1
|
Nasir Ahamed NN, Mendiola-Escobedo CA, Perez-Gonzalez VH, Lapizco-Encinas BH. Development of a DC-Biased AC-Stimulated Microfluidic Device for the Electrokinetic Separation of Bacterial and Yeast Cells. BIOSENSORS 2024; 14:237. [PMID: 38785711 PMCID: PMC11117482 DOI: 10.3390/bios14050237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Electrokinetic (EK) microsystems, which are capable of performing separations without the need for labeling analytes, are a rapidly growing area in microfluidics. The present work demonstrated three distinct binary microbial separations, computationally modeled and experimentally performed, in an insulator-based EK (iEK) system stimulated by DC-biased AC potentials. The separations had an increasing order of difficulty. First, a separation between cells of two distinct domains (Escherichia coli and Saccharomyces cerevisiae) was demonstrated. The second separation was for cells from the same domain but different species (Bacillus subtilis and Bacillus cereus). The last separation included cells from two closely related microbial strains of the same domain and the same species (two distinct S. cerevisiae strains). For each separation, a novel computational model, employing a continuous spatial and temporal function for predicting the particle velocity, was used to predict the retention time (tR,p) of each cell type, which aided the experimentation. All three cases resulted in separation resolution values Rs>1.5, indicating complete separation between the two cell species, with good reproducibility between the experimental repetitions (deviations < 6%) and good agreement (deviations < 18%) between the predicted tR,p and experimental (tR,e) retention time values. This study demonstrated the potential of DC-biased AC iEK systems for performing challenging microbial separations.
Collapse
Affiliation(s)
- Nuzhet Nihaar Nasir Ahamed
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA; (N.N.N.A.); (C.A.M.-E.)
| | - Carlos A. Mendiola-Escobedo
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA; (N.N.N.A.); (C.A.M.-E.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64700, Nuevo Leon, Mexico
| | - Victor H. Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64700, Nuevo Leon, Mexico
| | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA; (N.N.N.A.); (C.A.M.-E.)
| |
Collapse
|
2
|
Vaghef-Koodehi A, Lapizco-Encinas BH. Switching Separation Migration Order by Switching Electrokinetic Regime in Electrokinetic Microsystems. BIOSENSORS 2024; 14:119. [PMID: 38534226 DOI: 10.3390/bios14030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/28/2024]
Abstract
Analyte migration order is a major aspect in all migration-based analytical separations methods. Presented here is the manipulation of the migration order of microparticles in an insulator-based electrokinetic separation. Three distinct particle mixtures were studied: a binary mixture of particles with similar electrical charge and different sizes, and two tertiary mixtures of particles of distinct sizes. Each one of the particle mixtures was separated twice, the first separation was performed under low voltage (linear electrokinetic regime) and the second separation was performed under high voltage (nonlinear electrokinetic regime). Linear electrophoresis, which discriminates particles by charge, is the dominant electrokinetic effect in the linear regime; while nonlinear electrophoresis, which discriminates particles by size and shape, is the dominant electrokinetic effect in the nonlinear regime. The separation results obtained with the three particle mixtures illustrated that particle elution order can be changed by switching from the linear electrokinetic regime to the nonlinear electrokinetic regime. Also, in all cases, better separation performances in terms of separation resolution (Rs) were obtained by employing the nonlinear electrokinetic regime allowing nonlinear electrophoresis to be the discriminatory electrokinetic mechanism. These findings could be applied to analyze complex samples containing bioparticles of interest within the micron size range. This is the first report where particle elution order is altered in an iEK system.
Collapse
Affiliation(s)
- Alaleh Vaghef-Koodehi
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA
| |
Collapse
|
3
|
Dos-Reis-Delgado AA, Carmona-Dominguez A, Sosa-Avalos G, Jimenez-Saaib IH, Villegas-Cantu KE, Gallo-Villanueva RC, Perez-Gonzalez VH. Recent advances and challenges in temperature monitoring and control in microfluidic devices. Electrophoresis 2023; 44:268-297. [PMID: 36205631 PMCID: PMC10092670 DOI: 10.1002/elps.202200162] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Temperature is a critical-yet sometimes overlooked-parameter in microfluidics. Microfluidic devices can experience heating inside their channels during operation due to underlying physicochemical phenomena occurring therein. Such heating, whether required or not, must be monitored to ensure adequate device operation. Therefore, different techniques have been developed to measure and control temperature in microfluidic devices. In this contribution, the operating principles and applications of these techniques are reviewed. Temperature-monitoring instruments revised herein include thermocouples, thermistors, and custom-built temperature sensors. Of these, thermocouples exhibit the widest operating range; thermistors feature the highest accuracy; and custom-built temperature sensors demonstrate the best transduction. On the other hand, temperature control methods can be classified as external- or integrated-methods. Within the external methods, microheaters are shown to be the most adequate when working with biological samples, whereas Peltier elements are most useful in applications that require the development of temperature gradients. In contrast, integrated methods are based on chemical and physical properties, structural arrangements, which are characterized by their low fabrication cost and a wide range of applications. The potential integration of these platforms with the Internet of Things technology is discussed as a potential new trend in the field.
Collapse
Affiliation(s)
| | | | - Gerardo Sosa-Avalos
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | - Ivan H Jimenez-Saaib
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | - Karen E Villegas-Cantu
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | | | - Víctor H Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| |
Collapse
|
4
|
Rizi FS, Talebi S, Manshadi MKD, Mohammadi M. Combination of the insulator‐based dielectrophoresis and hydrodynamic methods for separating bacteria smaller than 3 μm in bloodstream infection: Numerical simulation approach. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - Mehdi Mohammadi
- Department of Biological Sciences University of Calgary Calgary Canada
- Department of Biomedical Engineering University of Calgary Calgary Canada
| |
Collapse
|
5
|
Huang PH, Chen S, Shiver AL, Culver RN, Huang KC, Buie CR. M-TUBE enables large-volume bacterial gene delivery using a high-throughput microfluidic electroporation platform. PLoS Biol 2022; 20:e3001727. [PMID: 36067229 PMCID: PMC9481174 DOI: 10.1371/journal.pbio.3001727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/16/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
Conventional cuvette-based and microfluidics-based electroporation approaches for bacterial gene delivery have distinct advantages, but they are typically limited to relatively small sample volumes, reducing their utility for applications requiring high throughput such as the generation of mutant libraries. Here, we present a scalable, large-scale bacterial gene delivery approach enabled by a disposable, user-friendly microfluidic electroporation device requiring minimal device fabrication and straightforward operation. We demonstrate that the proposed device can outperform conventional cuvettes in a range of situations, including across Escherichia coli strains with a range of electroporation efficiencies, and we use its large-volume bacterial electroporation capability to generate a library of transposon mutants in the anaerobic gut commensal Bifidobacterium longum.
Collapse
Affiliation(s)
- Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sijie Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Anthony L. Shiver
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Rebecca Neal Culver
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | - Cullen R. Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
6
|
Nasir NSA, Deivasigamani R, Wee MFMR, Hamzah AA, Zaid MHM, Rahim MKA, Kayani AA, Abdulhameed A, Buyong MR. Protein Albumin Manipulation and Electrical Quantification of Molecular Dielectrophoresis Responses for Biomedical Applications. MICROMACHINES 2022; 13:mi13081308. [PMID: 36014230 PMCID: PMC9415755 DOI: 10.3390/mi13081308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 05/17/2023]
Abstract
Research relating to dielectrophoresis (DEP) has been progressing rapidly through time as it is a strong and controllable technique for manipulation, separation, preconcentration, and partitioning of protein. Extensive studies have been carried out on protein DEP, especially on Bovine Serum Albumin (BSA). However, these studies involve the usage of dye and fluorescent probes to observe DEP responses as the physical properties of protein albumin molecular structure are translucent. The use of dye and the fluorescent probe could later affect the protein's physiology. In this article, we review three methods of electrical quantification of DEP responses: electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and capacitance measurement for protein BSA DEP manipulation. The correlation of these methods with DEP responses is further discussed. Based on the observations on capacitance measurement, it can be deduced that the electrical quantifying method is reliable for identifying DEP responses. Further, the possibility of manipulating the protein and electrically quantifying DEP responses while retaining the original physiology of the protein and without the usage of dye or fluorescent probe is discussed.
