1
|
Tiwari V, Shukla S. Lipidomics and proteomics: An integrative approach for early diagnosis of dementia and Alzheimer's disease. Front Genet 2023; 14:1057068. [PMID: 36845373 PMCID: PMC9946989 DOI: 10.3389/fgene.2023.1057068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and considered to be responsible for majority of worldwide prevalent dementia cases. The number of patients suffering from dementia are estimated to increase up to 115.4 million cases worldwide in 2050. Hence, AD is contemplated to be one of the major healthcare challenge in current era. This disorder is characterized by impairment in various signaling molecules at cellular and nuclear level including aggregation of Aβ protein, tau hyper phosphorylation altered lipid metabolism, metabolites dysregulation, protein intensity alteration etc. Being heterogeneous and multifactorial in nature, the disease do not has any cure or any confirmed diagnosis before the onset of clinical manifestations. Hence, there is a requisite for early diagnosis of AD in order to downturn the progression/risk of the disorder and utilization of newer technologies developed in this field are aimed to provide an extraordinary assistance towards the same. The lipidomics and proteomics constitute large scale study of cellular lipids and proteomes in biological matrices at normal stage or any stage of a disease. The study involves high throughput quantification and detection techniques such as mass spectrometry, liquid chromatography, nuclear mass resonance spectroscopy, fluorescence spectroscopy etc. The early detection of altered levels of lipids and proteins in blood or any other biological matrices could aid in preventing the progression of AD and dementia. Therefore, the present review is designed to focus on the recent techniques and early diagnostic criteria for AD, revealing the role of lipids and proteins in this disease and their assessment through different techniques.
Collapse
Affiliation(s)
- Virendra Tiwari
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,*Correspondence: Shubha Shukla,
| |
Collapse
|
2
|
Lordén G, Wozniak JM, Doré K, Dozier LE, Cates-Gatto C, Patrick GN, Gonzalez DJ, Roberts AJ, Tanzi RE, Newton AC. Enhanced activity of Alzheimer disease-associated variant of protein kinase Cα drives cognitive decline in a mouse model. Nat Commun 2022; 13:7200. [PMID: 36418293 PMCID: PMC9684486 DOI: 10.1038/s41467-022-34679-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
Exquisitely tuned activity of protein kinase C (PKC) isozymes is essential to maintaining cellular homeostasis. Whereas loss-of-function mutations are generally associated with cancer, gain-of-function variants in one isozyme, PKCα, are associated with Alzheimer's disease (AD). Here we show that the enhanced activity of one variant, PKCα M489V, is sufficient to rewire the brain phosphoproteome, drive synaptic degeneration, and impair cognition in a mouse model. This variant causes a modest 30% increase in catalytic activity without altering on/off activation dynamics or stability, underscoring that enhanced catalytic activity is sufficient to drive the biochemical, cellular, and ultimately cognitive effects observed. Analysis of hippocampal neurons from PKCα M489V mice reveals enhanced amyloid-β-induced synaptic depression and reduced spine density compared to wild-type mice. Behavioral studies reveal that this mutation alone is sufficient to impair cognition, and, when coupled to a mouse model of AD, further accelerates cognitive decline. The druggability of protein kinases positions PKCα as a promising therapeutic target in AD.
