1
|
DNA-Immobilized Special Conformation Recognition of L-Penicillamine Using a Chiral Molecular Imprinting Technique. Polymers (Basel) 2022; 14:polym14194133. [PMID: 36236082 PMCID: PMC9571851 DOI: 10.3390/polym14194133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
A new chiral molecularly imprinted polymer (MIP) sensor with dual recognition ability was developed for the highly selective separation of enantiomers with toxic side effects in drugs. The sensor contains double-stranded deoxyribonucleic acid (dsDNA) as the element that immobilizes the chiral molecular conformation: the dsDNA enables the imprinted cavities to match the three-dimensional structure and functional groups from the chiral molecule. By embedding the spatial orientation of dsDNA in MIPs, one can accurately capture and immobilize the molecular conformation, eliminating the influence of interfering analogues. Herein, L-penicillamine (L-Pen) was selected as the chiral template molecule and embedded into dsDNA to form dsDNA-L-Pen complex, which was then embedded into the MIPs by electropolymerization. After elution, the stereo-selective imprinted cavities were obtained. The ATATATATATAT-TATATATATATA base sequence showed a high affinity for the embedded L-Pen, which endowed the imprinted cavities with a larger number of sites and improved the selectivity toward Pen enantiomers. Under the optimal working conditions, the current response of the MIP/dsDNA sensor exhibited a positive linear relationship with the logarithm of the L-Pen concentration in the range of 3.0 × 10-16 to 3.0 × 10-13 mol/L, and the detection limit was 2.48 × 10-16 mol/L. After the introduction of dsDNA into the MIP, the selectivity of the sensor toward D-Pen increased by 6.4 times, and the sensor was successfully applied in the analysis of L-Pen in penicillamine tablets.
Collapse
|
2
|
Gumus E, Bingol H, Zor E. Nanomaterials-enriched sensors for detection of chiral pharmaceuticals. J Pharm Biomed Anal 2022; 221:115031. [PMID: 36115205 DOI: 10.1016/j.jpba.2022.115031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 10/31/2022]
Abstract
Advancements in nanoscience and nanotechnology have opened new pathways to fabricate novel nanostructures with interesting properties that would be used for different applications. In this respect, nanostructures comprising chirality are one of the most rapidly developing research fields encompassing chemistry, physics and biology. Chirality, also known as mirror asymmetry, describes the geometrical property of an object that is not superimposable on its mirror image. This characteristic plays a crucial role because these identical forms of chiral species in pharmaceuticals or food additives may exhibit different effects on living organisms. Therefore, chiral analysis is an important field of modern chemical analysis in health-related industries that are reliant on the production of enantiomeric compounds involving pharmaceuticals. This review covers the recent advances dealing with the synthesis, design and advantageous analytical performance of nanomaterials-enriched sensors used for chiral pharmaceuticals. We conclude this review with the challenges existing in this research field and our perspectives on some potential strategies with cutting-edge approaches for the rational design of sensors for chiral pharmaceuticals. We expect this comprehensive review will inspire future studies in nanomaterials-enriched chiral sensors.
Collapse
Affiliation(s)
- Eda Gumus
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey
| | - Haluk Bingol
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Chemistry Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey
| | - Erhan Zor
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Science Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey.
| |
Collapse
|
3
|
Yang S, Wu F, Yu F, Gu L, Wang H, Liu Y, Chu Y, Wang F, Fang X, Ding CF. Distinction of chiral penicillamine using metal-ion coupled cyclodextrin complex as chiral selector by trapped ion mobility-mass spectrometry and a structure investigation of the complexes. Anal Chim Acta 2021; 1184:339017. [PMID: 34625257 DOI: 10.1016/j.aca.2021.339017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Penicillamine (Pen) is a common chiral drug that is obtained from penicillin. Between the two enantiomers of Pen, only D-Pen can be used to treat cystinuria and rheumatoid arthritis while L-Pen is toxic. Therefore, it requires great efforts for the research of the rigorous analysis and distinction of the two enantiomers. The non-covalent combination of chiral molecules and chiral selectors (CSs) has been proved as a unique strategy for chiral distinction by ion mobility spectrometry in coupling with -mss spectrometry (IM-MS). Here, we developed a simple method to distinguish D, L-Pen by using special CSs for IM-MS separation. The CSs utilized here include cyclodextrins (CD) and linear chain oligosaccharides plus metal ions. We found that non-covalent complexes [Pen+β-CD + Li]+ could be easily formed by electrospray ionization of the mixture of the solution, and the chirality of Pen could be effectively recognized by measuring their mobilities due to the different collision cross collision sections of [D-Pen+β-CD + Li]+ and [L-Pen+β-CD + Li]+. A detailed analysis of [Pen+β-CD + Li]+ was then conducted by the optical rotation measurements and NMR experiments to reveal their structural differences. Furthermore, DFT calculation showed the differences of molecular conformation between the complexes. The results provide a new powerful method for fast analysis and recognition of chirality of Pen compounds by IM-MS.