Collapse
Affiliation(s)
- Nur Shahira Abdul Nasir
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Revathy Deivasigamani
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - M. F. Mohd Razip Wee
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Azrul Azlan Hamzah
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Mohd Hazani Mat Zaid
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | | | - Aminuddin Ahmad Kayani
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Abdullah Abdulhameed
- Department of Electronics & Communication Engineering, Faculty of Engineering & Petroleum, Hadhramout University, Al-Mukalla 50512, Hadhramout, Yemen
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Correspondence: ; Tel.: +60-12-385-2713
| |
Collapse
|
7
|
Rahman MRU, Kwak TJ, Woehl JC, Chang WJ. Effect of geometry on dielectrophoretic trap stiffness in microparticle trapping. Biomed Microdevices 2021; 23:33. [PMID: 34185161 DOI: 10.1007/s10544-021-00570-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Dielectrophoresis, an electrokinetic technique, can be used for contactless manipulation of micro- and nano-size particles suspended in a fluid. We present a 3-D microfluidic DEP device with an orthogonal electrode configuration that uses negative dielectrophoresis to trap spherical polystyrene micro-particles. Traps with three different basic geometric shapes, i.e. triangular, square, and circular, and a fixed trap area of around 900 μm2 were investigated to determine the effect of trap shape on dynamics and strength of particle trapping. Effects of trap geometry were quantitatively investigated by means of trap stiffness, with applied electric potentials from 6 VP-P to 10 VP-P at 1 MHz. Analyzing the trap stiffness with a trapped 4.42 μm spherical particle showed that the triangular trap is the strongest, while the square shape trap is the weakest. The trap stiffness grew more than eight times in triangular traps and six times in both square and circular traps when the potential of the applied electric field was increased from 6 VP-P to 10 VP-P at 1 MHz. With the maximum applied potential, i.e. 10 VP-P at 1 MHz, the stiffness of the triangular trap was 60% and 26% stronger than the square and circular trap, respectively. A finite element model of the microfluidic DEP device was developed to numerically compute the DEP force for these trap shapes. The findings from the numerical computation demonstrate good agreement with the experimental analysis. The analysis of three different trap shapes provides important insights to predict trapping location, strength of the trapping zone, and optimized geometry for high throughput particle trapping.
Collapse
Affiliation(s)
| | - Tae Joon Kwak
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jörg C Woehl
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Woo-Jin Chang
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA. .,School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA.
| |
Collapse
|
8
|
Xuan X. Review of nonlinear electrokinetic flows in insulator-based dielectrophoresis: From induced charge to Joule heating effects. Electrophoresis 2021; 43:167-189. [PMID: 33991344 DOI: 10.1002/elps.202100090] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023]
Abstract
Insulator-based dielectrophoresis (iDEP) has been increasingly used for particle manipulation in various microfluidic applications. It exploits insulating structures to constrict and/or curve electric field lines to generate field gradients for particle dielectrophoresis. However, the presence of these insulators, especially those with sharp edges, causes two nonlinear electrokinetic flows, which, if sufficiently strong, may disturb the otherwise linear electrokinetic motion of particles and affect the iDEP performance. One is induced charge electroosmotic (ICEO) flow because of the polarization of the insulators, and the other is electrothermal flow because of the amplified Joule heating in the fluid around the insulators. Both flows vary nonlinearly with the applied electric field (either DC or AC) and exhibit in the form of fluid vortices, which have been utilized to promote some applications while being suppressed in others. The effectiveness of iDEP benefits from a comprehensive understanding of the nonlinear electrokinetic flows, which is complicated by the involvement of the entire iDEP device into electric polarization and thermal diffusion. This article is aimed to review the works on both the fundamentals and applications of ICEO and electrothermal flows in iDEP microdevices. A personal perspective of some future research directions in the field is also given.
Collapse
Affiliation(s)
- Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
9
|
Swami P, Sharma A, Anand S, Gupta S. DEPIS: A combined dielectrophoresis and impedance spectroscopy platform for rapid cell viability and antimicrobial susceptibility analysis. Biosens Bioelectron 2021; 182:113190. [PMID: 33866070 DOI: 10.1016/j.bios.2021.113190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Antimicrobial resistance (AMR) is caused by inappropriate or excessive antibiotic consumption. Early diagnosis of bacterial infections can greatly curb empirical treatment and thus AMR. Current diagnostic procedures are time-consuming as they rely on gene amplification and cell culture techniques that are inherently limited by the doubling rate of the involved species. Further, biochemical methods for species identification and antibiotic susceptibility testing for drug/dose effectiveness take several days and are non-scalable. We report a real-time, label-free approach called DEPIS that combines dielectrophoresis (DEP) for bacterial enrichment and impedance spectroscopy (IS) for cell viability analysis under 60 min. Target bacteria are captured on interdigitated electrodes using DEP (30 min) and their antibiotic-induced stress response is measured using IS (another 30 min). This principle is used to generate minimum bactericidal concentration (MBC) plots by measuring impedance change due to ionic release by dying bacteria in a low conductivity buffer. The results are rapid since they rely on cell death rather than cell growth which is an intrinsically slower process. The results are also highly specific and work across all bactericidal antibiotics studied, irrespective of their cellular target or drug action mechanism. More importantly, preliminary results with clinical isolates show that methicillin-susceptible Staphylococcus aureus (MSSA) can easily be differentiated from methicillin-resistant S. aureus (MRSA) under 1 h. This rapid cell analyses approach can aid in faster diagnosis of bacterial infections and benefit the clinical decision-making process for antibiotic treatment, addressing the critical issue of AMR.
Collapse
Affiliation(s)
- Pragya Swami
- Dept. of Chemical Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Ayush Sharma
- Dept. of Chemical Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Satyam Anand
- Dept. of Chemical Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Shalini Gupta
- Dept. of Chemical Engineering, Indian Institute of Technology, Delhi, 110016, India.
| |
Collapse
|
10
|
Song L, Yu L, Brumme C, Shaw R, Zhang C, Xuan X. Joule heating effects on electrokinetic flows with conductivity gradients. Electrophoresis 2020; 42:967-974. [PMID: 33253436 DOI: 10.1002/elps.202000264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/01/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Instability occurs in the electrokinetic flow of fluids with conductivity and/or permittivity gradients if the applied electric field is beyond a critical value. Understanding such an electrokinetic instability is significant for both improved transport (via the suppressed instability) and enhanced mixing (via the promoted instability) of liquid samples in microfluidic applications. This work presents the first study of Joule heating effects on electrokinetic microchannel flows with conductivity gradients using a combined experimental and numerical method. The experimentally observed flow patterns and measured critical electric fields under Joule heating effects to different extents are reasonably predicted by a depth-averaged numerical model. It is found that Joule heating increases the critical electric field for the onset of electrokinetic instability because the induced fluid temperature rise and in turn the fluid property change (primarily the decreased permittivity) lead to a smaller electric Rayleigh number.