Collapse
Affiliation(s)
- Gema Lordén
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jacob M Wozniak
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kim Doré
- Center for Neural Circuits and Behavior, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Lara E Dozier
- Section of Neurobiology. Division of Biological sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chelsea Cates-Gatto
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gentry N Patrick
- Section of Neurobiology. Division of Biological sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Jeong A, Auger SA, Maity S, Fredriksen K, Zhong R, Li L, Distefano MD. In Vivo Prenylomic Profiling in the Brain of a Transgenic Mouse Model of Alzheimer's Disease Reveals Increased Prenylation of a Key Set of Proteins. ACS Chem Biol 2022; 17:2863-2876. [PMID: 36109170 PMCID: PMC9799064 DOI: 10.1021/acschembio.2c00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dysregulation of protein prenylation has been implicated in many diseases, including Alzheimer's disease (AD). Prenylomic analysis, the combination of metabolic incorporation of an isoprenoid analogue (C15AlkOPP) into prenylated proteins with a bottom-up proteomic analysis, has allowed the identification of prenylated proteins in various cellular models. Here, transgenic AD mice were administered with C15AlkOPP through intracerebroventricular (ICV) infusion over 13 days. Using prenylomic analysis, 36 prenylated proteins were enriched in the brains of AD mice. Importantly, the prenylated forms of 15 proteins were consistently upregulated in AD mice compared to nontransgenic wild-type controls. These results highlight the power of this in vivo metabolic labeling approach to identify multiple post-translationally modified proteins that may serve as potential therapeutic targets for a disease that has proved refractory to treatment thus far. Moreover, this method should be applicable to many other types of protein modifications, significantly broadening its scope.
Collapse
Affiliation(s)
- Angela Jeong
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | | - Sanjay Maity
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | | - Rui Zhong
- University of Minnesota, Minneapolis, MN, 55455 USA
| | - Ling Li
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | |
Collapse
|
4
|
Baicalin Attenuated Aβ1-42-Induced Apoptosis in SH-SY5Y Cells by Inhibiting the Ras-ERK Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9491755. [PMID: 35528169 PMCID: PMC9068334 DOI: 10.1155/2022/9491755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a serious neurodegenerative disease. It is widely believed that the accumulation of amyloid beta (Aβ) in neurons around neurofibrillary plaques is the main pathological characteristic of AD; however, the molecular mechanism underlying these pathological changes is not clear. Baicalin is a flavonoid extracted from the dry root of Scutellaria baicalensis Georgi. Studies have shown that baicalin exerts excellent anti-inflammatory and neuroprotective effects. In this study, an AD cell model was established by exposing SH-SY5Y cells to Aβ1-42 and treating them with baicalin. Cell survival, cell cycle progression, and apoptosis were measured by MTT, flow cytometry, and immunofluorescence assays, respectively. The expression levels of Ras, ERK/ERK phosphorylation (p-ERK), and cyclin D1 were measured by Western blotting. In addition, whether the MEK activator could reverse the regulatory effect of baicalin on Ras-ERK signaling was investigated using Western blotting. We found that baicalin improved the survival, promoted the proliferation, and inhibited the apoptosis of SH-SY5Y cells after Aβ1-42 treatment. Baicalin also ameliorated Aβ1-42-induced cell cycle arrest at the S phase and induced apoptosis. Furthermore, baicalin inhibited the levels of Ras, p-ERK, and cyclin D1 induced by Aβ, and this effect could be reversed by the MEK activator. Therefore, we suggest that baicalin may regulate neuronal cell cycle progression and apoptosis in Aβ1-42-treated SH-SY5Y cells by inhibiting the Ras-ERK signaling pathway. This study suggested that baicalin might be a useful therapeutic agent for senile dementia, especially AD.
Collapse
|
5
|
Sant V, Som M, Karkisaval AG, Carnahan P, Lal R. Scavenging amyloid oligomers from neurons with silica nanobowls: Implications for amyloid diseases. Biophys J 2021; 120:3329-3340. [PMID: 34242592 PMCID: PMC8391079 DOI: 10.1016/j.bpj.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Amyloid-β (Aβ) oligomers are toxic species implicated in Alzheimer's disease (AD). The prevailing hypothesis implicates a major role of membrane-associated amyloid oligomers in AD pathology. Our silica nanobowls (NB) coated with lipid-polymer have submicromolar affinity for Aβ binding. We demonstrate that NB scavenges distinct fractions of Aβs in a time-resolved manner from amyloid precursor protein-null neuronal cells after incubation with Aβ. At short incubation times in cell culture, NB-Aβ seeds have aggregation kinetics resembling that of extracellular fraction of Aβ, whereas at longer incubation times, NB-Aβ seeds scavenge membrane-associated Aβ. Aβ aggregates can be eluted from NB surfaces by mechanical agitation and appear to retain their aggregation driving domains as seen in seeding aggregation experiments. These results demonstrate that the NB system can be used for time-resolved separation of toxic Aβ species from biological samples for characterization and in diagnostics. Scavenging membrane-associated amyloids using lipid-functionalized NB without chemical manipulation has wide applications in the diagnosis and therapy of AD and other neurodegenerative diseases, cancer, and cardiovascular conditions.
