Marmara University, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, School of Medicine, Marmara University, Istanbul, Turkey.,Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| |
Collapse
|
9
|
Du H, Yu H, Ma T, Yang F, Jia L, Zhang C, Zhang J, Niu L, Yang J, Zhang Z, Zhang K, Li Z. Analysis of Glycosphingolipid Glycans by Lectin Microarrays. Anal Chem 2019; 91:10663-10671. [PMID: 31353882 DOI: 10.1021/acs.analchem.9b01945] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycosphingolipids (GSLs) are ubiquitous glycoconjugates of cell membranes. Identification of unknown GSL-glycan structures is still a major challenge. To address this challenge, we developed a novel strategy for analysis of GSL-glycans from cultured cells based on a lectin microarray that can directly detect and reveal glycopatterns of GSL extracts without the need for glycan release. There were six steps to perform the analysis of GSL-glycans: (i) extraction of GSLs from cell pellets, (ii) quantification of GSL-glycans using orcinol-sulfuric acid reaction, (iii) preparation of lyso-GSLs by using sphingolipid ceramide N-deacylase, (iv) fluorescence labeling of lyso-GSLs, (v) detection by a lectin microarray, (vi) data acquisition and analysis. Simultaneously, a supplementary verification analysis for GSL-glycans was performed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Optimized experimental conditions, which consisted of the blocking buffer, incubation buffer, and appropriate GSL concentration, were investigated by analyzing the glycopatterns of a standard ganglioside (GM1a) via lectin microarray. The analysis of GSL-glycans from human hepatocarcinoma cell lines (MHCC97L, MHCC97H, and HCCLM3) showed that there were 27 lectins (e.g., WFA, MAL-II, and LTL) to give significantly different signals compared with a normal human liver cell line (HL-7702), indicating up- and/or down-regulations of corresponding glycopatterns such as α1-2 fucosylation and α2-3 sialylation, and changes of certain glycostructures such as Galβ1-3GalNAcβ1-4(NeuAcα2-3)Galβ1-4Glc:Cer and GalNAcα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-3Galβ1-4Glc:Cer. The lectin microarray analysis of lyso-GSLs labeled by fluorescence has proven to be credible, which can provide the glycopatterns and detailed linkage information on GSL-glycans.
Collapse
Affiliation(s)
- Haoqi Du
- Laboratory for Functional Glycomics, College of Life Sciences , Northwest University , Xi'an , China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences , Northwest University , Xi'an , China
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences , Northwest University , Xi'an , China
| | - Fuquan Yang
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics , Chinese Academy of Sciences , Beijing , China
| | - Liyuan Jia
- Laboratory for Functional Glycomics, College of Life Sciences , Northwest University , Xi'an , China
| | - Chen Zhang
- Laboratory for Functional Glycomics, College of Life Sciences , Northwest University , Xi'an , China
| | - Jiaxu Zhang
- Laboratory for Functional Glycomics, College of Life Sciences , Northwest University , Xi'an , China
| | - Lili Niu
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics , Chinese Academy of Sciences , Beijing , China
| | - Jiajun Yang
- Laboratory for Functional Glycomics, College of Life Sciences , Northwest University , Xi'an , China
| | - Zhiwei Zhang
- Laboratory for Functional Glycomics, College of Life Sciences , Northwest University , Xi'an , China
| | - Kun Zhang
- Laboratory for Functional Glycomics, College of Life Sciences , Northwest University , Xi'an , China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences , Northwest University , Xi'an , China
| |
Collapse
|
10
|
Sarbu M, Vukelić Ž, Clemmer DE, Zamfir AD. Ion mobility mass spectrometry provides novel insights into the expression and structure of gangliosides in the normal adult human hippocampus. Analyst 2018; 143:5234-5246. [DOI: 10.1039/c8an01118d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
General work-flow for ganglioside analysis by IM-MS.