Collapse
Affiliation(s)
- Le Song
- School of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei, P. R. China
- Department of Mechanical Engineering, Clemson University, Clemson, SC, USA
| | - Liandong Yu
- School of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei, P. R. China
- College of Controlling Science and Engineering, China University of Petroleum, Qingdao, P. R. China
| | - Christian Brumme
- Department of Mechanical Engineering, Clemson University, Clemson, SC, USA
| | - Ryan Shaw
- Department of Mechanical Engineering, Clemson University, Clemson, SC, USA
| | - Cheng Zhang
- Department of Mechanical Engineering, University of West Florida, Pensacola, FL, USA
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
11
|
Turcan I, Olariu MA. Dielectrophoretic Manipulation of Cancer Cells and Their Electrical Characterization. ACS COMBINATORIAL SCIENCE 2020; 22:554-578. [PMID: 32786320 DOI: 10.1021/acscombsci.0c00109] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electromanipulation and electrical characterization of cancerous cells is becoming a topic of high interest as the results reported to date demonstrate a good differentiation among various types of cells from an electrical viewpoint. Dielectrophoresis and broadband dielectric spectroscopy are complementary tools for sorting, identification, and characterization of malignant cells and were successfully used on both primary tumor cells and culture cells as well. However, the literature is presenting a plethora of studies with respect to electrical evaluation of these type of cells, and this review is reporting a collection of information regarding the functioning principles of different types of dielectrophoresis setups, theory of cancer cell polarization, and electrical investigation (including here the polarization mechanisms). The interpretation of electrical characteristics against frequency is discussed with respect to interfacial/Maxwell-Wagner polarization and the parasitic influence of electrode polarization. Moreover, the electrical equivalent circuits specific to biological cells polarizations are discussed for a good understanding of the cells' morphology influence. The review also focuses on advantages of specific low-conductivity buffers employed currently for improving the efficiency of dielectrophoresis and provides a set of synthesized data from the literature highlighting clear differentiation between the crossover frequencies of different cancerous cells.
Collapse
Affiliation(s)
- Ina Turcan
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, Profesor Dimitrie Mangeron Boulevard, No. 21−23, Iasi 700050, Romania
| | - Marius Andrei Olariu
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, Profesor Dimitrie Mangeron Boulevard, No. 21−23, Iasi 700050, Romania
| |
Collapse
|
12
|
Malekanfard A, Liu Z, Song L, Kale A, Zhang C, Yu L, Song Y, Xuan X. Joule heating-enabled electrothermal enrichment of nanoparticles in insulator-based dielectrophoretic microdevices. Electrophoresis 2020; 42:626-634. [PMID: 32935875 DOI: 10.1002/elps.202000192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/23/2020] [Accepted: 09/12/2020] [Indexed: 01/06/2023]
Abstract
Insulator-based dielectrophoresis (iDEP) exploits the electric field gradients formed around insulating structures to manipulate particles for diverse microfluidic applications. Compared to the traditional electrode-based dielectrophoresis, iDEP microdevices have the advantages of easy fabrication, free of water electrolysis, and robust structure, etc. However, the presence of in-channel insulators may cause thermal effects because of the locally amplified Joule heating of the fluid. The resulting electrothermal flow circulations are exploited in this work to trap and concentrate nanoscale particles (of 100 nm diameter and less) in a ratchet-based iDEP microdevice. Such Joule heating-enabled electrothermal enrichment of nanoparticles are found to grow with the increase of alternating current or direct current electric field. It also becomes more effective for larger particles and in a microchannel with symmetric ratchets. Moreover, a depth-averaged numerical model is developed to understand and simulate the various parametric effects, which is found to predict the experimental observations with a good agreement.
Collapse
Affiliation(s)
| | - Zhijian Liu
- Department of Mechanical Engineering, Clemson University, Clemson, SC, USA.,College of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Le Song
- Department of Mechanical Engineering, Clemson University, Clemson, SC, USA.,School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Akshay Kale
- Electrical Engineering Division, CAPE Building, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Cheng Zhang
- Department of Mechanical Engineering, University of West Florida, Pensacola, FL, USA
| | - Liandong Yu
- School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Yongxin Song
- College of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
13
|
Alizadeh A, Wang M. Temperature effects on electrical double layer at solid-aqueous solution interface. Electrophoresis 2020; 41:1067-1072. [PMID: 32333410 DOI: 10.1002/elps.201900354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 11/08/2022]
Abstract
Despite the significant influence of solution temperature on the structure of electrical double layer, the lack of theoretical model intercepts us to explain and predict the interesting experimental observations. In this work, we study the structure of electrical double layer as a function of thermochemical properties of the solution by proposing a phenomenological temperature dependent surface complexation model. We found that by introducing a buffer layer between the diffuse layer and stern layer, one can explain the sensitivity of zeta potential to temperature for different bulk ion concentrations. Calculation of the electrical conductance as function of thermochemical properties of solution reveals the electrical conductance not only is a function of bulk ion concentration and channel height but also the solution temperature. The present work model can provide deep understanding of micro- and nanofluidic devices functionality at different temperatures.
Collapse
Affiliation(s)
- Amer Alizadeh
- Department of Engineering Mechanics, Tsinghua University, Beijing, P. R. China.,Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Moran Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
14
|
Chen Q, Cao Z, Yuan YJ. Study on non-bioparticles and Staphylococcus aureus by dielectrophoresis. RSC Adv 2020; 10:2598-2614. [PMID: 35496126 PMCID: PMC9048846 DOI: 10.1039/c9ra05886a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/28/2019] [Indexed: 01/09/2023] Open
Abstract
This article demonstrated a chip device with alternating current (AC) dielectrophoresis (DEP) for separation of non-biological micro-particle and bacteria mixtures. The DEP separation was achieved by a pair of metal electrodes with the shape of radal-interdigital to generate a localized non-uniform AC electric field. The electric field and DEP force were firstly investigated by finite element methods (FEM). The mixed microparticles such as different scaled polystyrene (PS) beads, PS beads with inorganic micro-particles (e.g., ZnO and silica beads) and non-bioparticles with bacterial Staphylococcus aureus (S. aureus) were successfully separated at DEP-on-a-chip by an AC electric field of 20 kHz, 10 kHz and 1 MHz, respectively. The results indicated that DEP trapping can be considered as a potential candidate method for investigating the separation of biological mixtures, and may well prove to have a great impact on in situ monitoring of environmental and/or biological samples by DEP-on-a-chip. This article demonstrated a chip device with alternating current (AC) dielectrophoresis (DEP) for separation of non-biological micro-particle and bacteria mixtures.![]()
Collapse
Affiliation(s)
- Qiaoying Chen
- Laboratory of Biosensing and MicroMechatronics
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Zhongqing Cao
- School of Mechanical Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Yong J. Yuan
- Laboratory of Biosensing and MicroMechatronics
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| |
Collapse
|
15
|
Localized Dielectric Loss Heating in Dielectrophoresis Devices. Sci Rep 2019; 9:18977. [PMID: 31831755 PMCID: PMC6908616 DOI: 10.1038/s41598-019-55031-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/18/2019] [Indexed: 02/02/2023] Open
Abstract
Temperature increases during dielectrophoresis (DEP) can affect the response of biological entities, and ignoring the effect can result in misleading analysis. The heating mechanism of a DEP device is typically considered to be the result of Joule heating and is overlooked without an appropriate analysis. Our experiment and analysis indicate that the heating mechanism is due to the dielectric loss (Debye relaxation). A temperature increase between interdigitated electrodes (IDEs) has been measured with an integrated micro temperature sensor between IDEs to be as high as 70 °C at 1.5 MHz with a 30 Vpp applied voltage to our ultra-low thermal mass DEP device. Analytical and numerical analysis of the power dissipation due to the dielectric loss are in good agreement with the experiment data.
Collapse
|
16
|
Lentz CJ, Hidalgo-Caballero S, Lapizco-Encinas BH. Low frequency cyclical potentials for fine tuning insulator-based dielectrophoretic separations. BIOMICROFLUIDICS 2019; 13:044114. [PMID: 31489061 PMCID: PMC6715440 DOI: 10.1063/1.5115153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/13/2019] [Indexed: 05/25/2023]
Abstract
In this study, we demonstrate the use of cyclical low frequency signals with insulator-based dielectrophoresis (iDEP) devices for the separation of particles of similar characteristics and an experimental method for estimating particle DEP mobilities. A custom signal designer program was created using Matlab® and COMSOL Multiphysics® for the identification of specific low frequency signals aimed at separating particle mixtures by exploiting slight differences in surface charge (particle zeta potential) or particle size. For the separation by surface charge, a mixture of two types of 10 μm particles was analyzed and effectively separated employing both a custom step signal and a sawtooth left signal. Notably, these particles had the same shape, size, and surface functionalization as well as were made from the same substrate material. For the separation by size, a sample containing 2 μm and 5 μm particles was successfully separated using a custom step signal; these particles had the same shape, surface functionalization, were made from the same substrate materials, and had only a small difference in zeta potential (10 mV). Additionally, an experimental technique was developed to estimate the dielectrophoretic mobility of each particle type; this information was then utilized by the signal designer program. The technique developed in this study is readily applicable for designing signals capable of separating micron-sized particles of similar characteristics, such as microorganisms, where slight differences in cell size and the shape of surface charge could be effectively exploited. These findings open the possibility for applications in microbial screening using iDEP devices.