Collapse
Affiliation(s)
- Vrinda Sant
- Materials Science and Engineering, University of California San Diego, La Jolla, California.
| | - Madhura Som
- Department of Nanoengineering, University of California San Diego, La Jolla, California
| | - Abhijith G Karkisaval
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California
| | - Parker Carnahan
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Ratnesh Lal
- Materials Science and Engineering, University of California San Diego, La Jolla, California; Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California.
| |
Collapse
|
6
|
Engin AB, Engin A. Alzheimer's Disease and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:285-321. [PMID: 33539020 DOI: 10.1007/978-3-030-49844-3_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and accounts for more than 60-80% of all cases of dementia. Loss of pyramidal neurons, extracellular amyloid beta (Abeta) accumulated senile plaques, and neurofibrillary tangles that contain hyperphosphorylated tau constitute the main pathological alterations in AD.Synaptic dysfunction and extrasynaptic N-methyl-D-aspartate receptor (NMDAR) hyperactivation contributes to excitotoxicity in patients with AD. Amyloid precursor protein (APP) and Abeta promoted neurodegeneration develop through the activation of protein kinase signaling cascade in AD. Furthermore, ultimate neuronal death in AD is under control of protein kinases-related signaling pathways. In this chapter, critical check-points within the cross-talk between neuron and protein kinases have been defined regarding the initiation and progression of AD. In this context, amyloid cascade hypothesis, neuroinflammation, oxidative stress, granulovacuolar degeneration, loss of Wnt signaling, Abeta-related synaptic alterations, prolonged calcium ions overload and NMDAR-related synaptotoxicity, damage signals hypothesis and type-3 diabetes are discussed briefly.In addition to clinical perspective of AD pathology, recommendations that might be effective in the treatment of AD patients have been reviewed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
7
|
Li K, Jiang Y, Li G, Liu T, Yang Z. Novel Multitarget Directed Tacrine Hybrids as Anti-Alzheimer's Compounds Improved Synaptic Plasticity and Cognitive Impairment in APP/PS1 Transgenic Mice. ACS Chem Neurosci 2020; 11:4316-4328. [PMID: 33216529 DOI: 10.1021/acschemneuro.0c00574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a complex pathological neurodegenerative disease that seriously threatens human health. Therefore, how to effectively improve and treat AD is an urgent problem. In this study, a novel multitarget derivative based on tacrine (named 9i), which could work simultaneously on more than one pathological target, was used to treat AD model APP/PS1 transgenic mice. After 4 weeks of intragastric administration, cognitive function and synaptic plasticity were significantly improved and β-amyloid (Aβ) plaques that are main pathological hallmarks of AD were decreased in the APP/PS1 mice. On the one hand, 9i inhibited the excessive activation of the Raf/MEK/ERK signaling pathway to alleviate the loss of neurons, which provides a foundation for structural integrity. On the other hand, synaptic associated proteins and the density of synaptic spines were increased in APP/PS1 mice treated with 9i, which provides the basis for the improvement of synaptic plasticity and cognitive impairment. Interestingly, 9i also reduced Aβ plaques in the DG region, which is consistent with previous in vitro experiments showing that 9i inhibited the self-assembly of Aβ fibers, thus protecting neurons from Aβ plaque neurotoxicity. Our results suggest that 9i as a novel compound can effectively improve the cognitive function and the pathological changes of AD in APP/PS1 transgenic mice.