Collapse
Affiliation(s)
- Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter
- Timisoara
- Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry
- University of Zagreb Medical School
- Zagreb
- Croatia
| | | | - Alina D. Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter
- Timisoara
- Romania
- “Aurel Vlaicu” University of Arad
- Arad
| |
Collapse
|
11
|
Cozma II, Sarbu M, Ilie C, Zamfir AD. Structural analysis by electrospray ionization mass spectrometry of GT1 ganglioside fraction isolated from fetal brain. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1397680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Irma I. Cozma
- Department of Neonatology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
- Department of the Analysis and Modeling of Biological Systems, “Aurel Vlaicu” University of Arad, Arad, Romania
| | - Constantin Ilie
- Department of Neonatology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Alina D. Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
- Department of the Analysis and Modeling of Biological Systems, “Aurel Vlaicu” University of Arad, Arad, Romania
| |
Collapse
|
12
|
Barrientos RC, Vu N, Zhang Q. Structural Analysis of Unsaturated Glycosphingolipids Using Shotgun Ozone-Induced Dissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2330-2343. [PMID: 28831744 PMCID: PMC5647240 DOI: 10.1007/s13361-017-1772-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 05/09/2023]
Abstract
Glycosphingolipids are essential biomolecules widely distributed across biological kingdoms yet remain relatively underexplored owing to both compositional and structural complexity. While the glycan head group has been the subject of most studies, there is paucity of reports on the lipid moiety, particularly the location of unsaturation. In this paper, ozone-induced dissociation mass spectrometry (OzID-MS) implemented in a traveling wave-based quadrupole time-of-flight (Q-ToF) mass spectrometer was applied to study unsaturated glycosphingolipids using shotgun approach. Resulting high resolution mass spectra facilitated the unambiguous identification of diagnostic OzID product ions. Using [M+Na]+ adducts of authentic standards, we observed that the long chain base and fatty acyl unsaturation had distinct reactivity with ozone. The reactivity of unsaturation in the fatty acyl chain was about 8-fold higher than that in the long chain base, which enables their straightforward differentiation. Influence of the head group, fatty acyl hydroxylation, and length of fatty acyl chain on the oxidative cleavage of double bonds was also observed. Application of this technique to bovine brain galactocerebrosides revealed co-isolated isobaric and regioisomeric species, which otherwise would be incompletely identified using contemporary collision-induced dissociation (CID) alone. These results highlight the potential of OzID-MS in glycosphingolipids research, which not only provides complementary structural information to existing CID technique but also facilitates de novo structural determination of these complex biomolecules. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, USA
| | - Ngoc Vu
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, USA
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, USA.
- UNCG Center for Translational Biomedical Research, North Carolina Research Campus, Kannapolis, NC, 28081, USA.
| |
Collapse
|
13
|
Electrospray ionization ion mobility mass spectrometry provides novel insights into the pattern and activity of fetal hippocampus gangliosides. Biochimie 2017; 139:81-94. [DOI: 10.1016/j.biochi.2017.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/24/2017] [Indexed: 12/19/2022]
|
14
|
Aberrant ganglioside composition in glioblastoma multiforme and peritumoral tissue: A mass spectrometry characterization. Biochimie 2017; 137:56-68. [DOI: 10.1016/j.biochi.2017.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 02/04/2023]
|
15
|
Popescu L, Robu AC, Zamfir AD. Sustainable Nanosystem Development for Mass Spectrometry. SUSTAINABLE NANOSYSTEMS DEVELOPMENT, PROPERTIES, AND APPLICATIONS 2017. [DOI: 10.4018/978-1-5225-0492-4.ch014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nowadays, considerable efforts are invested into development of sustainable nanosystems as front end technology for either Electrospray Ionization (ESI) or Matrix-Assisted Laser Desorption/Ionization (MALDI) mass spectrometry (MS). Since their first introduction in MS, nanofluidics demonstrated a high potential to discover novel biopolymer species. These systems confirmed the unique ability to offer structural elucidation of molecular species, which often represent valuable biomarkers of severe diseases. In view of these major advantages of nanofluidics-MS, this chapter reviews the strategies, which allowed a successful development of nanotechnology for MS and the applications in biological and clinical research. The first part will be dedicated to the principles and technical developments of advanced nanosystems for electrospray and MALDI MS. The second part will highlight the most important applications in clinical proteomics and glycomics. Finally, this chapter will emphasize that advanced nanosystems-MS has real perspectives to become a routine method for early diagnosis of severe pathologies.