Collapse
Affiliation(s)
- Cody J. Lentz
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, New York 14623, USA
| | | | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, New York 14623, USA
| |
Collapse
|
17
|
Tajik P, Saidi MS, Kashaninejad N, Nguyen NT. Simple, Cost-Effective, and Continuous 3D Dielectrophoretic Microchip for Concentration and Separation of Bioparticles. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00771] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Parham Tajik
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9567, Iran
| | - Mohammad Said Saidi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9567, Iran
| | - Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, Queensland 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, Queensland 4111, Australia
| |
Collapse
|
18
|
Sun H, Ren Y, Hou L, Tao Y, Liu W, Jiang T, Jiang H. Continuous Particle Trapping, Switching, and Sorting Utilizing a Combination of Dielectrophoresis and Alternating Current Electrothermal Flow. Anal Chem 2019; 91:5729-5738. [DOI: 10.1021/acs.analchem.8b05861] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Gallo-Villanueva RC, Perez-Gonzalez VH, Cardenas-Benitez B, Jind B, Martinez-Chapa SO, Lapizco-Encinas BH. Joule heating effects in optimized insulator-based dielectrophoretic devices: An interplay between post geometry and temperature rise. Electrophoresis 2019; 40:1408-1416. [PMID: 30883810 DOI: 10.1002/elps.201800490] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 01/25/2023]
Abstract
Insulator-based dielectrophoresis (iDEP) is the electrokinetic migration of polarized particles when subjected to a non-uniform electric field generated by the inclusion of insulating structures between two remote electrodes. Electrode spacing is considerable in iDEP systems when compared to electrode-based DEP systems, therefore, iDEP systems require high voltages to achieve efficient particle manipulation. A consequence of this is the temperature increase within the channel due to Joule heating effects, which, in some cases, can be detrimental when manipulating biological samples. This work presents an experimental and modeling study on the increase in temperature inside iDEP devices. For this, we studied seven distinct channel designs that mainly differ from each other in their post array characteristics: post shape, post size and spacing between posts. Experimental results obtained using a custom-built copper Resistance Temperature Detector, based on resistance changes, show that the influence of the insulators produces a difference in temperature rise of approximately 4°C between the designs studied. Furthermore, a 3D COMSOL model is also introduced to evaluate heat generation and dissipation, which is in good agreement with the experiments. The model allowed relating the difference in average temperature for the geometries under study to the electric resistance posed by the post array in each design.
Collapse
Affiliation(s)
- Roberto C Gallo-Villanueva
- School of Engineering and Sciences, Nano- Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Victor H Perez-Gonzalez
- School of Engineering and Sciences, Nano- Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Braulio Cardenas-Benitez
- School of Engineering and Sciences, Nano- Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Binny Jind
- School of Engineering and Sciences, Nano- Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Sergio O Martinez-Chapa
- School of Engineering and Sciences, Nano- Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | | |
Collapse
|
20
|
Xuan X. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications. Electrophoresis 2019; 40:2484-2513. [DOI: 10.1002/elps.201900048] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Xiangchun Xuan
- Department of Mechanical Engineering; Clemson University; Clemson SC USA
| |
Collapse
|
21
|
Chen Q, Yuan YJ. A review of polystyrene bead manipulation by dielectrophoresis. RSC Adv 2019; 9:4963-4981. [PMID: 35514668 PMCID: PMC9060650 DOI: 10.1039/c8ra09017c] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/14/2019] [Indexed: 01/18/2023] Open
Abstract
Exploitation of the intrinsic electrical properties of particles has recently emerged as an appealing approach for trapping and separating various scaled particles. Initiative particle manipulation by dielectrophoresis (DEP) showed remarkable advantages including high speed, ease of handling, high precision and being label-free. Herein, we provide a general overview of the manipulation of polystyrene (PS) beads and related particles via DEP; especially, the wide applications of these manipulated PS beads in the quantitative evaluation of device performance for model validation and standardization have been discussed. The motion and polarizability of the PS beads induced by DEP were analyzed and classified into two categories as positive and negative DEP within the time and space domains. The DEP techniques used for bioparticle manipulation were demonstrated, and their applications were conducted in four fields: trapping of single-sized PS beads, separation of multiple-sized PS beads by size, separation of PS beads and non-bioparticles, and separation of PS beads and bioparticles. Finally, future perspectives on DEP-on-a-chip have been proposed to discriminate bio-targets in the network of microfluidic channels.
Collapse
Affiliation(s)
- Qiaoying Chen
- Laboratory of Biosensing and MicroMechatronics, School of Materials Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Yong J Yuan
- Laboratory of Biosensing and MicroMechatronics, School of Materials Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China
| |
Collapse
|
22
|
S Iliescu F, Sim WJ, Heidari H, P Poenar D, Miao J, Taylor HK, Iliescu C. Highlighting the uniqueness in dielectrophoretic enrichment of circulating tumor cells. Electrophoresis 2019; 40:1457-1477. [PMID: 30676660 DOI: 10.1002/elps.201800446] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/19/2019] [Accepted: 01/20/2019] [Indexed: 12/14/2022]
Abstract
Circulating tumor cells (CTCs) play an essential role in the metastasis of tumors, and thus can serve as a valuable prognostic factor for malignant diseases. As a result, the ability to isolate and characterize CTCs is essential. This review underlines the potential of dielectrophoresis for CTCs enrichment. It begins by summarizing the key performance parameters and challenges of CTCs isolation using microfluidics. The two main categories of CTCs enrichment-affinity-based and label-free methods-are analysed, emphasising the advantages and disadvantages of each as well as their clinical potential. While the main argument in favour of affinity-based methods is the strong specificity of CTCs isolation, the major advantage of the label-free technologies is in preserving the integrity of the cellular membrane, an essential requirement for downstream characterization. Moving forward, we try to answer the main question: "What makes dielectrophoresis a method of choice in CTCs isolation?" The uniqueness of dielectrophoretic CTCs enrichment resides in coupling the specificity of the isolation process with the conservation of the membrane surface. The specificity of the dielectrophoretic method stems from the differences in the dielectric properties between CTCs and other cells in the blood: the capacitances of the malignantly transformed cellular membranes of CTCs differ from those of other cells. Examples of dielectrophoretic devices are described and their performance evaluated. Critical requirements for using dielectrophoresis to isolate CTCs are highlighted. Finally, we consider that DEP has the potential of becoming a cytometric method for large-scale sorting and characterization of cells.