Collapse
Affiliation(s)
- Kai Li
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yu Jiang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Guoliang Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Tianjun Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhuo Yang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Wang Y, Shi Z, Zhang Y, Yan J, Yu W, Chen L. Oligomer β-amyloid Induces Hyperactivation of Ras to Impede NMDA Receptor-Dependent Long-Term Potentiation in Hippocampal CA1 of Mice. Front Pharmacol 2020; 11:595360. [PMID: 33536910 PMCID: PMC7848859 DOI: 10.3389/fphar.2020.595360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/20/2020] [Indexed: 12/02/2022] Open
Abstract
The activity of Ras, a small GTPase protein, is increased in brains with Alzheimer’s disease. The objective of this study was to determine the influence of oligomeric Aβ1-42 on the activation of Ras, and the involvement of the Ras hyperactivity in Aβ1-42-induced deficits in spatial cognition and hippocampal synaptic plasticity. Herein, we show that intracerebroventricular injection of Aβ1-42 in mice (Aβ-mice) enhanced hippocampal Ras activation and expression, while 60 min incubation of hippocampal slices in Aβ1-42 (Aβ-slices) only elevated Ras activity. Aβ-mice showed deficits in spatial cognition and NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) in hippocampal CA1, but basal synaptic transmission was enhanced. The above effects of Aβ1-42 were corrected by the Ras inhibitor farnesylthiosalicylic acid (FTS). ERK2 phosphorylation increased, and Src phosphorylation decreased in Aβ-mice and Aβ1-42-slices. Both were corrected by FTS. In CA1 pyramidal cells of Aβ1-42-slices, the response of AMPA receptor and phosphorylation of GluR1 were enhanced with dependence on Ras activation rather than ERK signaling. In contrast, NMDA receptor (NMDAR) function and GluN2A/2B phosphorylation were downregulated in Aβ1-42-slices, which was recovered by application of FTS or the Src activator ouabain, and mimicked in control slices treated with the Src inhibitor PP2. The administration of PP2 impaired the spatial cognition and LTP induction in control mice and FTS-treated Aβ-mice. The treatment of Aβ-mice with ouabain rescued Aβ-impaired spatial cognition and LTP. Overall, the results indicate that the oligomeric Aβ1-42 hyperactivates Ras and thereby causes the downregulation of Src which impedes NMDAR-dependent LTP induction resulting in cognitive deficits.
Collapse
Affiliation(s)
- Ya Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Zhaochun Shi
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Jun Yan
- Department of Geriatric Medicine, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases of Education Ministry, Guizhou Medical University, Guizhou, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Murtaza N, Uy J, Singh KK. Emerging proteomic approaches to identify the underlying pathophysiology of neurodevelopmental and neurodegenerative disorders. Mol Autism 2020; 11:27. [PMID: 32317014 PMCID: PMC7171839 DOI: 10.1186/s13229-020-00334-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
Proteomics is the large-scale study of the total protein content and their overall function within a cell through multiple facets of research. Advancements in proteomic methods have moved past the simple quantification of proteins to the identification of post-translational modifications (PTMs) and the ability to probe interactions between these proteins, spatially and temporally. Increased sensitivity and resolution of mass spectrometers and sample preparation protocols have drastically reduced the large amount of cells required and the experimental variability that had previously hindered its use in studying human neurological disorders. Proteomics offers a new perspective to study the altered molecular pathways and networks that are associated with autism spectrum disorders (ASD). The differences between the transcriptome and proteome, combined with the various types of post-translation modifications that regulate protein function and localization, highlight a novel level of research that has not been appropriately investigated. In this review, we will discuss strategies using proteomics to study ASD and other neurological disorders, with a focus on how these approaches can be combined with induced pluripotent stem cell (iPSC) studies. Proteomic analysis of iPSC-derived neurons have already been used to measure changes in the proteome caused by patient mutations, analyze changes in PTMs that resulted in altered biological pathways, and identify potential biomarkers. Further advancements in both proteomic techniques and human iPSC differentiation protocols will continue to push the field towards better understanding ASD disease pathophysiology. Proteomics using iPSC-derived neurons from individuals with ASD offers a window for observing the altered proteome, which is necessary in the future development of therapeutics against specific targets.