Collapse
Affiliation(s)
- Laurentiu Popescu
- West University of Timişoara, Romania & Research and Development National Institute for Electrochemistry and Condensed Matter (INCEMC) Timişoara, Romania
| | - Adrian C. Robu
- West University of Timişoara, Romania & Research and Development National Institute for Electrochemistry and Condensed Matter (INCEMC) Timişoara, Romania
| | - Alina D. Zamfir
- Research and Development National Institute for Electrochemistry and Condensed Matter (INCEMC) Timişoara, Romania & Aurel Vlaicu University of Arad, Romania
| |
Collapse
|
16
|
Mass spectrometry of gangliosides in extracranial tumors: Application to adrenal neuroblastoma. Anal Biochem 2016; 509:1-11. [DOI: 10.1016/j.ab.2016.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/25/2022]
|
17
|
Sarbu M, Robu AC, Ghiulai RM, Vukelić Ž, Clemmer DE, Zamfir AD. Electrospray Ionization Ion Mobility Mass Spectrometry of Human Brain Gangliosides. Anal Chem 2016; 88:5166-78. [PMID: 27088833 DOI: 10.1021/acs.analchem.6b00155] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The progress of ion mobility spectrometry (IMS), together with its association to mass spectrometry (MS), opened new directions for the identification of various metabolites in complex biological matrices. However, glycolipidomics of the human brain by IMS MS represents an area untouched up to now, because of the difficulties encountered in brain sampling, analyte extraction, and IMS MS method optimization. In this study, IMS MS was introduced in human brain ganglioside (GG) research. The efficiency of the method in clinical glycolipidomics was demonstrated on a highly complex mixture extracted from a normal fetal frontal lobe (FL37). Using this approach, a remarkably rich molecular ion pattern was discovered, which proved the presence of a large number of glycoforms and an unpredicted diversity of the ceramide chains. Moreover, the results showed for the first time the occurrence of GGs in the human brain with a much higher degree of sialylation than previously reported. Using IMS MS, the entire series starting from mono- up to octasialylated GGs was detected in FL37. These findings substantiate early clinical reports on the direct correlation between GG sialylation degree and brain developmental stage. Using IMS CID MS/MS, applied here for the first time to gangliosides, a novel, tetrasialylated O-GalNAc modified species with a potential biomarker role in brain development was structurally characterized. Under variable collision energy, a high number of sequence ions was generated for the investigated GalNAc-GQ1(d18:1/18:0) species. Several fragment ions documented the presence of the tetrasialo element attached to the inner Gal, indicating that GalNAc-GQ1(d18:1/18:0) belongs to the d series.
Collapse
Affiliation(s)
- Mirela Sarbu
- Aurel Vlaicu University of Arad , 310130 Arad, Romania.,National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania
| | - Adrian C Robu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania.,West University of Timisoara , 300223 Timisoara, Romania
| | - Roxana M Ghiulai
- Department of Pharmacy, Victor Babes University of Medicine and Pharmacy , 300041 Timisoara, Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, University of Zagreb Medical School , HR-10000 Zagreb, Croatia
| | - David E Clemmer
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Alina D Zamfir
- Aurel Vlaicu University of Arad , 310130 Arad, Romania.,National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania
| |
Collapse
|
18
|
Capitan F, Robu AC, Popescu L, Flangea C, Vukelić Ž, Zamfir AD. B Subunit Monomers of Cholera Toxin Bind G1 Ganglioside Class as Revealed by Chip-Nanoelectrospray Multistage Mass Spectrometry. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1085061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Capitan F, Robu AC, Schiopu C, Ilie C, Chait BT, Przybylski M, Zamfir AD. β-Lactoglobulin detected in human milk forms noncovalent complexes with maltooligosaccharides as revealed by chip-nanoelectrospray high-resolution tandem mass spectrometry. Amino Acids 2015; 47:2399-407. [DOI: 10.1007/s00726-015-2030-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/13/2015] [Indexed: 11/25/2022]
|
20
|
Rožman M, Fabris D, Mrla T, Vukelić Ž. Database and data analysis application for structural characterization of gangliosides and sulfated glycosphingolipids by negative ion mass spectrometry. Carbohydr Res 2014; 400:1-8. [PMID: 25299937 DOI: 10.1016/j.carres.2014.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/20/2014] [Accepted: 06/27/2014] [Indexed: 01/12/2023]
Abstract