Collapse
Affiliation(s)
| | - Wen Jing Sim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
| | - Hossein Heidari
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Daniel P Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, Nanyang Technological University, Singapore
| | - Jianmin Miao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Hayden K Taylor
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Ciprian Iliescu
- Biomedical Institute for Global Health Research & Technology (BIGHEART), National University of Singapore, Singapore
| |
Collapse
|
23
|
Ko C, Li D, Malekanfard A, Wang Y, Fu L, Xuan X. Electroosmotic flow of non‐Newtonian fluids in a constriction microchannel. Electrophoresis 2018; 40:1387-1394. [DOI: 10.1002/elps.201800315] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Chien‐Hsuan Ko
- Department of Mechanical Engineering Clemson University Clemson SC USA
- Graduate Institute of Materials Engineering National Pingtung University of Science and Technology Taiwan
| | - Di Li
- Department of Mechanical Engineering Clemson University Clemson SC USA
| | | | - Yao‐Nan Wang
- Department of Vehicle Engineering National Pingtung University of Science and Technology Pingtung Taiwan
| | - Lung‐Ming Fu
- Graduate Institute of Materials Engineering National Pingtung University of Science and Technology Taiwan
- Department of Engineering Science National Cheng Kung University Tainan Taiwan
| | - Xiangchun Xuan
- Department of Mechanical Engineering Clemson University Clemson SC USA
| |
Collapse
|
24
|
Lapizco-Encinas BH. On the recent developments of insulator-based dielectrophoresis: A review. Electrophoresis 2018; 40:358-375. [PMID: 30112789 DOI: 10.1002/elps.201800285] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/26/2023]
Abstract
Insulator-based dielectrophoresis (iDEP), also known as electrodeless DEP, has become a well-known dielectrophoretic technique, no longer viewed as a new methodology. Significant advances on iDEP have been reported during the last 15 years. This review article aims to summarize some of the most important findings on iDEP organized by the type of dielectrophoretic mode: streaming and trapping iDEP. The former is primarily used for particle sorting, while the latter has great capability for particle enrichment. The characteristics of a wide array of devices are discussed for each type of dielectrophoretic mode in order to present an overview of the distinct designs and applications developed with iDEP. A short section on Joule heating effects and electrothermal flow is also included to highlight some of the challenges in the utilization of iDEP systems. The significant progress on iDEP illustrates its potential for a large number of applications, ranging from bioanalysis to clinical and biomedical assessments. The present article discusses the work on iDEP by numerous research groups around the world, with the aim of proving the reader with an overview of the state-of-the-art in iDEP microfluidic systems.
Collapse
|
25
|
Abstract
The ability to separate analytes with increasingly similar properties drives the field of separation science. One way to achieve such separations is using trapping and streaming dielectrophoresis (DEP), which directly exploits the subtle differences in the electrophysical properties of analytes. The non-uniform fields necessary for DEP can be formed using various insulator shapes in microchannels. Current insulator shapes include triangles, diamonds, circles, and rectangles. However, all of these insulators pose problems for trapping, streaming, and sorting (deflection) as the induced fields/gradients are not behaviorally consistent across the lateral dimension. This leads to analytes experiencing different forces depending on their pathline in the microchannel and result in low resolution separations. Based on an iterative process that explored approximately 40 different insulator shapes, a design was chosen that indicated improved particle streamlines, better trapping efficiency, and consistent electrical environments across the lateral dimension. The design was assessed by simulations where the electric field, gradient of the electric field squared, and the ratio of the two were plotted. The improved design includes a unique new multi-length scale element. The multi-length scale structure streamlines the analyte(s) and improves homogeneity in the lateral dimension, while still achieving high gradients necessary for analyte separation using DEP. The design is calculated to keep analytes on the centerline which should improve resolution, and eliminate extraneous trapping zones. Behaviors consistent with the features of the simulations were observed in proof of principle experiments using representative test probes.
Collapse
Affiliation(s)
- Claire V Crowther
- Arizona State University, School of Molecular Sciences, Mail Stop 1604, Tempe, AZ 85287, USA.
| | | |
Collapse
|
26
|
Perez-Gonzalez VH, Gallo-Villanueva RC, Cardenas-Benitez B, Martinez-Chapa SO, Lapizco-Encinas BH. Simple Approach to Reducing Particle Trapping Voltage in Insulator-Based Dielectrophoretic Systems. Anal Chem 2018. [DOI: 10.1021/acs.analchem.8b00139] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Victor H. Perez-Gonzalez
- School of Engineering and Sciences, Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Roberto C. Gallo-Villanueva
- School of Engineering and Sciences, Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Braulio Cardenas-Benitez
- School of Engineering and Sciences, Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Sergio O. Martinez-Chapa
- School of Engineering and Sciences, Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|
27
|
Kale A, Patel S, Xuan X. Three-Dimensional Reservoir-Based Dielectrophoresis (rDEP) for Enhanced Particle Enrichment. MICROMACHINES 2018; 9:E123. [PMID: 30424057 PMCID: PMC6187384 DOI: 10.3390/mi9030123] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/24/2018] [Accepted: 03/09/2018] [Indexed: 01/01/2023]
Abstract
Selective enrichment of target species is crucial for a wide variety of engineering systems for improved performance of subsequent processes. Dielectrophoresis (DEP) is a powerful electrokinetic method that can be used to focus, trap, concentrate, and separate a variety of species in a label-free manner. The commonly employed methods for DEP suffer from limitations such as electrode fouling and high susceptibility to Joule heating effects. Recently, our group has demonstrated DEP-based manipulations of particles and cells using a novel method of reservoir-based dielectrophoresis (rDEP) which exploits the naturally produced electric field gradients at the reservoir-microchannel junction. Although this method reasonably addresses the limitations mentioned above while maintaining a high simplicity of fabrication, all of our demonstrations so far have used a two-dimensional rDEP, which limits the performance of the devices. This work aims to improve their performance further by making the DEP three-dimensional. Through detailed experimental and numerical analysis, we demonstrate a six-fold increase in the enrichment performance of latex beads and a significant reduction in the power consumption for the new devices, which would allow a more reliable integration of the same into micro-total analysis systems.
Collapse
Affiliation(s)
- Akshay Kale
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.
| | - Saurin Patel
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| |
Collapse
|
28
|
Aghilinejad A, Aghaamoo M, Chen X, Xu J. Effects of electrothermal vortices on insulator-based dielectrophoresis for circulating tumor cell separation. Electrophoresis 2017; 39:869-877. [DOI: 10.1002/elps.201700264] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Arian Aghilinejad
- Department of Mechanical Engineering; Washington State University; Vancouver WA USA
| | - Mohammad Aghaamoo
- Department of Biomedical Engineering; University of California; Irvine CA USA
| | - Xiaolin Chen
- Department of Mechanical Engineering; Washington State University; Vancouver WA USA
| | - Jie Xu
- Department of Mechanical and Industrial Engineering; University of Illinois at Chicago; Chicago IL USA
| |
Collapse
|
29
|
Kale A, Song L, Lu X, Yu L, Hu G, Xuan X. Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice. Electrophoresis 2017; 39:887-896. [DOI: 10.1002/elps.201700342] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/25/2017] [Accepted: 10/13/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Akshay Kale
- Department of Mechanical Engineering; Clemson University; Clemson USA
| | - Le Song
- School of Instrument Science and Opto-electronic Engineering; Hefei University of Technology; Hefei P. R. China
| | - Xinyu Lu
- Department of Mechanical Engineering; Clemson University; Clemson USA
| | - Liandong Yu
- School of Instrument Science and Opto-electronic Engineering; Hefei University of Technology; Hefei P. R. China
| | - Guoqing Hu
- LNM; Institute of Mechanics; Chinese Academy of Sciences; Beijing P. R. China
- School of Engineering Science; University of Chinese Academy of Sciences; Beijing P. R. China
| | - Xiangchun Xuan
- Department of Mechanical Engineering; Clemson University; Clemson USA
| |
Collapse
|
30
|
Rahmani A, Mohammadi A, Kalhor HR. A continuous flow microfluidic device based on contactless dielectrophoresis for bioparticles enrichment. Electrophoresis 2017; 39:445-455. [PMID: 28944476 DOI: 10.1002/elps.201700166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022]
Abstract
In recent years, applications of dielectrophoresis-based platforms have been recognized as effective and dependable approach to separate cells and bioparticles, suspended in different carrier fluids, based on particle size and electrical properties. In this study, a microfluidic device was fabricated by an unprecedented electrode pattern, and several experiments were performed to enrich samples including either of yeast, Escherichia coli, or latex particles. A chemical deposition-based method was employed for fabrication of microelectrodes, inducing nonuniform electric field required for dielectrophoresis-based separation. One major advantage of our employed method is low fabrication cost, in addition to its accuracy and operation at low voltages. The performance of the microfluidic device in enriching either of injected samples was studied using spectrophotometric techniques. The effects of experimentally controllable parameters (applied-voltage amplitude and frequency, and flow rate) were studied by changing a parameter while keeping the others constant. It became evident that all the aforementioned parameters had modulating impact on the performance of the microfluidic device. Furthermore, to investigate binary interactions among the parameters, response surface methodology was exploited, resulting in a second-order polynomial model for the performance of the device as a function of the parameters. The model was employed for finding the optimum values of the parameters at which the performance of the device is the highest. At optimum values for the experimentally controllable parameters, enrichment efficiencies of 87 ± 2, 82 ± 4, and 86 ± 3% for, respectively, yeast, E. coli, and latex particles were obtained experimentally, confirming the ability of the proposed method for biological and polymeric particles enrichment.
