1
|
Karpov OA, Stotland A, Raedschelders K, Chazarin B, Ai L, Murray CI, Van Eyk JE. Proteomics of the heart. Physiol Rev 2024; 104:931-982. [PMID: 38300522 PMCID: PMC11381016 DOI: 10.1152/physrev.00026.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Mass spectrometry-based proteomics is a sophisticated identification tool specializing in portraying protein dynamics at a molecular level. Proteomics provides biologists with a snapshot of context-dependent protein and proteoform expression, structural conformations, dynamic turnover, and protein-protein interactions. Cardiac proteomics can offer a broader and deeper understanding of the molecular mechanisms that underscore cardiovascular disease, and it is foundational to the development of future therapeutic interventions. This review encapsulates the evolution, current technologies, and future perspectives of proteomic-based mass spectrometry as it applies to the study of the heart. Key technological advancements have allowed researchers to study proteomes at a single-cell level and employ robot-assisted automation systems for enhanced sample preparation techniques, and the increase in fidelity of the mass spectrometers has allowed for the unambiguous identification of numerous dynamic posttranslational modifications. Animal models of cardiovascular disease, ranging from early animal experiments to current sophisticated models of heart failure with preserved ejection fraction, have provided the tools to study a challenging organ in the laboratory. Further technological development will pave the way for the implementation of proteomics even closer within the clinical setting, allowing not only scientists but also patients to benefit from an understanding of protein interplay as it relates to cardiac disease physiology.
Collapse
Affiliation(s)
- Oleg A Karpov
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Aleksandr Stotland
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Koen Raedschelders
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Blandine Chazarin
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Lizhuo Ai
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Christopher I Murray
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
2
|
Wang D, Huang J, Zhang H, Gu TJ, Li L. Cotton Ti-IMAC: Developing Phosphorylated Cotton as a Novel Platform for Phosphopeptide Enrichment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47893-47901. [PMID: 37812448 PMCID: PMC10730235 DOI: 10.1021/acsami.3c08697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Protein phosphorylation is an important post-translational modification (PTM), which is involved in many important cellular functions. Understanding protein phosphorylation at the molecular level is critical to deciphering its relevant biological processes and signaling networks. Mass spectrometry (MS) has become a powerful tool for the comprehensive profiling of protein phosphorylation. Yet the low ionization efficiency and low abundance of phosphopeptides among complex biological samples make its MS analysis challenging; an enrichment strategy with high efficiency and selectivity is always necessary prior to MS analysis. In this study, we developed a phosphorylated cotton-fiber-based Ti(IV)-IMAC material (termed as Cotton Ti-IMAC) that can serve as a novel platform for phosphopeptide enrichment. The cotton fiber can be effectively grafted with phosphate groups covalently in a single step, where the titanium ions can then be immobilized to enable capturing phosphopeptides. The material can be prepared using cost-effective reagents within only 4 h. Benefiting from the flexibility and filterability of cotton fibers, the material can be easily packed as a spin-tip and make the enrichment process convenient. Cotton Ti-IMAC successfully enriched phosphopeptides from protein standard digests and exhibited a high selectivity (BSA/β-casein = 1000:1) and excellent sensitivity (0.1 fmol/μL). Moreover, 2354 phosphopeptides were profiled in one LC-MS/MS injection after enriching from only 100 μg of HeLa cell digests with an enrichment specificity of up to 97.51%. Taken together, we believe that Cotton Ti-IMAC can serve as a widely applicable and robust platform for achieving large-scale phosphopeptide enrichment and expanding our knowledge of phosphoproteomics in complex biological systems.
Collapse
Affiliation(s)
- Danqing Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
- Guangzhou Laboratory, Guangzhou, Guangdong, 510005, China
| | - Haoran Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ting-Jia Gu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
3
|
Wang D, Huang J, Zhang H, Ma M, Xu M, Cui Y, Shi X, Li L. ATP-Coated Dual-Functionalized Titanium(IV) IMAC Material for Simultaneous Enrichment and Separation of Glycopeptides and Phosphopeptides. J Proteome Res 2023; 22:2044-2054. [PMID: 37195130 PMCID: PMC11138137 DOI: 10.1021/acs.jproteome.3c00118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein glycosylation and phosphorylation are two of the most common post-translational modifications (PTMs), which play an important role in many biological processes. However, low abundance and poor ionization efficiency of phosphopeptides and glycopeptides make direct MS analysis challenging. In this study, we developed a hydrophilicity-enhanced bifunctional Ti-IMAC (IMAC: immobilized metal affinity chromatography) material with grafted adenosine triphosphate (denoted as epoxy-ATP-Ti4+) to enable simultaneous enrichment and separation of common N-glycopeptides, phosphopeptides, and M6P glycopeptides from tissue/cells. The enrichment was achieved through a dual-mode mechanism based on the electrostatic and hydrophilic properties of the material. The epoxy-ATP-Ti4+ IMAC material was prepared from epoxy-functionalized silica particles via a convenient two-step process. The ATP molecule provided strong and active phosphate sites for binding phosphopeptides in the conventional IMAC mode and also contributed significantly to the hydrophilicity, which permitted the enrichment of glycopeptides via hydrophilic interaction chromatography. The two modes could be implemented simultaneously, allowing glycopeptides and phosphopeptides to be collected sequentially in a single experiment from the same sample. In addition to standard protein samples, the material was further applied to glycopeptide and phosphopeptide enrichment and characterization from HeLa cell digests and mouse lung tissue samples. In total, 2928 glycopeptides and 3051 phosphopeptides were identified from the mouse lung tissue sample, supporting the utility of this material for large-scale PTM analysis of complex biological samples. Overall, the newly developed epoxy-ATP-Ti4+ IMAC material and associated fractionation method enable simple and effective enrichment and separation of glycopeptides and phosphopeptides, offering a useful tool to study potential crosstalk between these two important PTMs in biological systems. The MS data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029775.