Gangliosides and sulfated glycosphingolipids, as building and functional components of animal cell membranes, participate in cell-to-cell interactions and signaling, but also in changes of cell architecture due to different pathophysiological events. In order to enable higher throughput and to facilitate structural characterization of gangliosides/sulfo-glycosphingolipids (GSL) and their neutral GSL counterparts by negative ion mass spectrometry (MS) and tandem MS techniques, a database and data analysis application have been developed. In silico developed glycosphingolipid database considers a high diversity of ceramide compositions, several sialic acid types (N-acetylneuraminic acid, N-glycolylneuraminic acid and 2-keto-3-deoxynononic acid) as well as possible additional substitutions/modifications of glycosphingolipids, such as O-acetylation, de-N-acetylation, fucosylation, glucuronosylation, sulfation, attachment of repeating terminal hexose-N-acetylhexosamine- (Hex-HexNAc-)1-6 extension, and possible lactone forms. Data analysis application, named GSL-finder, enables correlation of negative ion MS and/or low-energy tandem MS spectra with the database structures. The GSL-database construction and the GSL-finder application searching rules are explained. Validation conducted on GD1a fraction as well as on complex mixtures of native gangliosides isolated from different mammalian brain tissues (human fetal and adult brain, and calf brain tissue) demonstrated agreement with previous studies. Plain, fast, and automated routine for structural characterization of gangliosides/sulfated glycosphingolipids and their neutral GSL counterparts described here could facilitate and improve mass spectrometric analysis of complex glycosphingolipid mixtures originating from variety of normal and pathological biomaterial, where it is known that distinctive changes in glycosphingolipid composition occur.
Collapse
Affiliation(s)
- Marko Rožman
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Dragana Fabris
- Department for Chemistry and Biochemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia.
| | - Tomislav Mrla
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Željka Vukelić
- Department for Chemistry and Biochemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia.
| |
Collapse
|
21
|
Ashline DJ, Hanneman AJS, Zhang H, Reinhold VN. Structural documentation of glycan epitopes: sequential mass spectrometry and spectral matching. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:444-53. [PMID: 24385394 PMCID: PMC3950938 DOI: 10.1007/s13361-013-0776-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/09/2013] [Accepted: 10/09/2013] [Indexed: 05/27/2023]
Abstract
Documenting mass spectral data is a fundamental aspect of accepted protocols. In this report, we contrast MS(n) sequential disassembly spectra obtained from natural and synthetic glycan epitopes. The epitopes considered are clusters found on conjugate termini of lipids and N- and O-glycans of proteins. The latter are most frequently pendant through a CID-labile HexNAc glycosidic linkage. The synthetic samples were supplied by collaborating colleagues and commercial sources and usually possessed a readily released reducing-end linker, a by-product of synthesis. All samples were comparably methylated, extracted, and MS(n) disassembled to compare their linkage and branching spectral details. Both sample types provide B-ion type fragments early in a disassembly pathway and their compositions are a suggestion of structure. Further steps of disassembly are necessary to confirm the details of linkage and branching. Included in this study were various Lewis and H antigens, 3- and 6-linked sialyl-lactosamine, NeuAc-2,8-NeuAc dimer, and Galα1,3Gal. Sample infusion provided high quality spectral data whereas disassembly to small fragments generates reproducible high signal/noise spectra for spectral matching. All samples were analyzed as sodium adducted positive ions. This study includes comparability statistics and evaluations on several mass spectrometers.
Collapse
Affiliation(s)
| | | | - Hailong Zhang
- The Glycomics Center, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824
| | - Vernon N. Reinhold
- The Glycomics Center, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824
- Glycan Connections, LLC, Lee, New Hampshire, 03861
| |
Collapse
|
22
|
Zamfir AD. Neurological Analyses: Focus on Gangliosides and Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:153-204. [DOI: 10.1007/978-3-319-06068-2_8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
O'Brien JP, Brodbelt JS. Structural characterization of gangliosides and glycolipids via ultraviolet photodissociation mass spectrometry. Anal Chem 2013; 85:10399-407. [PMID: 24083420 DOI: 10.1021/ac402379y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ultraviolet photodissociation (UVPD) mass spectrometry was used to characterize the structures of amphiphilic glycosphingolipids and gangliosides in comparison to collision induced dissociation (CID) and higher energy collision dissociation (HCD) in a high performance Orbitrap mass spectrometer. UVPD produced the widest array of fragment ions diagnostic for both the ceramide base and oligosaccharide moieties. CID and HCD generated mainly glycosidic B/Y and C/Z cleavages of the oligosaccharides moieties and very few informative fragments related to the hydrophobic ceramide base. Several unique cleavages at the sphingoid base and the fatty acid chain occurred upon UVPD, as well as a wider variety of cross ring cleavages (A/X ions), thus affording differentiation of isobaric gangliosides. An LC-UVPD-MS strategy allowed the elucidation of 27 gangliosides among five different classes.