Collapse
Affiliation(s)
- Ali Rahmani
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Aliasghar Mohammadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hamid Reza Kalhor
- Biochemistry Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
31
|
Romero-Creel MF, Goodrich E, Polniak DV, Lapizco-Encinas BH. Assessment of Sub-Micron Particles by Exploiting Charge Differences with Dielectrophoresis. MICROMACHINES 2017; 8:E239. [PMID: 30400429 PMCID: PMC6190034 DOI: 10.3390/mi8080239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/30/2017] [Accepted: 07/30/2017] [Indexed: 11/16/2022]
Abstract
The analysis, separation, and enrichment of submicron particles are critical steps in many applications, ranging from bio-sensing to disease diagnostics. Microfluidic electrokinetic techniques, such as dielectrophoresis (DEP) have proved to be excellent platforms for assessment of submicron particles. DEP is the motion of polarizable particles under the presence of a non-uniform electric field. In this work, the polarization and dielectrophoretic behavior of polystyrene particles with diameters ranging for 100 nm to 1 μm were studied employing microchannels for insulator based DEP (iDEP) and low frequency (<1000 Hz) AC and DC electric potentials. In particular, the effects of particle surface charge, in terms of magnitude and type of functionalization, were examined. It was found that the magnitude of particle surface charge has a significant impact on the polarization and dielectrophoretic response of the particles, allowing for successful particle assessment. Traditionally, charge differences are exploited employing electrophoretic techniques and particle separation is achieved by differential migration. The present study demonstrates that differences in the particle's surface charge can also be exploited by means of iDEP; and that distinct types of nanoparticles can be identified by their polarization and dielectrophoretic behavior. These findings open the possibility for iDEP to be employed as a technique for the analysis of submicron biological particles, where subtle differences in surface charge could allow for rapid particle identification and separation.
Collapse
Affiliation(s)
- Maria F Romero-Creel
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Eric Goodrich
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Danielle V Polniak
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623, USA.
| |
Collapse
|
32
|
Joule heating effects on two-phase flows in dielectrophoresis microchips. BIOCHIP JOURNAL 2017. [DOI: 10.1007/s13206-017-1209-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Garcia PA, Ge Z, Kelley LE, Holcomb SJ, Buie CR. High efficiency hydrodynamic bacterial electrotransformation. LAB ON A CHIP 2017; 17:490-500. [PMID: 28067371 DOI: 10.1039/c6lc01309k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Synthetic biology holds great potential for addressing pressing challenges for mankind and our planet. One technical challenge in tapping into the full potential of synthetic biology is the low efficiency and low throughput of genetic transformation for many types of cells. In this paper, we discuss a novel microfluidic system for improving bacterial electrotransformation efficiency and throughput. Our microfluidic system is comprised of non-uniform constrictions in microchannels to facilitate high electric fields with relatively small applied voltages to induce electroporation. Additionally, the microfluidic device has regions of low electric field to assist in electrophoretic transport of nucleic acids into the cells. The device features hydrodynamically controlled electric fields that allow cells to experience a time dependent electric field that is otherwise difficult to achieve using standard electronics. Results suggest that transformation efficiency can be increased by ∼4×, while throughput can increase by 100-1000× compared to traditional electroporation cuvettes. This work will enable high-throughput and high efficiency genetic transformation of microbes, facilitating accelerated development of genetically engineered organisms.
Collapse
Affiliation(s)
- Paulo A Garcia
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| | - Zhifei Ge
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| | - Laura E Kelley
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Steven J Holcomb
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| | - Cullen R Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
|
35
|
Prabhakaran RA, Zhou Y, Patel S, Kale A, Song Y, Hu G, Xuan X. Joule heating effects on electroosmotic entry flow. Electrophoresis 2016; 38:572-579. [DOI: 10.1002/elps.201600296] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 02/05/2023]
Affiliation(s)
| | - Yilong Zhou
- Department of Mechanical Engineering Clemson University Clemson SC USA
| | - Saurin Patel
- Department of Mechanical Engineering Clemson University Clemson SC USA
| | - Akshay Kale
- Department of Mechanical Engineering Clemson University Clemson SC USA
| | - Yongxin Song
- College of Marine Engineering Dalian Maritime University Dalian P. R. China
| | - Guoqing Hu
- LNM, Institute of Mechanics Chinese Academy of Sciences Beijing P. R. China
| | - Xiangchun Xuan
- Department of Mechanical Engineering Clemson University Clemson SC USA
| |
Collapse
|
36
|
Mata-Gomez MA, Perez-Gonzalez VH, Gallo-Villanueva RC, Gonzalez-Valdez J, Rito-Palomares M, Martinez-Chapa SO. Modelling of electrokinetic phenomena for capture of PEGylated ribonuclease A in a microdevice with insulating structures. BIOMICROFLUIDICS 2016; 10:033106. [PMID: 27375815 PMCID: PMC4912556 DOI: 10.1063/1.4954197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/06/2016] [Indexed: 05/12/2023]
Abstract
Synthesis of PEGylated proteins results in a mixture of protein-polyethylene glycol (PEG) conjugates and the unreacted native protein. From a ribonuclease A (RNase A) PEGylation reaction, mono-PEGylated RNase A (mono-PEG RNase A) has proven therapeutic effects against cancer, reason for which there is an interest in isolating it from the rest of the reaction products. Experimental trapping of PEGylated RNase A inside an electrokinetically driven microfluidic device has been previously demonstrated. Now, from a theoretical point of view, we have studied the electrokinetic phenomena involved in the dielectrophoretic streaming of the native RNase A protein and the trapping of the mono-PEG RNase A inside a microfluidic channel. To accomplish this, we used two 3D computational models, a sphere and an ellipse, adapted to each protein. The effect of temperature on parameters related to trapping was also studied. A temperature increase showed to rise the electric and thermal conductivities of the suspending solution, hindering dielectrophoretic trapping. In contrast, the dynamic viscosity of the suspending solution decreased as the temperature rose, favoring the dielectrophoretic manipulation of the proteins. Also, our models were able to predict the magnitude and direction of the velocity of both proteins indicating trapping for the PEGylated conjugate or no trapping for the native protein. In addition, a parametric sweep study revealed the effect of the protein zeta potential on the electrokinetic response of the protein. We believe this work will serve as a tool to improve the design of electrokinetically driven microfluidic channels for the separation and recovery of PEGylated proteins in one single step.
Collapse
Affiliation(s)
- Marco A Mata-Gomez
- School of Engineering and Sciences, Tecnologico de Monterrey , Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico
| | - Victor H Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey , Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico
| | - Roberto C Gallo-Villanueva
- School of Engineering and Sciences, Tecnologico de Monterrey , Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico
| | - Jose Gonzalez-Valdez
- School of Engineering and Sciences, Tecnologico de Monterrey , Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico
| | - Marco Rito-Palomares
- School of Engineering and Sciences, Tecnologico de Monterrey , Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico
| | - Sergio O Martinez-Chapa
- School of Engineering and Sciences, Tecnologico de Monterrey , Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico
| |
Collapse
|
37
|
Saucedo-Espinosa MA, Lapizco-Encinas BH. Refinement of current monitoring methodology for electroosmotic flow assessment under low ionic strength conditions. BIOMICROFLUIDICS 2016; 10:033104. [PMID: 27375813 PMCID: PMC4902815 DOI: 10.1063/1.4953183] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/22/2016] [Indexed: 05/12/2023]
Abstract
Current monitoring is a well-established technique for the characterization of electroosmotic (EO) flow in microfluidic devices. This method relies on monitoring the time response of the electric current when a test buffer solution is displaced by an auxiliary solution using EO flow. In this scheme, each solution has a different ionic concentration (and electric conductivity). The difference in the ionic concentration of the two solutions defines the dynamic time response of the electric current and, hence, the current signal to be measured: larger concentration differences result in larger measurable signals. A small concentration difference is needed, however, to avoid dispersion at the interface between the two solutions, which can result in undesired pressure-driven flow that conflicts with the EO flow. Additional challenges arise as the conductivity of the test solution decreases, leading to a reduced electric current signal that may be masked by noise during the measuring process, making for a difficult estimation of an accurate EO mobility. This contribution presents a new scheme for current monitoring that employs multiple channels arranged in parallel, producing an increase in the signal-to-noise ratio of the electric current to be measured and increasing the estimation accuracy. The use of this parallel approach is particularly useful in the estimation of the EO mobility in systems where low conductivity mediums are required, such as insulator based dielectrophoresis devices.
