1
|
Pawar UD, Pawar CD, Pansare DN, Humbe JG, Pardeshi RK. Development of HPTLC detection of synthetic pesticide carbosulfan in biological material. JPC-J PLANAR CHROMAT 2021. [DOI: 10.1007/s00764-021-00096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
2
|
Schilly KM, Gunawardhana SM, Wijesinghe MB, Lunte SM. Biological applications of microchip electrophoresis with amperometric detection: in vivo monitoring and cell analysis. Anal Bioanal Chem 2020; 412:6101-6119. [PMID: 32347360 PMCID: PMC8130646 DOI: 10.1007/s00216-020-02647-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 01/01/2023]
Abstract
Microchip electrophoresis with amperometric detection (ME-EC) is a useful tool for the determination of redox active compounds in complex biological samples. In this review, a brief background on the principles of ME-EC is provided, including substrate types, electrode materials, and electrode configurations. Several different detection approaches are described, including dual-channel systems for dual-electrode detection and electrochemistry coupled with fluorescence and chemiluminescence. The application of ME-EC to the determination of catecholamines, adenosine and its metabolites, and reactive nitrogen and oxygen species in microdialysis samples and cell lysates is also detailed. Lastly, approaches for coupling of ME-EC with microdialysis sampling to create separation-based sensors that can be used for near real-time monitoring of drug metabolism and neurotransmitters in freely roaming animals are provided. Graphical abstract.
Collapse
Affiliation(s)
- Kelci M Schilly
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Shamal M Gunawardhana
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Manjula B Wijesinghe
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Susan M Lunte
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA.
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, 2010 Becker Drive, Lawrence, KS, 66045, USA.
| |
Collapse
|
3
|
Li X, Zheng Z, Liu H, Gao Y. Development of a micellar electrokinetic capillary chromatography method for the determination of four naphthalenediols in cosmetics and a comparison with a HPLC method. Electrophoresis 2020; 41:1991-1999. [PMID: 32839980 DOI: 10.1002/elps.202000184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 11/10/2022]
Abstract
A micellar electrokinetic capillary chromatography (MEKC) method with ultraviolet visible (UV) detection was used for the determination of 1,7-naphthalenediol, 2,3-naphthalenediol, 1,5-naphthalenediol, and 2,7-naphthalenediol in cosmetics. The current method for their determination in various cosmetics is high-performance liquid chromatography (HPLC). Separation conditions affecting the MEKC method were optimized as 20 mM Na2 B4 O7 -50mM SDS, pH 9.8, with 22 kV applied voltage and UV detection at 230 nm. Under optimal conditions, electrophoretic analysis was completed in less than 6 min, with limit of detection (LOD) of 0.070-0.19 μg/mL and limit of quantitation (LOQ) of 0.23-0.63 μg/mL. A good linear relationship (r2 > 0.99) was obtained at the range of 0.75-20 μg/mL. Recoveries for the four naphthalenediols in lotion, loose powder, and sun cream are between 91.2-107.2% with relative standard deviation (RSD) less than 4.04%. The method has been successfully applied to the determination of the four naphthalenediols in different kinds of cosmetics. A comparison with HPLC-UV method was also carried out according to the National Standards of the People's Republic of China. The results obtained by MEKC and HPLC methods are comparable, but the proposed MEKC method can help us obtain a much shorter detection time and low cost.
Collapse
Affiliation(s)
- Xiaobin Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China
| | - Zhihan Zheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China
| | - Huitao Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China
| | - Yuan Gao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China
| |
Collapse
|
4
|
Elbashir AA, Elgorashe REE, Alnajjar AO, Aboul-Enein HY. Application of Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection (CE-C 4D): 2017-2020. Crit Rev Anal Chem 2020; 52:535-543. [PMID: 32835492 DOI: 10.1080/10408347.2020.1809340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Capacitively coupled contactless conductivity detection (C4D) has emerged as influential to detect analytes that do not have chromogenic or fluorogenic functional group. Since our last review several new capillary electrophoresis (CE) methods coupled with (CE-C4D) have been communicated. The aim of this review is to give an update of the almost all the new applications of CE-C4D in the field of pharmaceutical, food and biomedical analysis covering the period from 2017 to April 2020. The utilization of CE with C4D in the areas of pharmaceutical, food and biomedical analysis is presented. Finally, concluding remarks and outlooks are discussed.