Collapse
Affiliation(s)
- Danqing Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haoran Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Meng Xu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yusi Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xudong Shi
- Department of Surgery, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| |
Collapse
|
4
|
Brown NW, Schlomach SK, Marmelstein AM, Fiedler D. Chemoselective Labeling and Immobilization of Phosphopeptides with Phosphorimidazolide Reagents. Chembiochem 2023; 24:e202200407. [PMID: 36166450 DOI: 10.1002/cbic.202200407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/21/2022] [Indexed: 11/11/2022]
Abstract
Protein phosphorylation is one of the most ubiquitous post-translational modifications, regulating numerous essential processes in cells. Accordingly, the large-scale annotation of phosphorylation sites continues to provide central insight into the regulation of signaling networks. The global analysis of the phosphoproteome typically relies on mass spectrometry analysis of phosphopeptides, with an enrichment step necessary due to the sub-stoichiometric nature of phosphorylation. Several affinity-based methods and chemical modification strategies have been developed to date, but the choice of enrichment method can have a considerable impact on the results. Here, we show that a biotinylated, photo-cleavable phosphorimidazolide reagent permits the immobilization and subsequent cleavage of phosphopeptides. The method is capable of the capture and release of phosphopeptides of varying characteristics, and this mild and selective strategy expands the current repertoire for phosphopeptide chemical modification with the potential to enrich and identify new phosphorylation sites in the future.
Collapse
Affiliation(s)
- Nathaniel W Brown
- Department of Chemical Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Department of Chemistry, Princeton University, Washington Rd., Princeton, NJ 08544, USA
| | - Sandra K Schlomach
- Department of Chemical Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Alan M Marmelstein
- Department of Chemical Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Department of Chemistry, Princeton University, Washington Rd., Princeton, NJ 08544, USA
| | - Dorothea Fiedler
- Department of Chemical Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
5
|
Yamamoto S, Yano S, Kinoshita M, Suzuki S. In Situ Pinpoint Photopolymerization of Phos-Tag Polyacrylamide Gel in Poly(dimethylsiloxane)/Glass Microchip for Specific Entrapment, Derivatization, and Separation of Phosphorylated Compounds. Gels 2021; 7:gels7040268. [PMID: 34940328 PMCID: PMC8701177 DOI: 10.3390/gels7040268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
An improved method for the online preconcentration, derivatization, and separation of phosphorylated compounds was developed based on the affinity of a Phos-tag acrylamide gel formed at the intersection of a polydimethylsiloxane/glass multichannel microfluidic chip toward these compounds. The acrylamide solution comprised Phos-tag acrylamide, acrylamide, and N,N-methylene-bis-acrylamide, while 2,2′-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] was used as a photocatalytic initiator. The Phos-tag acrylamide gel was formed around the channel crossing point via irradiation with a 365 nm LED laser. The phosphorylated peptides were specifically concentrated in the Phos-tag acrylamide gel by applying a voltage across the gel plug. After entrapment of the phosphorylated compounds in the Phos-tag acrylamide gel, 5-(4,6-dichlorotriazinyl)aminofluorescein (DTAF) was introduced to the gel for online derivatization of the concentrated phosphorylated compounds. The online derivatized DTAF-labeled phosphorylated compounds were eluted by delivering a complex of phosphate ions and ethylenediamine tetraacetic acid as the separation buffer. This method enabled sensitive analysis of the phosphorylated peptides.
Collapse
Affiliation(s)
- Sachio Yamamoto
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan; (S.Y.); (M.K.); (S.S.)
- Correspondence:
| | - Shoko Yano
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan; (S.Y.); (M.K.); (S.S.)
| | - Mitsuhiro Kinoshita
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan; (S.Y.); (M.K.); (S.S.)
| | - Shigeo Suzuki
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan; (S.Y.); (M.K.); (S.S.)
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| |
Collapse
|
6
|
Babu N, Bhat MY, John AE, Chatterjee A. The role of proteomics in the multiplexed analysis of gene alterations in human cancer. Expert Rev Proteomics 2021; 18:737-756. [PMID: 34602018 DOI: 10.1080/14789450.2021.1984884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Proteomics has played a pivotal role in identifying proteins perturbed in disease conditions when compared with healthy samples. Study of dysregulated proteins aids in identifying diagnostic markers and potential therapeutic targets. Cancer is an outcome of interplay of several such disarrayed proteins and molecular pathways which perturb cellular homeostasis, resulting in transformation. In this review, we discuss various facets of proteomic approaches, including tools and technological advancements, aiding in understanding differentially expressed molecules and signaling mechanisms. AREAS COVERED In this review, we have taken the approach of documenting the different methods of proteomic studies, ranging from labeling techniques, data analysis methods, and the nature of molecule detected. We summarize each technique and provide a glimpse of cancer research carried out using them, highlighting the advantages and drawbacks in comparison with others. Literature search using online resources, such as PubMed and Google Scholar were carried out for this approach. EXPERT OPINION Technological advancements in proteomics studies have come a long way from the study of two-dimensional mapping of proteins separated on gels in the early 1970s. Higher precision in molecular identification and quantification (high throughput), and greater number of samples analyzed have been the focus of researchers.