Collapse
Affiliation(s)
- Nadeem Murtaza
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Jarryll Uy
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Karun K Singh
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 3Z5, Canada.
| |
Collapse
|
10
|
Bhattacharya A, Limone A, Napolitano F, Cerchia C, Parisi S, Minopoli G, Montuori N, Lavecchia A, Sarnataro D. APP Maturation and Intracellular Localization Are Controlled by a Specific Inhibitor of 37/67 kDa Laminin-1 Receptor in Neuronal Cells. Int J Mol Sci 2020; 21:ijms21051738. [PMID: 32143270 PMCID: PMC7084285 DOI: 10.3390/ijms21051738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
Amyloid precursor protein (APP) is processed along both the nonamyloidogenic pathway preventing amyloid beta peptide (Aβ) production and the amyloidogenic pathway, generating Aβ, whose accumulation characterizes Alzheimer’s disease. Items of evidence report that the intracellular trafficking plays a key role in the generation of Aβ and that the 37/67 kDa LR (laminin receptor), acting as a receptor for Aβ, may mediate Aβ-pathogenicity. Moreover, findings indicating interaction between the receptor and the key enzymes involved in the amyloidogenic pathway suggest a strong link between 37/67 kDa LR and APP processing. We show herein that the specific 37/67 kDa LR inhibitor, NSC48478, is able to reversibly affect the maturation of APP in a pH-dependent manner, resulting in the partial accumulation of the immature APP isoforms (unglycosylated/acetylated forms) in the endoplasmic reticulum (ER) and in transferrin-positive recycling endosomes, indicating alteration of the APP intracellular trafficking. These effects reveal NSC48478 inhibitor as a novel small molecule to be tested in disease conditions, mediated by the 37/67 kDa LR and accompanied by inactivation of ERK1/2 (extracellular signal-regulated kinases) signalling and activation of Akt (serine/threonine protein kinase) with consequent inhibition of GSK3β.
Collapse
Affiliation(s)
- Antaripa Bhattacharya
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.L.); (S.P.); (G.M.)
| | - Adriana Limone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.L.); (S.P.); (G.M.)
| | - Filomena Napolitano
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (F.N.); (N.M.)
| | - Carmen Cerchia
- Department of Pharmacy, “Drug Discovery Lab”, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.C.); (A.L.)
| | - Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.L.); (S.P.); (G.M.)
| | - Giuseppina Minopoli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.L.); (S.P.); (G.M.)
| | - Nunzia Montuori
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (F.N.); (N.M.)
| | - Antonio Lavecchia
- Department of Pharmacy, “Drug Discovery Lab”, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.C.); (A.L.)
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.L.); (S.P.); (G.M.)
- Correspondence:
| |
Collapse
|
11
|
Jeong A, Suazo KF, Wood WG, Distefano MD, Li L. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Crit Rev Biochem Mol Biol 2018; 53:279-310. [PMID: 29718780 PMCID: PMC6101676 DOI: 10.1080/10409238.2018.1458070] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mevalonate-isoprenoid-cholesterol biosynthesis pathway plays a key role in human health and disease. The importance of this pathway is underscored by the discovery that two major isoprenoids, farnesyl and geranylgeranyl pyrophosphate, are required to modify an array of proteins through a process known as protein prenylation, catalyzed by prenyltransferases. The lipophilic prenyl group facilitates the anchoring of proteins in cell membranes, mediating protein-protein interactions and signal transduction. Numerous essential intracellular proteins undergo prenylation, including most members of the small GTPase superfamily as well as heterotrimeric G proteins and nuclear lamins, and are involved in regulating a plethora of cellular processes and functions. Dysregulation of isoprenoids and protein prenylation is implicated in various disorders, including cardiovascular and cerebrovascular diseases, cancers, bone diseases, infectious diseases, progeria, and neurodegenerative diseases including Alzheimer's disease (AD). Therefore, isoprenoids and/or prenyltransferases have emerged as attractive targets for developing therapeutic agents. Here, we provide a general overview of isoprenoid synthesis, the process of protein prenylation and the complexity of prenylated proteins, and pharmacological agents that regulate isoprenoids and protein prenylation. Recent findings that connect isoprenoids/protein prenylation with AD are summarized and potential applications of new prenylomic technologies for uncovering the role of prenylated proteins in the pathogenesis of AD are discussed.