Collapse
Affiliation(s)
- Abdalla Ahmed Elbashir
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | | | - Ahmed O Alnajjar
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
5
|
Leong WH, Teh SY, Hossain MM, Nadarajaw T, Zabidi-Hussin Z, Chin SY, Lai KS, Lim SHE. Application, monitoring and adverse effects in pesticide use: The importance of reinforcement of Good Agricultural Practices (GAPs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 260:109987. [PMID: 32090796 DOI: 10.1016/j.jenvman.2019.109987] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
This review intends to integrate the relevant information that is related to pesticide applications in food commodities and will cover three main sections. The first section encompasses some of the guidelines that have been implemented on management of pesticide application worldwide, such as the establishment of a value called Maximum Residue Level (MRL) through the application of Good Agricultural Practices (GAPs) into daily agricultural activities. A brief overview of the methods adopted in quantification of these trace residues in different food samples will also be covered. Briefly, pesticide analysis is usually performed in two stages: sample preparation and analytical instrumentation. Some of the preparation methods such as QuEChERs still remain as the technique of choice for most of the analytical scientists. In terms of the instrumentation such as the gas chromatography-mass spectrophotometry (GC-MS) and high performance-liquid chromatography (HPLC), these are still widely used, in spite of new inventions that are more sustainable and efficient such as the capillary electrophoresis (CE). Finally, the third section emphasizes on how pesticides can affect our health significantly whereby different types of pesticides result in different adverse health implications, despite its application benefits in agriculture in controlling pests. To date, there are limited reviews on pesticide usage in many agricultural-based nations; for the purpose of this review, Malaysia is selected to better illustrate pesticide regulations and implementation of policies. Finally, the review aims to provide an insight on how implementation of GAP and food safety assurance are inter-related and with this established correlation, to identify further measures for improvement to enable reinforcement of optimised agricultural practices specifically in these countries.
Collapse
Affiliation(s)
- Wye-Hong Leong
- Perdana University- Royal College of Surgeons in Ireland, School of Medicine, 43400 Serdang, Selangor, Malaysia.
| | - Shu-Yi Teh
- Perdana University- Royal College of Surgeons in Ireland, School of Medicine, 43400 Serdang, Selangor, Malaysia
| | - Mohammad Moshaddeque Hossain
- Faculty of Public Health and Health Sciences, Hamdard University Bangladesh, Hamdard City of Science, Education and Culture, Gazaria, Munshiganj, 1510, Bangladesh
| | - Thiyagar Nadarajaw
- Department of Paediatrics, Hospital Sultanah Bahiyah, 05460, Alor Setar, Kedah, Malaysia
| | - Zabidi Zabidi-Hussin
- School of Medicine, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Swee-Yee Chin
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Kok-Song Lai
- Division of Health Sciences, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| | - Swee-Hua Erin Lim
- Perdana University- Royal College of Surgeons in Ireland, School of Medicine, 43400 Serdang, Selangor, Malaysia; Division of Health Sciences, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Li X, Gao F, Liu H, Gao Y. Development of a capillary zone electrophoresis method to determine natamycin in food and a comparison with a liquid chromatography method. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:811-816. [PMID: 31617212 DOI: 10.1002/jsfa.10089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/19/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Natamycin is often added to pastries, cheeses, and beverages. The residual amount of natamycin should be less than 10 mg kg-1 . The current method for its determination in various foodstuffs is high-performance liquid chromatography (HPLC). Capillary electrophoresis (CE) is a simple, fast, and environmentally friendly method with low reagent consumption and comparable separation performance. However, no reports were found on the determination of natamycin in foods by CE. A CE method to determine natamycin is therefore sought. RESULTS Natamycin in foods was determined by the capillary zone electrophoresis (CZE) method with ultraviolet-visible (UV) detection. Separation conditions were optimized as 20 mM Na2 HPO4 , pH 9.2, with 25 kV applied voltage, and UV detection at 306 nm. Under optimal conditions, electrophoretic analysis was completed in less than 4 min, with a limit of detection (LOD) of 0.065 μg mL-1 and limit of quantitation (LOQ) of 0.22 μg mL-1 . A good linear relationship (r2 = 0.999) was obtained at the range of 0.1-25 μg mL-1 . A comparison with the HPLC-UV method was also carried out according to the National Standards of the People's Republic of China. CONCLUSION The results obtained by the CZE and HPLC methods are comparable but the proposed CZE method can help us obtain a shorter detection time at low cost. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaobin Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China