Collapse
Affiliation(s)
- Niraj Babu
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Mohd Younis Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India
| | | | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
7
|
Low TY, Mohtar MA, Lee PY, Omar N, Zhou H, Ye M. WIDENING THE BOTTLENECK OF PHOSPHOPROTEOMICS: EVOLVING STRATEGIES FOR PHOSPHOPEPTIDE ENRICHMENT. MASS SPECTROMETRY REVIEWS 2021; 40:309-333. [PMID: 32491218 DOI: 10.1002/mas.21636] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Phosphorylation is a form of protein posttranslational modification (PTM) that regulates many biological processes. Whereas phosphoproteomics is a scientific discipline that identifies and quantifies the phosphorylated proteome using mass spectrometry (MS). This task is extremely challenging as ~30% of the human proteome is phosphorylated; and each phosphoprotein may exist as multiple phospho-isoforms that are present in low abundance and stoichiometry. Hence, phosphopeptide enrichment techniques are indispensable to (phospho)proteomics laboratories. These enrichment methods encompass widely-adopted techniques such as (i) affinity-based chromatography; (ii) ion exchange and mixed-mode chromatography (iii) enrichment with phospho-specific antibodies and protein domains, and (iv) functionalized polymers and other less common but emerging technologies such as hydroxyapatite chromatography and precipitation with inorganic ions. Here, we review these techniques, their history, continuous development and evaluation. Besides, we outline associating challenges of phosphoproteomics that are linked to experimental design, sample preparation, and proteolytic digestion. In addition, we also discuss about the future outlooks in phosphoproteomics, focusing on elucidating the noncanonical phosphoproteome and deciphering the "dark phosphoproteome". © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Nursyazwani Omar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Houjiang Zhou
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Centre, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
8
|
Bijttebier S, Theunis C, Jahouh F, Martins DR, Verhemeldonck M, Grauwen K, Dillen L, Mercken M. Development of immunoprecipitation - two-dimensional liquid chromatography - mass spectrometry methodology as biomarker read-out to quantify phosphorylated tau in cerebrospinal fluid from Alzheimer disease patients. J Chromatogr A 2021; 1651:462299. [PMID: 34107398 DOI: 10.1016/j.chroma.2021.462299] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
In Alzheimer's disease (AD) brain, one of the histopathological hallmarks is the neurofibrillary tangles consisting of aggregated and hyperphosphorylated tau. Currently many tau binding antibodies are under development to target the extracellular species responsible for the spreading of the disease in the brain. As such, an in-house developed antibody JNJ-63733657 with picomolar affinity towards tau phosphorylated at both T212 and T217 (further named p217+tau) was recently tested in phase I clinical trial NCT03375697. Following multiple dose administration in healthy subjects and subjects with AD, there were dose dependant reductions in free p217+tau fragments in cerebrospinal fluid (CSF) following antibody administration, as measured with a novel single molecule ELISA assay (Simoa PT3 x PT82 assay), demonstrating epitope engagement of the therapeutic antibody [Galpern, Haeverans, Janssens, Triana-Baltzer, Kolb, Li, Nandy, Mercken, Van Kolen, Sun, Van Nueten, 2020]. Total p217+tau levels also were reduced in CSF as measured with the Simoa PT3 x PT82 assay. In this study we developed an orthogonal immunoprecipitation - liquid chromatography - triple quadrupole mass spectrometry (IP-LC-TQMS) assay to verify the observed reductions in total p217+ tau levels. In this assay, an excess of JNJ-63733657 is added to the clinical CSF to ensure all p217+tau is bound by the antibody instead of having a pool of bound and unbound antigen and to immunoprecipitate all p217+tau, which is followed by on-bead digestion with trypsin to release surrogate peptides. Tryptic peptides with missed cleavages were monitored when phosphorylation occurred close to the cleavage site as this induced miscleavages. Compared with acidified mobile phases typically used for peptide analysis, reversed phase LC with mobile phase at basic pH resulted in sharper peaks and improved selectivity and sensitivity for the target peptides. With this setup a diphospho-tau tryptic peptide SRTPSLPTPPTREPK*2 could be measured with pT217 accounting for at least one of the phospho-sites. This is the first time that the presence of a diphopsho-tau peptide is reported to be present in human CSF. A two-dimensional LC-TQMS method was developed to remove matrix interferences. Selective trapping of diphospho-peptides via a metal oxide chromatography mechanism was achieved in a first dimension with a conventional reversed phase stationary phase and acidified mobile phase. Subsequent elution at basic pH enabled detection of low picomolar p217+tau levels in human CSF (lower limit of quantification: 2 pM), resulting in an approximate 5-fold increase in sensitivity. This enabled the quantification of total p217+tau in CSF leading to the confirmation that in addition to reductions in free p217+tau levels total p217+tau levels were also reduced following administration of the tau mAb JNJ-63733657, correlating with the previous measurement with the PT3 x PT82 Simoa assay. An orthogonal sample clean-up using offline TiO2/ZrO2 combined with 1DLC-TQMS was developed to confirm the presence of mono-ptau (pT217) tryptic peptides in CSF.
Collapse
Affiliation(s)
| | - Clara Theunis
- R&D Neurosciences, Janssen Pharmaceutica, Turnhoutseweg 30, Beerse, Belgium.
| | - Farid Jahouh
- DMPK, Janssen Pharmaceutica, Turnhoutseweg 30, Beerse, Belgium.
| | | | | | - Karolien Grauwen
- R&D Neurosciences, Janssen Pharmaceutica, Turnhoutseweg 30, Beerse, Belgium.
| | - Lieve Dillen
- DMPK, Janssen Pharmaceutica, Turnhoutseweg 30, Beerse, Belgium.
| | - Marc Mercken
- R&D Neurosciences, Janssen Pharmaceutica, Turnhoutseweg 30, Beerse, Belgium.
| |
Collapse
|
9
|
Finamore F, Ucciferri N, Signore G, Cecchettini A, Ceccherini E, Vitiello M, Poliseno L, Rocchiccioli S. Proteomics pipeline for phosphoenrichment and its application on a human melanoma cell model. Talanta 2020; 220:121381. [PMID: 32928406 DOI: 10.1016/j.talanta.2020.121381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 11/25/2022]
Abstract
Cell signalling is tightly regulated by post-translational modification of proteins. Among them, phosphorylation is one of the most interesting and important. Identifying phosphorylation sites on proteins is challenging and requires strategies for pre-separation and enrichment of the phosphorylated species. We applied four different methods for phospho-enrichment involving TiO2 and IMAC matrix to human melanoma cell lysates of starved A375 induced for 1 h with 1% FBS. Comparison of protocol efficiency was evaluated through peptide concentration, sulphur and phosphorus content and peptide analysis by LC-MS in the collected fractions. Our results underlined that each single method is not sufficient for a comprehensive phosphoproteome analysis. In fact, each methodology permits to identify only a fraction of the phosphoproteome contained in a whole cell lysate. The selection of the most efficient protocols and a combination of two phospho-enrichment methods allowed the assessment of this workflow able to pinpoint the main actors in the phospho-proteome cascade of A375 human melanoma cells treated with Vemurafenib.