Collapse
Affiliation(s)
- Angela Jeong
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
| | | | - W. Gibson Wood
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Mark D. Distefano
- Departments of Chemistry,University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
12
|
Individual Amino Acid Supplementation Can Improve Energy Metabolism and Decrease ROS Production in Neuronal Cells Overexpressing Alpha-Synuclein. Neuromolecular Med 2017. [PMID: 28620826 DOI: 10.1007/s12017-017-8448-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by alpha-synuclein accumulation and loss of dopaminergic neurons in the substantia nigra (SN) region of the brain. Increased levels of alpha-synuclein have been shown to result in loss of mitochondrial electron transport chain complex I activity leading to increased reactive oxygen species (ROS) production. WT alpha-synuclein was stably overexpressed in human BE(2)-M17 neuroblastoma cells resulting in increased levels of an alpha-synuclein multimer, but no increase in alpha-synuclein monomer levels. Oxygen consumption was decreased by alpha-synuclein overexpression, but ATP levels did not decrease and ROS levels did not increase. Treatment with ferrous sulfate, a ROS generator, resulted in decreased oxygen consumption in both control and alpha-synuclein overexpressing cells. However, this treatment only decreased ATP levels and increased ROS production in the cells overexpressing alpha-synuclein. Similarly, paraquat, another ROS generator, decreased ATP levels in the alpha-synuclein overexpressing cells, but not in the control cells, further demonstrating how alpha-synuclein sensitized the cells to oxidative insult. Proteomic analysis yielded molecular insights into the cellular adaptations to alpha-synuclein overexpression, such as the increased abundance of many mitochondrial proteins. Many amino acids and citric acid cycle intermediates and their ester forms were individually supplemented to the cells with L-serine, L-proline, L-aspartate, or L-glutamine decreasing ROS production in oxidatively stressed alpha-synuclein overexpressing cells, while diethyl oxaloacetate or L-valine supplementation increased ATP levels. These results suggest that dietary supplementation with individual metabolites could yield bioenergetic improvements in PD patients to delay loss of dopaminergic neurons.
Collapse
|
13
|
Kirouac L, Rajic AJ, Cribbs DH, Padmanabhan J. Activation of Ras-ERK Signaling and GSK-3 by Amyloid Precursor Protein and Amyloid Beta Facilitates Neurodegeneration in Alzheimer's Disease. eNeuro 2017; 4:ENEURO.0149-16.2017. [PMID: 28374012 PMCID: PMC5367084 DOI: 10.1523/eneuro.0149-16.2017] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 02/01/2023] Open
Abstract
It is widely accepted that amyloid β (Aβ) generated from amyloid precursor protein (APP) oligomerizes and fibrillizes to form neuritic plaques in Alzheimer's disease (AD), yet little is known about the contribution of APP to intracellular signaling events preceding AD pathogenesis. The data presented here demonstrate that APP expression and neuronal exposure to oligomeric Aβ42 enhance Ras/ERK signaling cascade and glycogen synthase kinase 3 (GSK-3) activation. We find that RNA interference (RNAi)-directed knockdown of APP in B103 rat neuroblastoma cells expressing APP inhibits Ras-ERK signaling and GSK-3 activation, indicating that APP acts upstream of these signal transduction events. Both ERK and GSK-3 are known to induce hyperphosphorylation of tau and APP at Thr668, and our findings suggest that aberrant signaling by APP facilitates these events. Supporting this notion, analysis of human AD brain samples showed increased expression of Ras, activation of GSK-3, and phosphorylation of APP and tau, which correlated with Aβ levels in the AD brains. Furthermore, treatment of primary rat neurons with Aβ recapitulated these events and showed enhanced Ras-ERK signaling, GSK-3 activation, upregulation of cyclin D1, and phosphorylation of APP and tau. The finding that Aβ induces Thr668 phosphorylation on APP, which enhances APP proteolysis and Aβ generation, denotes a vicious feedforward mechanism by which APP and Aβ promote tau hyperphosphorylation and neurodegeneration in AD. Based on these results, we hypothesize that aberrant proliferative signaling by APP plays a fundamental role in AD neurodegeneration and that inhibition of this would impede cell cycle deregulation and neurodegeneration observed in AD.