| | - Fangfang Gao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China
| | - Huitao Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China
| | - Yuan Gao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China
| |
Collapse
|
7
|
Daniel D, do Lago CL. Determination of Multiclass Pesticides Residues in Corn by QuEChERS and Capillary Electrophoresis Tandem Mass Spectrometry. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01501-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Glyphosate analysis using sensors and electromigration separation techniques as alternatives to gas or liquid chromatography. Anal Bioanal Chem 2017; 410:725-746. [PMID: 29098335 DOI: 10.1007/s00216-017-0679-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022]
Abstract
Since its introduction in 1974, the herbicide glyphosate has experienced a tremendous increase in use, with about one million tons used annually today. This review focuses on sensors and electromigration separation techniques as alternatives to chromatographic methods for the analysis of glyphosate and its metabolite aminomethyl phosphonic acid. Even with the large number of studies published, glyphosate analysis remains challenging. With its polar and depending on pH even ionic functional groups lacking a chromophore, it is difficult to analyze with chromatographic techniques. Its analysis is mostly achieved after derivatization. Its purification from food and environmental samples inevitably results incoextraction of ionic matrix components, with a further impact on analysis derivatization. Its purification from food and environmental samples inevitably results in coextraction of ionic matrix components, with a further impact on analysis and also derivatization reactions. Its ability to form chelates with metal cations is another obstacle for precise quantification. Lastly, the low limits of detection required by legislation have to be met. These challenges preclude glyphosate from being analyzed together with many other pesticides in common multiresidue (chromatographic) methods. For better monitoring of glyphosate in environmental and food samples, further fast and robust methods are required. In this review, analytical methods are summarized and discussed from the perspective of biosensors and various formats of electromigration separation techniques, including modes such as capillary electrophoresis and micellar electrokinetic chromatography, combined with various detection techniques. These methods are critically discussed with regard to matrix tolerance, limits of detection reached, and selectivity.
Collapse
|
9
|
Alesso M, Talio MC, Fernández LP. Solid surface fluorescence methodology for fast monitoring of 2,4-dichlorophenoxyacetic acid in seed samples. Microchem J 2017. [DOI: 10.1016/j.microc.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Advances in the Use of Cyclodextrins as Chiral Selectors in Capillary Electrokinetic Chromatography: Fundamentals and Applications. Chromatographia 2016. [DOI: 10.1007/s10337-016-3167-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Chang PL, Hsieh MM, Chiu TC. Recent Advances in the Determination of Pesticides in Environmental Samples by Capillary Electrophoresis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:409. [PMID: 27070634 PMCID: PMC4847071 DOI: 10.3390/ijerph13040409] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/10/2023]
Abstract
Nowadays, owing to the increasing population and the attempts to satisfy its needs, pesticides are widely applied to control the quantity and quality of agricultural products. However, the presence of pesticide residues and their metabolites in environmental samples is hazardous to the health of humans and all other living organisms. Thus, monitoring these compounds is extremely important to ensure that only permitted levels of pesticide are consumed. To this end, fast, reliable, and environmentally friendly methods that can accurately analyze dilute, complex samples containing both parent substances and their metabolites are required. Focusing primarily on research published since 2010, this review summarizes the use of various sample pretreatment techniques to extract pesticides from various matrices, combined with on-line preconcentration strategies for sensitivity improvement, and subsequent capillary electrophoresis analysis.