Collapse
Affiliation(s)
- Mario A Saucedo-Espinosa
- Microscale Bioseparations Laboratory, Rochester Institute of Technology , Rochester, New York 14623, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory, Rochester Institute of Technology , Rochester, New York 14623, USA
| |
Collapse
|
38
|
Khashei H, Latifi H, Seresht MJ, Ghasemi AHB. Microparticles manipulation and enhancement of their separation in pinched flow fractionation by insulator-based dielectrophoresis. Electrophoresis 2016; 37:775-85. [PMID: 26685118 DOI: 10.1002/elps.201500318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/24/2015] [Accepted: 12/07/2015] [Indexed: 11/10/2022]
Abstract
The separation and manipulation of microparticles in lab on a chip devices have importance in point of care diagnostic tools and analytical applications. The separation and sorting of particles from biological and clinical samples can be performed using active and passive techniques. In passive techniques, no external force is applied while in active techniques by applying external force (e.g. electrical), higher separation efficiency is obtained. In this article, passive (pinched flow fractionation) and active (insulator-based dielectrophoresis) methods were combined to increase the separation efficiency at lower voltages. First by simulation, appropriate values of geometry and applied voltages for better focusing, separation, and lower Joule heating were obtained. Separation of 1.5 and 6 μm polystyrene microparticles was experimentally obtained at optimized geometry and low total applied voltage (25 V). Also, the trajectory of 1.5 μm microparticles was controlled by adjusting the total applied voltage.
Collapse
Affiliation(s)
- Hesamodin Khashei
- Laser and Plasma Institute, Shahid Beheshti University, Tehran, Iran
| | - Hamid Latifi
- Laser and Plasma Institute, Shahid Beheshti University, Tehran, Iran.,Department of Physics, Shahid Beheshti University, Tehran, Iran
| | | | - Amir Hossein Baradaran Ghasemi
- Laser and Plasma Institute, Shahid Beheshti University, Tehran, Iran.,Department of Physics, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
39
|
Saucedo-Espinosa MA, Rauch MM, LaLonde A, Lapizco-Encinas BH. Polarization behavior of polystyrene particles under direct current and low-frequency (<1 kHz) electric fields in dielectrophoretic systems. Electrophoresis 2015; 37:635-44. [PMID: 26531799 DOI: 10.1002/elps.201500338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/26/2015] [Accepted: 10/22/2015] [Indexed: 11/11/2022]
Abstract
The relative polarization behavior of micron and submicron polystyrene particles was investigated under direct current and very low frequency (<1 kHz) alternating current electric fields. Relative polarization of particles with respect to the suspending medium is expressed in terms of the Clausius-Mossotti factor, a parameter of crucial importance in dielectrophoretic-based operations. Particle relative polarization was studied by employing insulator-based dielectrophoretic (iDEP) devices. The effects of particle size, medium conductivity, and frequency (10-1000 Hz) of the applied electric potential on particle response were assessed through experiments and mathematical modeling with COMSOL Multiphysics(®). Particles of different sizes (100-1000 nm diameters) were introduced into iDEP devices fabricated from polydimethylsiloxane (PDMS) and their dielectrophoretic responses under direct and alternating current electric fields were recorded and analyzed in the form of images and videos. The results illustrated that particle polarizability and dielectrophoretic response depend greatly on particle size and the frequency of the electric field. Small particles tend to exhibit positive DEP at higher frequencies (200-1000 Hz), while large particles exhibit negative DEP at lower frequencies (20-200 Hz). These differences in relative polarization can be used for the design of iDEP-based separations and analysis of particle mixtures.
Collapse
Affiliation(s)
| | - Mallory M Rauch
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, NY, USA
| | - Alexandra LaLonde
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, NY, USA
| | | |
Collapse
|
40
|
Saucedo-Espinosa MA, LaLonde A, Gencoglu A, Romero-Creel MF, Dolas JR, Lapizco-Encinas BH. Dielectrophoretic manipulation of particle mixtures employing asymmetric insulating posts. Electrophoresis 2015; 37:282-90. [DOI: 10.1002/elps.201500195] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/12/2015] [Accepted: 10/09/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Mario A. Saucedo-Espinosa
- Biomedical Engineering Department; Microscale Bioseparations Laboratory, Rochester Institute of Technology; Rochester NY USA
| | - Alexandra LaLonde
- Biomedical Engineering Department; Microscale Bioseparations Laboratory, Rochester Institute of Technology; Rochester NY USA
| | - Aytug Gencoglu
- Biomedical Engineering Department; Microscale Bioseparations Laboratory, Rochester Institute of Technology; Rochester NY USA
| | - Maria F. Romero-Creel
- Biomedical Engineering Department; Microscale Bioseparations Laboratory, Rochester Institute of Technology; Rochester NY USA
| | - Jay R. Dolas
- Biomedical Engineering Department; Microscale Bioseparations Laboratory, Rochester Institute of Technology; Rochester NY USA
| | - Blanca H. Lapizco-Encinas
- Biomedical Engineering Department; Microscale Bioseparations Laboratory, Rochester Institute of Technology; Rochester NY USA
| |
Collapse
|
41
|
Mata-Gómez MA, Gallo-Villanueva RC, González-Valdez J, Martínez-Chapa SO, Rito-Palomares M. Dielectrophoretic behavior of PEGylated RNase A inside a microchannel with diamond-shaped insulating posts. Electrophoresis 2015; 37:519-28. [PMID: 26530024 DOI: 10.1002/elps.201500311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 11/06/2022]
Abstract
Ribonuclease A (RNase A) has proven potential as a therapeutic agent, especially in its PEGylated form. Grafting of PEG molecules to this protein yields mono-PEGylated (mono-PEG) and di-PEGylated (di-PEG) RNase A conjugates, and the unreacted protein. Mono-PEG RNase A is of great interest. The use of electrokinetic forces in microdevices represents a novel alternative to chromatographic methods to separate this specie. This work describes the dielectrophoretic behavior of the main protein products of the RNase A PEGylation inside a microchannel with insulators under direct current electric fields. This approach represents the first step in route to design micro-bioprocesses to separate PEGylated RNase A from unreacted native protein. The three proteins exhibited different dielectrophoretic behaviors. All of them experienced a marked streaming pattern at 3000 V consistent with positive dielectrophoresis. Native protein was not captured at any of the conditions tested, while mono-PEG RNase A and di-PEG RNase A were captured presumably due to positive dielectrophoresis at 4000 and 2500 V, respectively. Concentration of mono-PEG RNase A with a maximal enrichment efficiency of ≈9.6 times the feed concentration was achieved in few seconds. These findings open the possibility of designing novel devices for rapid separation, concentration, and recovery of PEGylated RNase A in a one-step operation.