Collapse
Affiliation(s)
- Francesco Finamore
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa, 56124, Italy
| | - Nadia Ucciferri
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa, 56124, Italy
| | - Giovanni Signore
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, 56127, Italy; Fondazione Pisana per la Scienza ONLUS, via Ferruccio Giovannini 13, San Giuliano Terme, 56017, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa, 56124, Italy; Dept of Clinical and Experimental Medicine, Pisa University, via Volta 4, 56126, Pisa, Italy
| | - Elisa Ceccherini
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa, 56124, Italy
| | - Marianna Vitiello
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa, 56124, Italy; Oncogenomics Unit, ISPRO, via Moruzzi 1, Pisa, 56124, Italy
| | - Laura Poliseno
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa, 56124, Italy; Oncogenomics Unit, ISPRO, via Moruzzi 1, Pisa, 56124, Italy
| | | |
Collapse
|
10
|
Pérez-Mejías G, Velázquez-Cruz A, Guerra-Castellano A, Baños-Jaime B, Díaz-Quintana A, González-Arzola K, Ángel De la Rosa M, Díaz-Moreno I. Exploring protein phosphorylation by combining computational approaches and biochemical methods. Comput Struct Biotechnol J 2020; 18:1852-1863. [PMID: 32728408 PMCID: PMC7369424 DOI: 10.1016/j.csbj.2020.06.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications of proteins expand their functional diversity, regulating the response of cells to a variety of stimuli. Among these modifications, phosphorylation is the most ubiquitous and plays a prominent role in cell signaling. The addition of a phosphate often affects the function of a protein by altering its structure and dynamics. However, these alterations are often difficult to study and the functional and structural implications remain unresolved. New approaches are emerging to overcome common obstacles related to the production and manipulation of these samples. Here, we summarize the available methods for phosphoprotein purification and phosphomimetic engineering, highlighting the advantages and disadvantages of each. We propose a general workflow for protein phosphorylation analysis combining computational and biochemical approaches, building on recent advances that enable user-friendly and easy-to-access Molecular Dynamics simulations. We hope this innovative workflow will inform the best experimental approach to explore such post-translational modifications. We have applied this workflow to two different human protein models: the hemeprotein cytochrome c and the RNA binding protein HuR. Our results illustrate the usefulness of Molecular Dynamics as a decision-making tool to design the most appropriate phosphomimetic variant.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Alejandro Velázquez-Cruz
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Alejandra Guerra-Castellano
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Blanca Baños-Jaime
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Katiuska González-Arzola
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Miguel Ángel De la Rosa
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|
11
|
Ma S, Li Y, Ma C, Wang Y, Ou J, Ye M. Challenges and Advances in the Fabrication of Monolithic Bioseparation Materials and their Applications in Proteomics Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902023. [PMID: 31502719 DOI: 10.1002/adma.201902023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/29/2019] [Indexed: 06/10/2023]
Abstract
High-performance liquid chromatography integrated with tandem mass spectrometry (HPLC-MS/MS) has become a powerful technique for proteomics research. Its performance heavily depends on the separation efficiency of HPLC, which in turn depends on the chromatographic material. As the "heart" of the HPLC system, the chromatographic material is required to achieve excellent column efficiency and fast analysis. Monolithic materials, fabricated as continuous supports with interconnected skeletal structure and flow-through pores, are regarded as an alternative to particle-packed columns. Such materials are featured with easy preparation, fast mass transfer, high porosity, low back pressure, and miniaturization, and are next-generation separation materials for high-throughput proteins and peptides analysis. Herein, the recent progress regarding the fabrication of various monolithic materials is reviewed. Special emphasis is placed on studies of the fabrication of monolithic capillary columns and their applications in separation of biomolecules by capillary liquid chromatography (cLC). The applications of monolithic materials in the digestion, enrichment, and separation of phosphopeptides and glycopeptides from biological samples are also considered. Finally, advances in comprehensive 2D HPLC separations using monolithic columns are also shown.
Collapse
Affiliation(s)
- Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Ya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Chen Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Li K, Zhao S, Yan Y, Zhang D, Peng M, Wang Y, Guo G, Wang X. In-tube solid-phase microextraction capillary column packed with mesoporous TiO 2 nanoparticles for phosphopeptide analysis. Electrophoresis 2019; 40:2142-2148. [PMID: 31032959 DOI: 10.1002/elps.201900055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/25/2019] [Accepted: 04/13/2019] [Indexed: 01/27/2023]
Abstract
In this study, an in-tube solid-phase microextraction column packed with mesoporous TiO2 nanoparticles, coupled with MALDI-TOF-MS, was applied to the selective enrichment and detection of phosphopeptides in complex biological samples. The mesoporous TiO2 nanoparticles with high specific surface areas, prepared by a sol-gel and solvothermal method, were injected into the capillary using a slurry packing method with in situ polymerized monolithic segments as frits. Compared with the traditional solid-phase extraction method, the TiO2 -packed column with an effective length of 1 cm exhibited excellent selectivity (α-casein/β-casein/BSA molar ratio of 1:1:100) and sensitivity (10 fmol of a β-casein enzymatic hydrolysis sample) for the enrichment of phosphopeptides. These performance characteristics make this system suitable for the detection of phosphorylated peptides in practical biosamples, such as nonfat milk.
Collapse
Affiliation(s)
- Ke Li
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P. R. China
| | - Shuo Zhao
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P. R. China
| | - Yong Yan
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P. R. China
| | - Dongtang Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P. R. China
| | - Manhua Peng
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P. R. China
| | - Yanan Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P. R. China
| | - Guangsheng Guo
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P. R. China
| | - Xiayan Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P. R. China
| |
Collapse
|
13
|
Metal–organic framework-based affinity materials in proteomics. Anal Bioanal Chem 2019; 411:1745-1759. [DOI: 10.1007/s00216-019-01610-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/31/2018] [Accepted: 01/14/2019] [Indexed: 01/17/2023]
|
14
|
Minic Z, Dahms TES, Babu M. Chromatographic separation strategies for precision mass spectrometry to study protein-protein interactions and protein phosphorylation. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1102-1103:96-108. [PMID: 30380468 DOI: 10.1016/j.jchromb.2018.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/30/2022]
Abstract
Investigating protein-protein interactions and protein phosphorylation can be of great significance when studying biological processes and human diseases at the molecular level. However, sample complexity, presence of low abundance proteins, and dynamic nature of the proteins often impede in achieving sufficient analytical depth in proteomics research. In this regard, chromatographic separation methodologies have played a vital role in the identification and quantification of proteins in complex sample mixtures. The combination of peptide and protein fractionation techniques with advanced high-performance mass spectrometry has allowed the researchers to successfully study the protein-protein interactions and protein phosphorylation. Several new fractionation strategies for large scale analysis of proteins and peptides have been developed to study protein-protein interactions and protein phosphorylation. These emerging chromatography methodologies have enabled the identification of several hundred protein complexes and even thousands of phosphorylation sites in a single study. In this review, we focus on current workflow strategies and chromatographic tools, highlighting their advantages and disadvantages, and examining their associated challenges and future potential.
Collapse
Affiliation(s)
- Zoran Minic
- Department of Chemistry and Biomolecular Science, University of Ottawa, John L. Holmes, Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, Room 02, Ottawa, ON K1N 1A2, Canada.