Collapse
Affiliation(s)
- Shutong Yang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Fangling Wu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Fanzhen Yu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Liancheng Gu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Huanhuan Wang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yiyi Liu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yanqiu Chu
- Department of Chemistry, Fudan University, Shanghai, 200438, China.
| | - Fengyan Wang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Xiang Fang
- Institute of Metrology, Beijing, 100084, China.
| | - Chuan-Fan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
4
|
Cao Z, Gao H, Qiu M, Jin W, Deng S, Wong KY, Lei D. Chirality Transfer from Sub-Nanometer Biochemical Molecules to Sub-Micrometer Plasmonic Metastructures: Physiochemical Mechanisms, Biosensing, and Bioimaging Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907151. [PMID: 33252162 DOI: 10.1002/adma.201907151] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/21/2020] [Indexed: 05/05/2023]
Abstract
Determining the structural chirality of biomolecules is of vital importance in bioscience and biomedicine. Conventional methods for characterizing molecular chirality, e.g., circular dichroism (CD) spectroscopy, require high-concentration specimens due to the weak electronic CD signals of biomolecules such as amino acids. Artificially designed chiral plasmonic metastructures exhibit strong intrinsic chirality. However, the significant size mismatch between metastructures and biomolecules makes the former unsuitable for chirality-recognition-based molecular discrimination. Fortunately, constructing metallic architectures through molecular self-assembly allows chirality transfer from sub-nanometer biomolecules to sub-micrometer, intrinsically achiral plasmonic metastructures by means of either near-field interaction or chirality inheritance, resulting in hybrid systems with CD signals orders of magnitude larger than that of pristine biomolecules. This exotic property provides a new means to determine molecular chirality at extremely low concentrations (ideally at the single-molecule level). Herein, three strategies of chirality transfer from sub-nanometer biomolecules to sub-micrometer metallic metastructures are analyzed. The physiochemical mechanisms responsible for chirality transfer are elaborated and new fascinating opportunities for employing plasmonic metastructures in chirality-based biosensing and bioimaging are outlined.
Collapse
Affiliation(s)
- Zhaolong Cao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Han Gao
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Meng Qiu
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Wei Jin
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
5
|
Casado N, Valimaña-Traverso J, García MÁ, Marina ML. Enantiomeric Determination of Drugs in Pharmaceutical Formulations and Biological Samples by Electrokinetic Chromatography. Crit Rev Anal Chem 2019; 50:554-584. [PMID: 31569950 DOI: 10.1080/10408347.2019.1670043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chirality is a relevant issue in the pharmaceutical field due to the different biological activity that enantiomers of a chiral drug can show. In fact, the desired biological or pharmaceutical activity might be present in only one of the enantiomers, while the other enantiomer(s) may have different biological activity, be inactive or even toxic. This has motivated in recent years the development of drugs marketed as pure enantiomers to avoid exposing the organism to the action of enantiomers that may not be active or even harmful to health. Thus, it is of high interest to develop enantioselective analytical methodologies to control the presence of enantiomeric impurities and to understand the enantioselective metabolism of chiral drugs. This review gives an overview about the analytical strategies developed by electrokinetic chromatography (EKC) from 2010 to June 2019 for the enantiomeric determination of drugs in both pharmaceutical formulations and biological samples. The types of chiral selectors used, the migration order of enantiomers, their resolution, the detection technique employed and the sensitivity achieved are revised and compared. Also, applications to assess the enantiomeric purity control of pharmaceutical formulations and to determine chiral drugs in biological samples to study their metabolism are included. Advantages and limitations of the chiral methods developed by EKC are also discussed.