Collapse
Affiliation(s)
- John P O'Brien
- Department of Chemistry, The University of Texas at Austin , 1 University Station A5300, Austin, Texas, United States 78712
| | | |
Collapse
|
24
|
Profiling and sequence analysis of gangliosides in human astrocytoma by high-resolution mass spectrometry. Anal Bioanal Chem 2013; 405:7321-35. [PMID: 23877172 DOI: 10.1007/s00216-013-7173-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/11/2013] [Accepted: 06/24/2013] [Indexed: 01/13/2023]
Abstract
In this preliminary investigation, a low-grade astrocytoma (AcT) is investigated by high-resolution (HR) mass spectrometry (MS) aiming at characterization of gangliosides with potential biomarker value. The research was conducted towards a comparative mapping of ganglioside expression in AcT, its surrounding tissue (ST) and a normal control brain tissue (NT). HR MS was conducted in the negative ion mode nanoelectrospray ionization (nanoESI). Fragmentation analysis was carried out by collision-induced dissociation (CID) MS(2)-MS(4.) Due to the high resolving power and mass accuracy, by comparative mapping of the ganglioside extracts from AcT, ST and NT, under identical conditions, 37 different species in AcT, 40 in ST and 56 in NT were identified. AcT and ST were found to contain 18 identical ganglioside components. Among all three specimens, ST extract presented the highest levels of sialylation, fucosylation and acetylation, a feature which might be correlated to the tumor expansion in the adjacent brain area. MS mapping indicated also that AcT, ST and NT share one doubly deprotonated molecule at m/z 1063.31, attributable to GT1(d18:1/18:0) or GT1(d18:0/18:1). CID MS(2)-MS(4) on these particular ions detected in AcT and ST provided data supporting GT1c isomer in the investigated astrocytoma tissue. Our results show that HR MS has a remarkable potential in brain cancer research for the determination of tumor-associated markers and for their structural determination.
Collapse
|
25
|
Serb AF, Sisu E, Vukelić Z, Zamfir AD. Profiling and sequencing of gangliosides from human caudate nucleus by chip-nanoelectrospray mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1561-1570. [PMID: 23280744 DOI: 10.1002/jms.3116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 05/27/2023]
Abstract
Gangliosides (GGs), sialic acid-containing glycosphingolipids are involved in many brain functions at the cell and molecular level. Compositional and structural elucidation of GGs in mixtures extracted from human brain is essential for correlating their profile with the specialized function of each brain area in health and disease. As a part of our ongoing study on GG expression and structure in different healthy and diseased brain regions, in this work, a preliminary investigation of GGs in a specimen of human caudate nucleus (CN) was carried out using an advanced mass spectrometry (MS) technique. By chip-nanoelectrospray MS performed on a NanoMate robot coupled to a high capacity ion trap instrument, 81 GG components were detected in human CN in only 1.5 min of signal acquisition. Although the native GG mixture from CN was found dominated by mono-, di- and trisialylated GGs with a slight dominance of disialylated forms (GD), four tetrasialylated structures (GQ) and two pentasialylated (GP) species were also identified. Additionally, species with unusually long fatty acid chains, exceeding 30 carbon atoms in their ceramide (Cer) composition, and several glycoforms modified by fucosyl (Fuc), O-acetyl (O-Ac) and/or lactonization were discovered. By tandem MS (MS(2) ) using collision-induced dissociation, two atypical mono and disialylated species with long-chain fatty acids in their Cer could be confirmed and structurally characterized. These results may be a starting point for new GG-based approaches in the study of CN functions and ethiopathogenesis of CN-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Alina F Serb
- Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Sq. 2A, Timisoara, Romania
| | | | | | | |
Collapse
|