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Mohan Babu
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
15
|
|
16
|
Holfeld A, Valdés A, Malmström PU, Segersten U, Lind SB. Parallel Proteomic Workflow for Mass Spectrometric Analysis of Tissue Samples Preserved by Different Methods. Anal Chem 2018; 90:5841-5849. [PMID: 29624047 DOI: 10.1021/acs.analchem.8b00379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Formalin-fixed and paraffin-embedded (FFPE) and optimal cutting temperature (OCT)-embedded and frozen tissue specimens in biobanks are highly valuable in clinical studies but proteomic and post-translational modification (PTM) studies using mass spectrometry (MS) have been limited due to structural arrangement of proteins and contaminations from embedding material. This study aims to develop a parallel proteomic workflow for FFPE and OCT/frozen samples that allows for large-scale, quick, reproducible, qualitative, and quantitative high-resolution MS analysis. The optimized protocol gives details on removal of embedding material, protein extraction, and multienzyme digestion using filter-aided sample preparation method. The method was evaluated by investigating the protein expression levels in nonmuscle-invasive and muscle-invasive bladder cancer samples in two cohorts and MS spectra were carefully reviewed for contaminations. More than 2000 and 3000 proteins in FFPE and OCT/frozen samples, respectively, were identified, and samples could be clustered in different tumor stages based on their protein expression. Furthermore, more than 250 and 400 phosphopeptides could be identified from specific patient samples of FFPE and OCT/frozen, respectively, using titanium dioxide enrichment. The paper presents unique data describing the similarities and differences observed in FFPE and OCT/frozen samples and shows the feasibility to detect proteins and site-specific phosphorylation even after long-term storage of clinical samples.
Collapse
|
17
|
Wilson GM, Blanco R, Coon JJ, Hornberger TA. Identifying Novel Signaling Pathways: An Exercise Scientists Guide to Phosphoproteomics. Exerc Sport Sci Rev 2018; 46:76-85. [PMID: 29346157 PMCID: PMC6261359 DOI: 10.1249/jes.0000000000000146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We propose that phosphoproteomic-based studies will radically advance our knowledge about exercise-regulated signaling events. However, these studies use cutting-edge technologies that can be difficult for nonspecialists to understand. Hence, this review is intended to help nonspecialists 1) understand the fundamental technologies behind phosphoproteomic analysis and 2) use various bioinformatic tools that can be used to interrogate phosphoproteomic datasets.
Collapse
Affiliation(s)
- Gary M. Wilson
- Department of Chemistry, University of Wisconsin–Madison
| | - Rocky Blanco
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison
- Genome Center of Wisconsin, University of Wisconsin–Madison
- Morgridge Institute for Research
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI
| | - Troy A. Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison
| |
Collapse
|
18
|
Schumacher FR, Delamarre L, Jhunjhunwala S, Modrusan Z, Phung QT, Elias JE, Lill JR. Building proteomic tool boxes to monitor MHC class I and class II peptides. Proteomics 2017; 17. [PMID: 27928884 DOI: 10.1002/pmic.201600061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/13/2016] [Accepted: 11/25/2016] [Indexed: 01/22/2023]
Abstract
Major histocompatibility complex Class I (MHCI) and Class II (MHCII) presented peptides powerfully modulate T cell immunity and play a vital role in generating effective anti-tumor and anti-viral immune responses in mammals. Characterizing these MHCI or MHCII presented peptides can help generate therapeutic treatments, afford information on T cell mediated biomarkers, provide insight into disease progression, and reduce adverse anti-drug side effects from engineered biotherapeutics. Here, we explore the tools and techniques commonly employed to discover both MHCI- and MHCII-presented peptides. We describe complementary strategies that enhance the characterization of these peptides and the informatics tools employed for both predicting and characterizing MHCI- and MHCII-presented epitopes. The evolution of methodologies for isolating MHC-presented peptides is discussed, as are the mass spectrometric workflows that can be employed for their characterization. We provide a perspective on where this field is headed, and how these tools may be applicable to the discovery and monitoring of epitopes in a variety of scenarios.
Collapse
Affiliation(s)
| | - Lélia Delamarre
- Department of Cancer Immunology, Genentech Inc., San Francisco, CA, USA
| | - Suchit Jhunjhunwala
- Department of Bioinformatics & Computational Biology, Genentech Inc., San Francisco, CA, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech Inc., San Francisco, CA, USA
| | - Qui T Phung
- Department of Proteomics and Biological Resources, Genentech Inc., San Francisco, CA, USA
| | - Joshua E Elias
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, San Francisco, CA, USA
| | - Jennie R Lill
- Department of Proteomics & Biological Resources, Genentech Inc., San Francisco, CA, USA
| |
Collapse
|
19
|
Papaleo E, Gromova I, Gromov P. Gaining insights into cancer biology through exploration of the cancer secretome using proteomic and bioinformatic tools. Expert Rev Proteomics 2017; 14:1021-1035. [PMID: 28967788 DOI: 10.1080/14789450.2017.1387053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Tumor-associated proteins released by cancer cells and by tumor stroma cells, referred as 'cancer secretome', represent a valuable resource for discovery of potential cancer biomarkers. The last decade was marked by a great increase in number of studies focused on various aspects of cancer secretome including, composition and identification of components externalized by malignant cells and by the components of tumor microenvironment. Areas covered: Here, we provide an overview of achievements in the proteomic analysis of the cancer secretome, elicited through the tumor-associated interstitial fluid recovered from malignant tissues ex vivo or the protein component of conditioned media obtained from cultured cancer cells in vitro. We summarize various bioinformatic tools and approaches and critically appraise their outcomes, focusing on problems and challenges that arise when applied for the analysis of cancer secretomic databases. Expert commentary: Recent achievements in the omics- analysis of structural and metabolic aspects of altered cancer secretome contribute greatly to the various hallmarks of cancer including the identification of clinically significant biomarkers and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Elena Papaleo
- a Danish Cancer Society Research Center, Computational Biology Laboratory , Copenhagen , Denmark
| | - Irina Gromova
- b Danish Cancer Society Research Center, Genome Integrity Unit, Breast Cancer Biology Group , Copenhagen , Denmark
| | - Pavel Gromov
- b Danish Cancer Society Research Center, Genome Integrity Unit, Breast Cancer Biology Group , Copenhagen , Denmark
| |
Collapse
|
20
|
Temporal characterization of the non-structural Adenovirus type 2 proteome and phosphoproteome using high-resolving mass spectrometry. Virology 2017; 511:240-248. [PMID: 28915437 DOI: 10.1016/j.virol.2017.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 01/20/2023]
Abstract
The proteome and phosphoproteome of non-structural proteins of Adenovirus type 2 (Ad2) were time resolved using a developed mass spectrometry approach. These proteins are expressed by the viral genome and important for the infection process, but not part of the virus particle. We unambiguously confirm the existence of 95% of the viral proteins predicted to be encoded by the viral genome. Most non-structural proteins peaked in expression at late time post infection. We identified 27 non-redundant sites of phosphorylation on seven different non-structural proteins. The most heavily phosphorylated protein was the DNA binding protein (DBP) with 15 different sites. The phosphorylation occupancy rate could be calculated and monitored with time post infection for 15 phosphorylated sites on various proteins. In the DBP, phosphorylations with time-dependent relation were observed. The findings show the complexity of the Ad2 non-structural proteins and opens up a discussion for potential new drug targets.