Collapse
Affiliation(s)
- Lisa Kirouac
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Alexander J. Rajic
- Institute for Memory Impairment and Neurological Disorders, Department of Neurology, University of California, Irvine, Irvine, CA 92697-4540
| | - David H. Cribbs
- Institute for Memory Impairment and Neurological Disorders, Department of Neurology, University of California, Irvine, Irvine, CA 92697-4540
| | - Jaya Padmanabhan
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| |
Collapse
|
14
|
Chaput D, Kirouac L, Stevens SM, Padmanabhan J. Potential role of PCTAIRE-2, PCTAIRE-3 and P-Histone H4 in amyloid precursor protein-dependent Alzheimer pathology. Oncotarget 2017; 7:8481-97. [PMID: 26885753 PMCID: PMC4890981 DOI: 10.18632/oncotarget.7380] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/31/2016] [Indexed: 12/11/2022] Open
Abstract
Amyloid Precursor Protein (APP) is regulated in a mitosis-specific manner and plays a role in proliferative signaling in cells. Though APP-derived Aβ generation has a well-established role in neurodegeneration, the mechanistic role of APP in this process is not fully understood. Here, we performed an unbiased, comprehensive analysis of the phosphoproteome signature in APP-null neuroblastoma cells (B103) compared to those expressing APP-695 isoform (B103-695) to determine if APP expression affects protein phosphorylation. Stable isotope labeling by amino acids in cell culture (SILAC) followed by mass spectrometry-based phosphoproteomic analysis with PolyMAC identified a total of 2,478 phosphopeptides in the B103 and B103-695 cell culture model system. We observed that phosphorylation of PCTAIRE-2 (CDK17), PCTAIRE-3 (CDK18), and Histone H4 are significantly elevated in B103-695 cells; western blot analysis confirmed overexpression of PCTAIREs and increased phosphorylation of Histone H4. More importantly, analysis of primary neurons treated with Aβ, as well as brain samples from MCI (mild cognitive impaired) and AD patients recapitulated these results, showing increased levels of PCTAIREs and P-Histone H4. These novel findings identify a hitherto uncharacterized mechanism by which APP and/or Aβ may promote AD neurodegeneration, and raises the possibility that their inhibition may protect against pathology development in AD.
Collapse
Affiliation(s)
- Dale Chaput
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Lisa Kirouac
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Jaya Padmanabhan
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| |
Collapse
|
15
|
Martin MD, Calcul L, Smith C, Jinwal UK, Fontaine SN, Darling A, Seeley K, Wojtas L, Narayan M, Gestwicki JE, Smith GR, Reitz AB, Baker BJ, Dickey CA. Synthesis, stereochemical analysis, and derivatization of myricanol provide new probes that promote autophagic tau clearance. ACS Chem Biol 2015; 10:1099-109. [PMID: 25588114 DOI: 10.1021/cb501013w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We previously discovered that one specific scalemic preparation of myricanol (1), a constituent of Myrica cerifera (bayberry/southern wax myrtle) root bark, could lower the levels of the microtubule-associated protein tau (MAPT). The significance is that tau accumulates in a number of neurodegenerative diseases, the most common being Alzheimer's disease (AD). Herein, a new synthetic route to prepare myricanol using a suitable boronic acid pinacol ester intermediate is reported. An X-ray crystal structure of the isolated myricanol (1) was obtained and showed a co-crystal consisting of (+)-aR,11S-myricanol (2) and (-)-aS,11R-myricanol (3) coformers. Surprisingly, 3, obtained from chiral separation from 1, reduced tau levels in both cultured cells and ex vivo brain slices from a mouse model of tauopathy at reasonable mid-to-low micromolar potency, whereas 2 did not. SILAC proteomics and cell assays revealed that 3 promoted tau degradation through an autophagic mechanism, which was in contrast to that of other tau-lowering compounds previously identified by our group. During the course of structure-activity relationship (SAR) development, we prepared compound 13 by acid-catalyzed dehydration of 1. 13 had undergone an unexpected structural rearrangement through the isomyricanol substitution pattern (e.g., 16), as verified by X-ray structural analysis. Compound 13 displayed robust tau-lowering activity, and, importantly, its enantiomers reduced tau levels similarly. Therefore, the semisynthetic analogue 13 provides a foundation for further development as a tau-lowering agent without its SAR being based on chirality.