Collapse
Affiliation(s)
- Marco A Mata-Gómez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Mexico
| | | | | | | | | |
Collapse
|
42
|
Pesch GR, Kiewidt L, Du F, Baune M, Thöming J. Electrodeless dielectrophoresis: Impact of geometry and material on obstacle polarization. Electrophoresis 2015; 37:291-301. [DOI: 10.1002/elps.201500313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/24/2015] [Accepted: 09/27/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Georg R. Pesch
- Chemical Engineering, Recovery and Recycling, Department of Production Engineering and Center for Environmental Research and Sustainable Technology; University of Bremen; Bremen Germany
| | - Lars Kiewidt
- Chemical Engineering, Recovery and Recycling, Department of Production Engineering and Center for Environmental Research and Sustainable Technology; University of Bremen; Bremen Germany
| | - Fei Du
- Chemical Engineering, Recovery and Recycling, Department of Production Engineering and Center for Environmental Research and Sustainable Technology; University of Bremen; Bremen Germany
| | - Michael Baune
- Chemical Engineering, Recovery and Recycling, Department of Production Engineering and Center for Environmental Research and Sustainable Technology; University of Bremen; Bremen Germany
| | - Jorg Thöming
- Chemical Engineering, Recovery and Recycling, Department of Production Engineering and Center for Environmental Research and Sustainable Technology; University of Bremen; Bremen Germany
| |
Collapse
|
43
|
Saucedo-Espinosa M, Lapizco-Encinas B. Design of insulator-based dielectrophoretic devices: Effect of insulator posts characteristics. J Chromatogr A 2015; 1422:325-333. [DOI: 10.1016/j.chroma.2015.10.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
|
44
|
Dey R, Shaik VA, Chakraborty D, Ghosal S, Chakraborty S. AC Electric Field-Induced Trapping of Microparticles in Pinched Microconfinements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5952-5961. [PMID: 25954982 DOI: 10.1021/la504795m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The trapping of charged microparticles under confinement in a converging-diverging microchannel, under a symmetric AC field of tunable frequency, is studied. We show that at low frequencies, the trapping characteristics stem from the competing effects of positive dielectrophoresis and the linear electrokinetic phenomena of electroosmosis and electrophoresis. It is found, somewhat unexpectedly, that electroosmosis and electrophoresis significantly affect the concentration profile of the trapped analyte, even for a symmetric AC field. However, at intermediate frequencies, the microparticle trapping mechanism is predominantly a consequence of positive dielectrophoresis. We substantiate our experimental results for the microparticle concentration distribution, along the converging-diverging microchannel, with a detailed theoretical analysis that takes into account all of the relevant frequency-dependent electrokinetic phenomena. This study should be useful in understanding the response of biological components such as cells to applied AC fields. Moreover, it will have potential applications in the design of efficient point-of-care diagnostic devices for detecting biomarkers and also possibly in some recent strategies in cancer therapy using AC fields.
Collapse
Affiliation(s)
- Ranabir Dey
- †Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Vaseem Akram Shaik
- †Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Debapriya Chakraborty
- †Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | | | - Suman Chakraborty
- †Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| |
Collapse
|
45
|
Mohammadi M, Madadi H, Casals-Terré J, Sellarès J. Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation. Anal Bioanal Chem 2015; 407:4733-44. [DOI: 10.1007/s00216-015-8678-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/23/2015] [Accepted: 04/02/2015] [Indexed: 11/28/2022]
|
46
|
Yan Y, Luo J, Guo D, Wen S. Dynamic dielectrophoresis model of multi-phase ionic fluids. PLoS One 2015; 10:e0117456. [PMID: 25699513 PMCID: PMC4336143 DOI: 10.1371/journal.pone.0117456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/24/2014] [Indexed: 11/19/2022] Open
Abstract
Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.
Collapse
Affiliation(s)
- Ying Yan
- Tsinghua University, State Key Lab of Tribology, Beijing, P. R. China
| | - Jing Luo
- Tsinghua University, State Key Lab of Tribology, Beijing, P. R. China
| | - Dan Guo
- Tsinghua University, State Key Lab of Tribology, Beijing, P. R. China
| | - Shizhu Wen
- Tsinghua University, State Key Lab of Tribology, Beijing, P. R. China
| |
Collapse
|
47
|
Abstract
There is a growing interest in protein dielectrophoresis (DEP) for biotechnological and pharmaceutical applications. However, the DEP behavior of proteins is still not well understood which is important for successful protein manipulation. In this paper, we elucidate the information gained in dielectric spectroscopy (DS) and electrochemical impedance spectroscopy (EIS) and how these techniques may be of importance for future protein DEP manipulation. EIS and DS can be used to determine the dielectric properties of proteins predicting their DEP behavior. Basic principles of EIS and DS are discussed and related to protein DEP through examples from previous studies. Challenges of performing DS measurements as well as potential designs to incorporate EIS and DS measurements in DEP experiments are also discussed.
Collapse
Affiliation(s)
| | - Alexandra Ros
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
48
|
Zhu X, Chen Y. Simultaneous determination of electrophoretic and dielectrophoretic mobilities of human red blood cells. Electrophoresis 2014; 36:1507-13. [PMID: 25363511 DOI: 10.1002/elps.201400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/14/2014] [Accepted: 10/25/2014] [Indexed: 11/07/2022]
Abstract
Electrophoresis and dielectrophoresis of cells can reveal many distinct cellular properties but are often conducted separately. Herein a simultaneous strategy was proposed, and a simple method was established by making cells migrate through a cross channel under a micro video for real-time observation. The experiment can be performed within 0.044-1 s. In combination with digital calculation based on electromagnetic theory, the method was validated to be applicable to the determination of electrophoretic and dielectrophoretic mobilities, μEP and μDEP , of human blood erythrocytes, giving μEP = -(0.87 ± 0.16)× 10(-4) cm(2) ·V(-1) · s(-1) and μDEP = -(4.5 ± 1.3) × 10(-8) cm(4) ·V(-2) ·s(-1) by vector decomposition, or μEP = -(0.89 ± 0.14) × 10(-4) cm(2) ·V(-1) · s(-1) and μDEP = -(4.6 ±1.2) × 10(-8) cm(4) ·V(-2) · s(-1) by least squares fitting, all agreeing with published data. Hydrodynamic and EOFs were eliminated for better measurement. It was found that the location of cells had a serious impact on the measurement precision, and the upstream of the cross channel along the electric field was chosen for precise measurement. The method is also extendable to the study of other cells and particles.
Collapse
Affiliation(s)
- Xiuzhen Zhu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yi Chen
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,Beijing National Laboratory for Molecular Science, Beijing, China
| |
Collapse
|
49
|
LaLonde A, Romero-Creel MF, Lapizco-Encinas BH. Assessment of cell viability after manipulation with insulator-based dielectrophoresis. Electrophoresis 2014; 36:1479-84. [DOI: 10.1002/elps.201400331] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Alexandra LaLonde
- Microscale Bioseparations Laboratory, Biomedical Engineering Department; Rochester Institute of Technology; Rochester NY USA
| | - Maria F. Romero-Creel
- Microscale Bioseparations Laboratory, Biomedical Engineering Department; Rochester Institute of Technology; Rochester NY USA
| | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory, Biomedical Engineering Department; Rochester Institute of Technology; Rochester NY USA
| |
Collapse
|
50
|
Dash S, Mohanty S. Dielectrophoretic separation of micron and submicron particles: a review. Electrophoresis 2014; 35:2656-72. [PMID: 24930837 DOI: 10.1002/elps.201400084] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 11/06/2022]
Abstract
This paper provides an overview on separation of micron and submicron sized biological (cells, yeast, virus, bacteria, etc.) and nonbiological particles (latex, polystyrene, CNTs, metals, etc.) by dielectrophoresis (DEP), which finds wide applications in the field of medical and environmental science. Mathematical models to predict the electric field, flow profile, and concentration profiles of the particles under the influence of DEP force have also been covered in this review. In addition, advancements made primarily in the last decade, in the area of electrode design (shape and arrangement), new materials for electrode (carbon, silicon, polymers), and geometry of the microdevice, for efficient DEP separation of particles have been highlighted.
Collapse
Affiliation(s)
- Swagatika Dash
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India
| | | |
Collapse
|