Collapse
|
21
|
Insights regarding fungal phosphoproteomic analysis. Fungal Genet Biol 2017; 104:38-44. [DOI: 10.1016/j.fgb.2017.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/27/2017] [Accepted: 03/07/2017] [Indexed: 11/19/2022]
|
22
|
赵 娜, 黄 彪, 吴 巧, 唐 勇, 余 曙. 蛋白修饰与炎症性肠病. Shijie Huaren Xiaohua Zazhi 2017; 25:1521-1527. [DOI: 10.11569/wcjd.v25.i17.1521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
近年来炎症性肠病(inflammatory bowel disease, IBD)的发病率明显呈持续上升趋势, 越来越多的证据表明, 肠道内蛋白质的异常表达或蛋白修饰的异常与IBD的发病有关. 蛋白修饰是指蛋白质通过翻译后修饰改变自身的空间构象、活性、稳定性及与其他分子相互作用等方面的性能, 从而参与调节机体多样化的生命过程. 虽然蛋白修饰不会改变DNA的序列, 但可以影响相关基因的表达. 研究显示, 蛋白修饰可能通过患者的饮食、环境及肠道微生物等多方面影响基因表型从而参与IBD的发病过程. 本文就蛋白修饰在IBD发病过程中所起的作用做一综述.
Collapse
|
23
|
Lin YT, Chien KY, Wu CC, Chang WY, Chu LJ, Chen MC, Yeh CT, Yu JS. Super-SILAC mix coupled with SIM/AIMS assays for targeted verification of phosphopeptides discovered in a large-scale phosphoproteome analysis of hepatocellular carcinoma. J Proteomics 2017; 157:40-51. [DOI: 10.1016/j.jprot.2017.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/23/2017] [Accepted: 02/08/2017] [Indexed: 01/04/2023]
|
24
|
Yamamoto S, Himeno M, Kobayashi M, Akamatsu M, Satoh R, Kinoshita M, Sugiura R, Suzuki S. Microchip electrophoresis utilizing an in situ photopolymerized Phos-tag binding polyacrylamide gel for specific entrapment and analysis of phosphorylated compounds. Analyst 2017; 142:3416-3423. [DOI: 10.1039/c7an00836h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A method was developed for the specific entrapment and separation of phosphorylated compounds using a Phos-tag polyacrylamide gel fabricated at the channel crossing point of a microfluidic electrophoresis chip.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Reiko Sugiura
- Faculty of Pharmacy
- Kindai University
- Osaka
- Japan
- Antiaging Center
| | - Shigeo Suzuki
- Faculty of Pharmacy
- Kindai University
- Osaka
- Japan
- Antiaging Center
| |
Collapse
|
25
|
Casado P, Hijazi M, Britton D, Cutillas PR. Impact of phosphoproteomics in the translation of kinase-targeted therapies. Proteomics 2016; 17. [DOI: 10.1002/pmic.201600235] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/29/2016] [Accepted: 10/20/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Pedro Casado
- Cell Signalling and Proteomics Group; Centre for Haemato-Oncology; Barts Cancer Institute; Queen Mary University of London; UK
| | - Maruan Hijazi
- Cell Signalling and Proteomics Group; Centre for Haemato-Oncology; Barts Cancer Institute; Queen Mary University of London; UK
| | - David Britton
- Cell Signalling and Proteomics Group; Centre for Haemato-Oncology; Barts Cancer Institute; Queen Mary University of London; UK
| | - Pedro R. Cutillas
- Cell Signalling and Proteomics Group; Centre for Haemato-Oncology; Barts Cancer Institute; Queen Mary University of London; UK
| |
Collapse
|
26
|
Wither MJ, Hansen KC, Reisz JA. Mass Spectrometry-Based Bottom-Up Proteomics: Sample Preparation, LC-MS/MS Analysis, and Database Query Strategies. ACTA ACUST UNITED AC 2016; 86:16.4.1-16.4.20. [PMID: 27801520 DOI: 10.1002/cpps.18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent technological advances in mass spectrometry (MS) have made possible the investigation and quantification of complex mixtures of biomolecules. The exceptional sensitivity and resolving power of today's mass spectrometers allow for the detection of proteins and peptides at low femtomole quantities; however, these attributes demand high sample purity to minimize artifacts and achieve the highest degree of biomolecule identification. Tissue preparation for proteomic studies is particularly challenging due to their heterogeneity in cell type, presence of insoluble biomaterials, and wide diversity of biomolecules. The workflow described herein details sample preparation from tissues through protein extraction, proteolysis, and purification to generate peptides for MS analysis. Increased peptide resolution and a corresponding increase in protein identification is accomplished using polarity-based fractionation (C18 resin) at the peptide level. Additionally, approaches to instrument set up, including the use of nanoscale liquid chromatography and quadrupole Orbitrap MS, along with database searching, are described. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Matthew J Wither
- Biological Mass Spectrometry Core, Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Kirk C Hansen
- Biological Mass Spectrometry Core, Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Julie A Reisz
- Biological Mass Spectrometry Core, Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
27
|
Černigoj U, Gašperšič J, Fichtenbaum A, Lendero Krajnc N, Vidič J, Mitulović G, Štrancar A. Titanium dioxide nanoparticle coating of polymethacrylate-based chromatographic monoliths for phosphopetides enrichment. Anal Chim Acta 2016; 942:146-154. [DOI: 10.1016/j.aca.2016.08.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 01/25/2023]
|
28
|
Highly efficient enrichment of phosphopeptides by a magnetic lanthanide metal-organic framework. Talanta 2016; 159:1-6. [DOI: 10.1016/j.talanta.2016.05.075] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 11/18/2022]
|
29
|
Batalha IL, Zhou H, Lilley K, Lowe CR, Roque ACA. Mimicking nature: Phosphopeptide enrichment using combinatorial libraries of affinity ligands. J Chromatogr A 2016; 1457:76-87. [PMID: 27345211 DOI: 10.1016/j.chroma.2016.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022]
Abstract
Phosphorylation is a reversible post-translational modification of proteins that controls a plethora of cellular processes and triggers specific physiological responses, for which there is a need to develop tools to characterize phosphorylated targets efficiently. Here, a combinatorial library of triazine-based synthetic ligands comprising 64 small molecules has been rationally designed, synthesized and screened for the enrichment of phosphorylated peptides. The lead candidate (coined A8A3), composed of histidine and phenylalanine mimetic components, showed high binding capacity and selectivity for binding mono- and multi-phosphorylated peptides at pH 3. Ligand A8A3 was coupled onto both cross-linked agarose and magnetic nanoparticles, presenting higher binding capacities (100-fold higher) when immobilized on the magnetic support. The magnetic adsorbent was further screened against a tryptic digest of two phosphorylated proteins (α- and β-caseins) and one non-phosphorylated protein (bovine serum albumin, BSA). The MALDI-TOF mass spectra of the eluted peptides allowed the identification of nine phosphopeptides, comprising both mono- and multi-phosphorylated peptides.