Collapse
Affiliation(s)
- Natalia Casado
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, Spain
| | - Jesús Valimaña-Traverso
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, Spain
| | - María Ángeles García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, Spain.,Instituto de Investigación Química, "Andrés M. del Río" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, Spain.,Instituto de Investigación Química, "Andrés M. del Río" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
6
|
Shahrajabian M, Ghasemi F, Hormozi-Nezhad MR. Nanoparticle-based Chemiluminescence for Chiral Discrimination of Thiol-Containing Amino Acids. Sci Rep 2018; 8:14011. [PMID: 30228291 PMCID: PMC6143635 DOI: 10.1038/s41598-018-32416-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/04/2018] [Indexed: 11/09/2022] Open
Abstract
The ability to recognize the molecular chirality of enantiomers is extremely important owing to their critical role in drug development and biochemistry. Convenient discrimination of enantiomers has remained a challenge due to lack of unsophisticated methods. In this work, we have reported a simple strategy for chiral recognition of thiol-containing amino acids including penicillamine (PA), and cysteine (Cys). We have successfully designed a nanoparticle-based chemiluminescence (CL) system based on the reaction between cadmium telluride quantum dots (CdTe QDs) and the enantiomers. The different interactions of CdTe QDs with PA enantiomers or Cys enantiomers led to different CL intensities, resulting in the chiral recognition of these enantiomers. The developed method showed the ability for determination of enantiomeric excess of PA and Cys. It has also obtained an enantioselective concentration range from 1.15 to 9.2 mM for PA. To demonstrate the potential application of this method, the designed platform was applied for the quantification of PA in urine and tablet samples. For the first time, we presented a novel practical application of nanoparticle-based CL system for chiral discrimination.
Collapse
Affiliation(s)
- Maryam Shahrajabian
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran
| | - Forough Ghasemi
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran
| | - M Reza Hormozi-Nezhad
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran.
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
7
|
Cao L, Wei T, Shi Y, Tan X, Meng J. Determination of D-penicillamine and tiopronin in human urine and serum by HPLC-FLD and CE-LIF with 1,3,5,7-tetramethyl-8-bromomethyl-difluoroboradiaza-s-indacene. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2017.1348953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Liwei Cao
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Tianhe District, Guangzhou, P. R. China
| | - Tian Wei
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Tianhe District, Guangzhou, P. R. China
| | - Yihui Shi
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Tianhe District, Guangzhou, P. R. China
| | - Xiaofang Tan
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Tianhe District, Guangzhou, P. R. China
| | - Jianxin Meng
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Tianhe District, Guangzhou, P. R. China
| |
Collapse
|
8
|
Zhang Q, Lei M, Kong F, Yang Y. A water-stable homochiral luminescent MOF constructed from an achiral acylamide-containing dicarboxylate ligand for enantioselective sensing of penicillamine. Chem Commun (Camb) 2018; 54:10901-10904. [DOI: 10.1039/c8cc06274a] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A water-stable homochiral luminescent MOF was obtained by spontaneous symmetry-breaking crystallization from achiral precursors; it exhibits enantioselective sensing of d/l-Pen.
Collapse
Affiliation(s)
- Qingfu Zhang
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Mingyuan Lei
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Fang Kong
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - Yan Yang
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| |
Collapse
|
9
|
Durán GM, Abellán C, Contento AM, Ríos Á. Discrimination of penicillamine enantiomers using β-cyclodextrin modified CdSe/ZnS quantum dots. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2074-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Lin X, Zhu S, Wang Q, Xia Q, Ran P, Fu Y. Chiral recognition of penicillamine enantiomers using hemoglobin and gold nanoparticles functionalized graphite-like carbon nitride nanosheets via electrochemiluminescence. Colloids Surf B Biointerfaces 2016; 148:371-376. [DOI: 10.1016/j.colsurfb.2016.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/18/2016] [Accepted: 09/09/2016] [Indexed: 11/28/2022]
|
11
|
Lačná J, Foret F, Kubáň P. Capillary electrophoresis in the analysis of biologically important thiols. Electrophoresis 2016; 38:203-222. [DOI: 10.1002/elps.201600354] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Júlia Lačná
- Bioanalytical Instrumentation; CEITEC Masaryk University; Brno Czech Republic
- Department of Chemistry; Masaryk University; Brno Czech Republic
| | - František Foret
- Bioanalytical Instrumentation; CEITEC Masaryk University; Brno Czech Republic
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - Petr Kubáň
- Bioanalytical Instrumentation; CEITEC Masaryk University; Brno Czech Republic
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
12
|
Advances in the Use of Cyclodextrins as Chiral Selectors in Capillary Electrokinetic Chromatography: Fundamentals and Applications. Chromatographia 2016. [DOI: 10.1007/s10337-016-3167-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
A Ruthenium Complex/Carbon Nanotube Based Electrode as the First Electrochemical Sensor for Simultaneous Sensing of D-Penicillamine, 6-Thioguanine and Catecholamines. ELECTROANAL 2016. [DOI: 10.1002/elan.201500597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Ngamdee K, Puangmali T, Tuntulani T, Ngeontae W. Circular dichroism sensor based on cadmium sulfide quantum dots for chiral identification and detection of penicillamine. Anal Chim Acta 2015; 898:93-100. [PMID: 26526914 DOI: 10.1016/j.aca.2015.09.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/10/2015] [Accepted: 09/21/2015] [Indexed: 01/27/2023]
Abstract
A new chemical sensor based on the measuring of circular dichroism signal (CD) was fabricated from cysteamine capped cadmium sulfide quantum dots (Cys-CdS QDs). The chiral-thiol molecules, d-penicillamine (DPA) and l-penicillamine (LPA), were used to evaluate potentials of this sensor. Basically, DPA and LPA provide very low CD signals. However, the CD signals of DPA and LPA can be enhanced in the presence of Cys-CdS QDs. The CD spectra of DPA and LPA exhibited a mirror image profile. Parameters affecting the determination of DPA and LPA were thoroughly investigated in details. Under the optimized condition, the CD signals of DPA and LPA displayed a linear relationship with the concentrations of both enantiomers, ranging from 1 to 35 μM. Detection limits of this sensor were 0.49 and 0.74 μM for DPA and LPA, respectively. To demonstrate a potential application of this sensor, the proposed sensor was used to determine DPA and LPA in real urine samples. It was confirmed that the proposed detection technique was reliable and could be utilized in a broad range of applications.