Collapse
Affiliation(s)
- Po-Ling Chang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| | - Ming-Mu Hsieh
- Department of Chemistry, National Kaohsiung Normal University, 62, Shenjhong Road, Yanchao District, Kaohsiung 82446, Taiwan.
| | - Tai-Chia Chiu
- Department of Applied Science, National Taitung University, 369, Section 2, University Road, Taitung 95092, Taiwan.
| |
Collapse
|
12
|
Chatzipetrou M, Milano F, Giotta L, Chirizzi D, Trotta M, Massaouti M, Guascito M, Zergioti I. Functionalization of gold screen printed electrodes with bacterial photosynthetic reaction centers by laser printing technology for mediatorless herbicide biosensing. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Wei JC, Hu J, Cao JL, Wan JB, He CW, Hu YJ, Hu H, Li P. Sensitive Detection of Organophosphorus Pesticides in Medicinal Plants Using Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Combined with Sweeping Micellar Electrokinetic Chromatography. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:932-940. [PMID: 26758524 DOI: 10.1021/acs.jafc.5b05369] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A simple, rapid, and sensitive method using ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) combined with sweeping micellar electrokinetic chromatography (sweeping-MEKC) has been developed for the determination of nine organophosphorus pesticides (chlorfenvinphos, parathion, quinalphos, fenitrothion, azinphos-ethyl, parathion-methyl, fensulfothion, methidathion, and paraoxon). The important parameters that affect the UA-DLLME and sweeping efficiency were investigated. Under the optimized conditions, the proposed method provided 779.0-6203.5-fold enrichment of the nine pesticides compared to the normal MEKC method. The limits of detection ranged from 0.002 to 0.008 mg kg(-1). The relative standard deviations of the peak area ranged from 1.2 to 6.5%, indicating the good repeatability of the method. Finally, the developed UA-DLLME-sweeping-MEKC method has been successfully applied to the analysis of the investigated pesticides in several medicinal plants, including Lycium chinense, Dioscorea opposite, Codonopsis pilosula, and Panax ginseng, indicating that this method is suitable for the determination of trace pesticide residues in real samples with complex matrices.
Collapse
Affiliation(s)
- Jin-Chao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, People's Republic of China
| | - Ji Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, People's Republic of China
| | - Ji-Liang Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, People's Republic of China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, People's Republic of China
| | - Cheng-Wei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, People's Republic of China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, People's Republic of China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, People's Republic of China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, People's Republic of China
| |
Collapse
|
14
|
Derivatisation for separation and detection in capillary electrophoresis (2012-2015). Electrophoresis 2015; 37:45-55. [DOI: 10.1002/elps.201500290] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/27/2015] [Accepted: 07/27/2015] [Indexed: 12/22/2022]
|
15
|
Acunha T, Ibáñez C, García-Cañas V, Simó C, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2015; 37:111-41. [DOI: 10.1002/elps.201500291] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Tanize Acunha
- Laboratory of Foodomics; CIAL, CSIC; Madrid Spain
- CAPES Foundation; Ministry of Education of Brazil; Brasília DF Brazil
| | - Clara Ibáñez
- Laboratory of Foodomics; CIAL, CSIC; Madrid Spain
| | | | | | | |
Collapse
|
16
|
Determination of halosulfuron-methyl herbicide in sugarcane juice and tomato by capillary electrophoresis–tandem mass spectrometry. Food Chem 2015; 175:82-4. [DOI: 10.1016/j.foodchem.2014.11.137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/14/2014] [Accepted: 11/22/2014] [Indexed: 11/21/2022]
|
17
|
Elbashir AA, Aboul-Enein HY. Separation and analysis of triazine herbcide residues by capillary electrophoresis. Biomed Chromatogr 2014; 29:835-42. [DOI: 10.1002/bmc.3381] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Abdalla A. Elbashir
- Chemistry Department, Faculty of Science; University of Khartoum; Khartoum 11115 Sudan
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division; National Research Centre; Dokki Cairo 12311 Egypt
| |
Collapse
|