Collapse
Affiliation(s)
- Iris L Batalha
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Houjiang Zhou
- Cambridge Centre for Proteomics, Cambridge, CB2 1QR, UK
| | | | - Christopher R Lowe
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, CB2 1QT, Cambridge, UK
| | - Ana C A Roque
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
30
|
|
31
|
Xiao H, Smeekens JM, Wu R. Quantification of tunicamycin-induced protein expression and N-glycosylation changes in yeast. Analyst 2016; 141:3737-45. [PMID: 27007503 DOI: 10.1039/c6an00144k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tunicamycin is a potent protein N-glycosylation inhibitor that has frequently been used to manipulate protein glycosylation in cells. However, protein expression and glycosylation changes as a result of tunicamycin treatment are still unclear. Using yeast as a model system, we systematically investigated the cellular response to tunicamycin at the proteome and N-glycoproteome levels. By utilizing modern mass spectrometry-based proteomics, we quantified 4259 proteins, which nearly covers the entire yeast proteome. After the three-hour tunicamycin treatment, more than 5% of proteins were down-regulated by at least 2 fold, among which proteins related to several glycan metabolism and glycolysis-related pathways were highly enriched. Furthermore, several proteins in the canonical unfolded protein response pathway were up-regulated because the inhibition of protein N-glycosylation impacts protein folding and trafficking. We also comprehensively quantified protein glycosylation changes in tunicamycin-treated cells, and more than one third of quantified unique glycopeptides (168 of 465 peptides) were down-regulated. Proteins containing down-regulated glycopeptides were related to glycosylation, glycoprotein metabolic processes, carbohydrate processes, and cell wall organization according to gene ontology clustering. The current results provide the first global view of the cellular response to tunicamycin at the proteome and glycoproteome levels.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | | | |
Collapse
|
32
|
Ouidir T, Jouenne T, Hardouin J. Post-translational modifications in Pseudomonas aeruginosa revolutionized by proteomic analysis. Biochimie 2016; 125:66-74. [PMID: 26952777 DOI: 10.1016/j.biochi.2016.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 03/01/2016] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes severe infections in vulnerable individuals. It is known that post-translational modifications (PTMs) play a key role in bacterial physiology. Their characterization is still challenging and the recent advances in proteomics allow large-scale and high-throughput analyses of PTMs. Here, we provide an overview of proteomic data about the modified proteins in P. aeruginosa. We emphasize the significant contribution of proteomics in knowledge enhancement of PTMs (phosphorylation, N-acetylation and glycosylation) and we discuss their importance in P. aeruginosa physiology.
Collapse
Affiliation(s)
- Tassadit Ouidir
- CNRS, UMR 6270, Polymères, Biopolymères, Surfaces Laboratory, F-76820 Mont-Saint-Aignan, France; Normandie Univ, UR, France; PISSARO Proteomic Facility, IRIB, F-76820 Mont-Saint-Aignan, France
| | - Thierry Jouenne
- CNRS, UMR 6270, Polymères, Biopolymères, Surfaces Laboratory, F-76820 Mont-Saint-Aignan, France; Normandie Univ, UR, France; PISSARO Proteomic Facility, IRIB, F-76820 Mont-Saint-Aignan, France
| | - Julie Hardouin
- CNRS, UMR 6270, Polymères, Biopolymères, Surfaces Laboratory, F-76820 Mont-Saint-Aignan, France; Normandie Univ, UR, France; PISSARO Proteomic Facility, IRIB, F-76820 Mont-Saint-Aignan, France.
| |
Collapse
|
33
|
Magnetic graphitic carbon nitride anion exchanger for specific enrichment of phosphopeptides. J Chromatogr A 2016; 1437:137-144. [DOI: 10.1016/j.chroma.2016.01.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/26/2016] [Accepted: 01/30/2016] [Indexed: 11/19/2022]
|
34
|
Källsten M, Bergquist J, Zhao H, Konzer A, Lind SB. A comparative study of phosphopeptide-selective techniques for a sub-proteome of a complex biological sample. Anal Bioanal Chem 2016; 408:2347-56. [DOI: 10.1007/s00216-016-9333-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/18/2015] [Accepted: 01/13/2016] [Indexed: 11/24/2022]
|
35
|
Affiliation(s)
- Nicholas M. Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
36
|
Horvatovich P, Végvári Á, Saul J, Park JG, Qiu J, Syring M, Pirrotte P, Petritis K, Tegeler TJ, Aziz M, Fuentes M, Diez P, Gonzalez-Gonzalez M, Ibarrola N, Droste C, De Las Rivas J, Gil C, Clemente F, Hernaez ML, Corrales FJ, Nilsson CL, Berven FS, Bischoff R, Fehniger TE, LaBaer J, Marko-Varga G. In Vitro Transcription/Translation System: A Versatile Tool in the Search for Missing Proteins. J Proteome Res 2015; 14:3441-51. [PMID: 26155874 DOI: 10.1021/acs.jproteome.5b00486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Approximately 18% of all human genes purported to encode proteins have not been directly evidenced at the protein level, according to the validation criteria established by neXtProt, and are considered to be "missing" proteins. One of the goals of the Chromosome-Centric Human Proteome Project (C-HPP) is to identify as many of these missing proteins as possible in human samples using mass spectrometry-based methods. To further this goal, a consortium of C-HPP teams (chromosomes 5, 10, 16, and 19) has joined forces to devise new strategies to identify missing proteins by use of a cell-free in vitro transcription/translation system (IVTT). The proposed strategy employs LC-MS/MS data-dependent acquisition (DDA) and targeted selective reaction monitoring (SRM) methods to scrutinize low-complexity samples derived from IVTT. The optimized assays are then applied to identify missing proteins in human cells and tissues. We describe the approach and show proof-of-concept results for development of LC-SRM assays for identification of 18 missing proteins. We believe that the IVTT system, when coupled with downstream mass spectrometric identification, can be applied to identify proteins that have eluded more traditional methods of detection.