Collapse
Affiliation(s)
- Mackenzie D. Martin
- Department
of Molecular Medicine and Alzheimer’s Institute, University of South Florida, Tampa, Florida 33613, United States
| | - Laurent Calcul
- Department
of Chemistry and Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida 33620, United States
| | - Courtney Smith
- Department
of Chemistry and Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida 33620, United States
| | - Umesh K. Jinwal
- Department
of Molecular Medicine and Alzheimer’s Institute, University of South Florida, Tampa, Florida 33613, United States
| | - Sarah N. Fontaine
- Department
of Molecular Medicine and Alzheimer’s Institute, University of South Florida, Tampa, Florida 33613, United States
| | - April Darling
- Department
of Molecular Medicine and Alzheimer’s Institute, University of South Florida, Tampa, Florida 33613, United States
| | - Kent Seeley
- Department
of Chemistry and Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida 33620, United States
| | - Lukasz Wojtas
- Department
of Chemistry and Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida 33620, United States
| | - Malathi Narayan
- Department
of Molecular Medicine and Alzheimer’s Institute, University of South Florida, Tampa, Florida 33613, United States
| | - Jason E. Gestwicki
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, San
Francisco, California 94158, United States
| | - Garry R. Smith
- ALS Biopharma, LLC, 3805
Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Allen B. Reitz
- ALS Biopharma, LLC, 3805
Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Bill J. Baker
- Department
of Chemistry and Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida 33620, United States
| | - Chad A. Dickey
- Department
of Molecular Medicine and Alzheimer’s Institute, University of South Florida, Tampa, Florida 33613, United States
- Department
of Chemistry and Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida 33620, United States
- James A. Haley Veteran’s Hospital, 13000 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| |
Collapse
|
16
|
New insight into neurodegeneration: the role of proteomics. Mol Neurobiol 2013; 49:1181-99. [PMID: 24323427 DOI: 10.1007/s12035-013-8590-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/06/2013] [Indexed: 12/11/2022]
Abstract
Recent advances within the field of proteomics, including both upstream and downstream protocols, have fuelled a transition from simple protein identification to functional analysis. A battery of proteomics approaches is now being employed for the analysis of protein expression levels, the monitoring of cellular activities and for gaining an increased understanding into biochemical pathways. Combined, these approaches are changing the way we study disease by allowing accurate and targeted, large scale protein analysis, which will provide invaluable insight into disease pathogenesis. Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), prion disease, and other diseases that affect the neuromuscular system, are a leading cause of disability in the aging population. There are no effective intervention strategies for these disorders and diagnosis is challenging as it relies primarily on clinical symptomatic features, which often overlap at early stages of disease. There is, therefore, an urgent need to develop reliable biomarkers to improve early and specific diagnosis, to track disease progression, to measure molecular responses towards treatment regimes and ultimately devise new therapeutic strategies. To accomplish this, a better understanding of disease mechanisms is needed. In this review we summarize recent advances in the field of proteomics applicable to neurodegenerative disorders, and how these advances are fueling our understanding, diagnosis, and treatment of these complex disorders.
Collapse
|