Collapse
Affiliation(s)
- Kessarin Ngamdee
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Theerapong Puangmali
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thawatchai Tuntulani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wittaya Ngeontae
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
15
|
Aturki Z, Rocco A, Rocchi S, Fanali S. Current applications of miniaturized chromatographic and electrophoretic techniques in drug analysis. J Pharm Biomed Anal 2014; 101:194-220. [DOI: 10.1016/j.jpba.2014.03.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/24/2014] [Indexed: 12/20/2022]
|
16
|
Chiral selectors in CE: Recent developments and applications (2012-mid 2014). Electrophoresis 2014; 36:101-23. [DOI: 10.1002/elps.201400310] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/19/2022]
|
17
|
Walekar LS, Kondekar UR, Gore AH, Pawar SP, Sudarsan V, Anbhule PV, Patil SR, Kolekar GB. Ultrasensitive, highly selective and naked eye colorimetric recognition ofd-penicillamine in aqueous media by CTAB capped AgNPs: applications to pharmaceutical and biomedical analysis. RSC Adv 2014. [DOI: 10.1039/c4ra05741d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Ghaffarinejad A, Hashemi F, Nodehi Z, Salahandish R. A simple method for determination of d-penicillamine on the carbon paste electrode using cupric ions. Bioelectrochemistry 2014; 99:53-6. [DOI: 10.1016/j.bioelechem.2014.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 05/26/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
|
19
|
Deeb SE, Wätzig H, El-Hady DA, Albishri HM, de Griend CSV, Scriba GKE. Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis. Electrophoresis 2014; 35:170-89. [PMID: 24395663 DOI: 10.1002/elps.201300411] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 12/31/2022]
Abstract
Since the introduction about 30 years ago, CE techniques have gained a significant impact in pharmaceutical analysis. The present review covers recent advances and applications of CE for the analysis of pharmaceuticals. Both small molecules and biomolecules such as proteins are considered. The applications range from the determination of drug-related substances to the analysis of counterions and the determination of physicochemical parameters. Furthermore, general considerations of CE methods in pharmaceutical analysis are described.
Collapse
Affiliation(s)
- Sami El Deeb
- Drug Analysis and Research Center, Department of Pharmaceutical Chemistry, Al-Azhar University - Gaza, Gaza, Palestine; Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Řezanka P, Navrátilová K, Řezanka M, Král V, Sýkora D. Application of cyclodextrins in chiral capillary electrophoresis. Electrophoresis 2014; 35:2701-21. [DOI: 10.1002/elps.201400145] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Pavel Řezanka
- Department of Analytical Chemistry; Institute of Chemical Technology; Prague Czech Republic
| | - Klára Navrátilová
- Department of Analytical Chemistry; Institute of Chemical Technology; Prague Czech Republic
| | - Michal Řezanka
- Institute for Nanomaterials; Advanced Technologies and Innovation; Technical University of Liberec; Liberec Czech Republic
| | - Vladimír Král
- Department of Analytical Chemistry; Institute of Chemical Technology; Prague Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry; Institute of Chemical Technology; Prague Czech Republic
| |
Collapse
|
21
|
Sánchez-Hernández L, Guijarro-Diez M, Marina ML, Crego AL. New approaches in sensitive chiral CE. Electrophoresis 2013; 35:12-27. [DOI: 10.1002/elps.201300355] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Laura Sánchez-Hernández
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá; Alcalá de Henares Madrid Spain
| | - Miguel Guijarro-Diez
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá; Alcalá de Henares Madrid Spain
| | - María Luisa Marina
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá; Alcalá de Henares Madrid Spain
| | - Antonio L. Crego
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá; Alcalá de Henares Madrid Spain
| |
Collapse
|