Collapse
Affiliation(s)
- Péter Horvatovich
- Analytical Biochemistry, Department of Pharmacy, University of Groningen , A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ákos Végvári
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch , 301 University Boulevard, Galveston, Texas 77555-1074, United States
| | - Justin Saul
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Jin G Park
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Ji Qiu
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Michael Syring
- Center for Proteomics, Translational Genomics Research Institute , Phoenix, Arizona 85004, United States
| | - Patrick Pirrotte
- Center for Proteomics, Translational Genomics Research Institute , Phoenix, Arizona 85004, United States
| | - Konstantinos Petritis
- Center for Proteomics, Translational Genomics Research Institute , Phoenix, Arizona 85004, United States.,Pathology Research, Phoenix Children's Hospital , 1919 East Thomas Road, Phoenix, Arizona 85016, United States
| | - Tony J Tegeler
- Center for Proteomics, Translational Genomics Research Institute , Phoenix, Arizona 85004, United States
| | - Meraj Aziz
- Center for Proteomics, Translational Genomics Research Institute , Phoenix, Arizona 85004, United States
| | | | | | | | | | | | | | - Concha Gil
- Department of Microbiology & Proteomics Unit, University Complutense , 28040 Madrid, Spain
| | - Felipe Clemente
- Department of Microbiology & Proteomics Unit, University Complutense , 28040 Madrid, Spain
| | - Maria Luisa Hernaez
- Department of Microbiology & Proteomics Unit, University Complutense , 28040 Madrid, Spain
| | - Fernando J Corrales
- Center for Applied Medical Research (CIMA), University of Navarra, PRB2-ProteoRed-ISCIII, IDISNA, Ciberhed , 31008 Pamplona, Spain
| | - Carol L Nilsson
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch , 301 University Boulevard, Galveston, Texas 77555-1074, United States
| | - Frode S Berven
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen , Postbox 7804, N-5009 Bergen, Norway.,The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital , Postbox 1400, 5021 Bergen, Norway
| | - Rainer Bischoff
- Analytical Biochemistry, Department of Pharmacy, University of Groningen , A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | - Joshua LaBaer
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - György Marko-Varga
- First Department of Surgery, Tokyo Medical University , 6-7-1 Nishishinjuku Shinjuku-ku, 160-0023 Tokyo, Japan
| |
Collapse
|
37
|
Affiliation(s)
- He Huang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shu Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
38
|
Xiong Z, Chen Y, Zhang L, Ren J, Zhang Q, Ye M, Zhang W, Zou H. Facile synthesis of guanidyl-functionalized magnetic polymer microspheres for tunable and specific capture of global phosphopeptides or only multiphosphopeptides. ACS APPLIED MATERIALS & INTERFACES 2014; 6:22743-22750. [PMID: 25466400 DOI: 10.1021/am506882b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The highly selective and efficient capture of heterogeneous types of phosphopeptides is critical for comprehensive and in-depth phosphoproteome analysis, but it still remains a challenge since the lack of affinity material with large binding capacity and controllable specificity. Here, a new affinity material was prepared to improve the enrichment capacity and endue the tunable specificity by introducing guanidyl onto poly(glycidyl methacrylate) (PGMA) modified Fe3O4 microsphere (denoted as Fe3O4@PGMA-Guanidyl). The thick polymer shell endows the composite microsphere with large amount of guanidyl and is beneficial to enhancing the affinity interaction between phosphopeptides and the material. Interestingly, the Fe3O4@PGMA-Guanidyl possesses tunable enriching ability for global phosphopeptides or only multiphosphopeptides through simple regulation of buffer composition. The composite has large enrichment capacity (200 mg g(-1)), extremely high detection sensitivity (0.5 fmol), high enrichment recovery (91.30%), great specificity, and rapid magnetic separation. Moreover, the result of the application to capture of phosphopeptides from tryptic digest of nonfat milk has demonstrated the great potential of Fe3O4@PGMA-Guanidyl in detection and identification of low-abundance phosphopeptides of interest in biological sample.
Collapse
Affiliation(s)
- Zhichao Xiong
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Newman RH, Zhang J, Zhu H. Toward a systems-level view of dynamic phosphorylation networks. Front Genet 2014; 5:263. [PMID: 25177341 PMCID: PMC4133750 DOI: 10.3389/fgene.2014.00263] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/16/2014] [Indexed: 11/13/2022] Open
Abstract
To better understand how cells sense and respond to their environment, it is important to understand the organization and regulation of the phosphorylation networks that underlie most cellular signal transduction pathways. These networks, which are composed of protein kinases, protein phosphatases and their respective cellular targets, are highly dynamic. Importantly, to achieve signaling specificity, phosphorylation networks must be regulated at several levels, including at the level of protein expression, substrate recognition, and spatiotemporal modulation of enzymatic activity. Here, we briefly summarize some of the traditional methods used to study the phosphorylation status of cellular proteins before focusing our attention on several recent technological advances, such as protein microarrays, quantitative mass spectrometry, and genetically-targetable fluorescent biosensors, that are offering new insights into the organization and regulation of cellular phosphorylation networks. Together, these approaches promise to lead to a systems-level view of dynamic phosphorylation networks.
Collapse
Affiliation(s)
- Robert H Newman
- Department of Biology, North Carolina Agricultural and Technical State University Greensboro, NC, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA ; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Oncology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA ; High-Throughput Biology Center, Institute for Basic Biomedical Sciences, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|