1
|
|
2
|
Raut A, Sharma D, Suvarna V. A Status Update on Pharmaceutical Analytical Methods of Aminoglycoside Antibiotic: Amikacin. Crit Rev Anal Chem 2020; 52:375-391. [PMID: 32781828 DOI: 10.1080/10408347.2020.1803042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Amikacin (AMK) is one of the commonly used aminoglycoside antibiotics, introduced for clinical use in patients suffering from bacterial infections especially life-threatening gram-negative infections. Due to lack of chromophore in the molecule, the detection of AMK during analysis is a challenge. Thus, pre and post-column derivatization techniques are generally used for AMK estimation. This review focuses on different analytical methods used for detection and quantification of AMK in pure or fixed dose combination pharmaceutical formulations and biological samples. Various reported methods described in the literature include high-performance liquid chromatography techniques, pulsed electrochemical detection techniques, Chemiluminescence techniques, Capillary electrophoresis and immunological methods. High-performance-liquid-chromatography based methods with UV/Vis spectrophotometric, fluorescence and mass spectrometric detection are the most prevailing methods employed for the analysis of AMK. This review could be of significant importance in the area of future AMK analytical method development studies.
Collapse
Affiliation(s)
- Adishri Raut
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM Campus, Dr Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Dhvani Sharma
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM Campus, Dr Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Vasanti Suvarna
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM Campus, Dr Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
3
|
Tan Y, Song Q, Liu W, Li M, Xiao J, Chen C. Dual-channel Microchip Electrophoresis with Amperometric Detection System for Rapid Analysis of Cefoperazone and Sulbactam. ANAL SCI 2019; 35:1103-1109. [PMID: 31231088 DOI: 10.2116/analsci.19p088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A dual-channel microchip electrophoresis (ME) with in-channel amperometric detection was developed for cefoperazone and sulbactam determination simultaneously. In this study, a microelectrode detector was made of gold nanoparticles (GNPs) modified indium tin oxide (ITO)-coated poly-ethylene terephthalate (PET) film. The parameters including detection potential applied on working electrode, buffer concentration and pH value were optimized to improve the detection sensitivity and separation efficiency of cefoperazone and sulbactam. Under the optimal conditions, sensitive detection of cefoperazone and sulbactam was obtained with limits of detection (LODs) (S/N = 3) of 0.52 and 0.75 μg/mL, respectively. The plasma sample, which was from a patient with a brain injury taking Sulperazone, was successfully detected with a simple sample pretreatment process by dual-channel ME amperometric detection. This rapid and sensitive method possesses practical potential in clinical applications, and could provide a guidance for clinical rational drug use.
Collapse
Affiliation(s)
- Yan Tan
- Xiangya School of Pharmaceutical Sciences, Central South University
| | - Qianhui Song
- Xiangya School of Pharmaceutical Sciences, Central South University
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University
| | - Ming Li
- School of Environmental Science and Engineering, Yangzhou University
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University
| |
Collapse
|
4
|
Chen X, Hong F, Cao Y, Hu F, Wu Y, Wu D, Li T, Lin J, Gan N. A microchip electrophoresis-based assay for ratiometric detection of kanamycin by R-shape probe and exonuclease-assisted signal amplification. Talanta 2018; 189:494-501. [DOI: 10.1016/j.talanta.2018.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/03/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
|
5
|
Wang X, Yang S, Li Y, Zhang J, Jin Y, Zhao W, Zhang Y, Huang J, Wang P, Wu C, Zhou J. Optimization and application of parallel solid-phase extraction coupled with ultra-high performance liquid chromatography–tandem mass spectrometry for the determination of 11 aminoglycoside residues in honey and royal jelly. J Chromatogr A 2018; 1542:28-36. [DOI: 10.1016/j.chroma.2018.02.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/07/2018] [Accepted: 02/17/2018] [Indexed: 01/31/2023]
|
6
|
HPLC Determination of Spectinomycin in Feed Premixes and Dosage Forms Using 1-Naphthyl Isocyanate Precolumn Derivatization with UV Detection. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0426-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Domínguez-Vega E, Montealegre C, Marina ML. Analysis of antibiotics by CE and their use as chiral selectors: An update. Electrophoresis 2015; 37:189-211. [PMID: 26471773 DOI: 10.1002/elps.201500359] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022]
Abstract
The widespread use of antibiotics in medicine and as growth-promoting agents has increased the demand for suitable analytical techniques for their analysis. Analytical methods based on CE or miniaturized CE systems have proved over the years their ability for the analysis of antibiotics. Since our last review (Electrophoresis 2014, 35, 28-49) several new CE methodologies have been reported for antibiotic analysis. This review presents an update of the literature published from June 2013 to June 2015 for the analysis of antibiotics by CE. UV continues being the most used detection system for antibiotics analysis by CE. Strategies to improve sensitivity as the use of sensitive detection systems and the application of preconcentration techniques appear to be the major developments. Furthermore, the use of portable and miniaturized devices for antibiotic analysis is presented in detail. Applications of the developed methodologies to the determination of residues of antibiotics in biological, food, and environmental samples are carefully described. Finally, new developments and applications of antibiotics as chiral selectors in CE are also included.
Collapse
Affiliation(s)
- Elena Domínguez-Vega
- Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands
| | | | - Maria Luisa Marina
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
8
|
Recent applications of microchip electrophoresis to biomedical analysis. J Pharm Biomed Anal 2015; 113:72-96. [DOI: 10.1016/j.jpba.2015.03.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 11/22/2022]
|
9
|
Electroanalysis of antitubercular drugs in pharmaceutical dosage forms and biological fluids: A review. Anal Chim Acta 2015; 853:59-76. [DOI: 10.1016/j.aca.2014.09.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/20/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022]
|
10
|
Domínguez-Vega E, Pérez-Fernández V, Crego AL, García MÁ, Marina ML. Recent advances in CE analysis of antibiotics and its use as chiral selectors. Electrophoresis 2014; 35:28-49. [PMID: 24395661 DOI: 10.1002/elps.201300347] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/06/2013] [Accepted: 10/06/2013] [Indexed: 12/24/2022]
Abstract
Antibiotics are a class of therapeutic molecules widely employed in both human and veterinary medicine. This article reviews the most recent advances in the analysis of antibiotics by CE in pharmaceutical, environmental, food, and biomedical fields. Emphasis is placed on the strategies to increase sensitivity as diverse off-line, in-line, and on-line preconcentration approaches and the use of different detection systems. The use of CE in the microchip format for the analysis of antibiotics is also reviewed in this article. Moreover, since the use of antibiotics as chiral selectors in CE has grown in the last years, a new section devoted to this aspect has been included. This review constitutes an update of previous published reviews and covers the literature published from June 2011 until June 2013.
Collapse
Affiliation(s)
- Elena Domínguez-Vega
- Department of Biomolecular Analysis, Faculty of Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Meng X, Suo X, Fan B, Yu Y, Ding Y. Study of the post separation pH adjustment by a microchip for the analysis of aminoglycoside antibiotics. RSC Adv 2014. [DOI: 10.1039/c4ra10597d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A simple microfluidic technique was developed with the ability to adjust the pH after separation for the electrochemical detection of aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Xiangying Meng
- College of Life Sciences
- University of Chinese Academy of Sciences
- Beijing 100049, China
| | - Xingmei Suo
- School of Information Engineering
- Minzu University of China
- Beijing 100081, China
| | - Beiyuan Fan
- College of Life Sciences
- University of Chinese Academy of Sciences
- Beijing 100049, China
| | - Yongliang Yu
- School of Physics
- University of Chinese Academy of Sciences
- Beijing 100049, China
| | - Yongsheng Ding
- College of Life Sciences
- University of Chinese Academy of Sciences
- Beijing 100049, China
| |
Collapse
|
12
|
García-Cañas V, Simó C, Castro-Puyana M, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2013; 35:147-69. [DOI: 10.1002/elps.201300315] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 12/25/2022]
|
13
|
Ge S, Tang W, Han R, Zhu Y, Wang Q, He P, Fang Y. Sensitive analysis of aminoglycoside antibiotics via hyphenation of transient moving substitution boundary with field-enhanced sample injection in capillary electrophoresis. J Chromatogr A 2013; 1295:128-35. [DOI: 10.1016/j.chroma.2013.04.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/31/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
|