1
|
Capillary Electrophoresis-Mass Spectrometry for Metabolomics: Possibilities and Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:159-178. [PMID: 34628632 DOI: 10.1007/978-3-030-77252-9_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Capillary electrophoresis-mass spectrometry (CE-MS) is a very useful analytical technique for the selective and highly efficient profiling of polar and charged metabolites in a wide range of biological samples. Compared to other analytical techniques, the use of CE-MS in metabolomics is relatively low as the approach is still regarded as technically challenging and not reproducible. In this chapter, the possibilities of CE-MS for metabolomics are highlighted with special emphasis on the use of recently developed interfacing designs. The utility of CE-MS for targeted and untargeted metabolomics studies is demonstrated by discussing representative and recent examples in the biomedical and clinical fields. The potential of CE-MS for large-scale and quantitative metabolomics studies is also addressed. Finally, some general conclusions and perspectives are given on this strong analytical separation technique for probing the polar metabolome.
Collapse
|
2
|
Xu X. Capillary Electrophoresis-Mass Spectrometry for Cancer Metabolomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:189-200. [PMID: 33791983 DOI: 10.1007/978-3-030-51652-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This chapter presents the fundamentals, instrumentation, methodology, and applications of capillary electrophoresis-mass spectrometry (CE-MS) for cancer metabolomics. CE offers fast and high-resolution separation of charged analytes from a very small amount of sample. When coupled to MS, it represents a powerful analytical technique enabling identification and quantification of metabolites in biological samples. Several issues need to be addressed when combining CE with MS, especially the interface between CE and MS and the selection of a proper separation methodology, sample pretreatment, and capillary coatings. We will discuss these aspects of CE-MS and detail representative applications for cancer metabolomic analysis.
Collapse
Affiliation(s)
- Xiangdong Xu
- School of Public Health and Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
3
|
Sun Q, Fan TWM, Lane AN, Higashi RM. Applications of Chromatography-Ultra High-Resolution MS for Stable Isotope-Resolved Metabolomics (SIRM) Reconstruction of Metabolic Networks. Trends Analyt Chem 2020; 123:115676. [PMID: 32483395 PMCID: PMC7263348 DOI: 10.1016/j.trac.2019.115676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabolism is a complex network of compartmentalized and coupled chemical reactions, which often involve transfers of substructures of biomolecules, thus requiring metabolite substructures to be tracked. Stable isotope resolved metabolomics (SIRM) enables pathways reconstruction, even among chemically identical metabolites, by tracking the provenance of stable isotope-labeled substructures using NMR and ultrahigh resolution (UHR) MS. The latter can resolve and count isotopic labels in metabolites and can identify isotopic enrichment in substructures when operated in tandem MS mode. However, MS2 is difficult to implement with chromatography-based UHR-MS due to lengthy MS1 acquisition time that is required to obtain the molecular isotopologue count, which is further exacerbated by the numerous isotopologue source ions to fragment. We review here recent developments in tandem MS applications of SIRM to obtain more detailed information about isotopologue distributions in metabolites and their substructures.
Collapse
Affiliation(s)
- Qiushi Sun
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, KY, 40539, USA
| | - Teresa W-M. Fan
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, KY, 40539, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40539, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40539, USA
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, KY, 40539, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40539, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40539, USA
| | - Richard M. Higashi
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, KY, 40539, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40539, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40539, USA
| |
Collapse
|
4
|
Ferré S, González-Ruiz V, Guillarme D, Rudaz S. Analytical strategies for the determination of amino acids: Past, present and future trends. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1132:121819. [PMID: 31704619 DOI: 10.1016/j.jchromb.2019.121819] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/27/2022]
Abstract
This review describes the analytical methods that have been developed over the years to tackle the high polarity and non-chromophoric nature of amino acids (AAs). First, the historical methods are briefly presented, with a strong focus on the use of derivatization reagents to make AAs detectable with spectroscopic techniques (ultraviolet and fluorescence) and/or sufficiently retained in reversed phase liquid chromatography. Then, an overview of the current analytical strategies for achiral separation of AAs is provided, in which mass spectrometry (MS) becomes the most widely used detection mode in combination with innovative liquid chromatography or capillary electrophoresis conditions to detect AAs at very low concentration in complex matrixes. Finally, some future trends of AA analysis are provided in the last section of the review, including the use of supercritical fluid chromatography (SFC), multidimensional liquid chromatography and electrophoretic separations, hyphenation of ion exchange chromatography to mass spectrometry, and use of ion mobility spectrometry mass spectrometry (IM-MS). Various application examples will also be presented throughout the review to highlight the benefits and limitations of these different analytical approaches for AAs determination.
Collapse
Affiliation(s)
- Sabrina Ferré
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| |
Collapse
|
5
|
|
6
|
Burton C, Ma Y. Current Trends in Cancer Biomarker Discovery Using Urinary Metabolomics: Achievements and New Challenges. Curr Med Chem 2019; 26:5-28. [PMID: 28914192 DOI: 10.2174/0929867324666170914102236] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/26/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The development of effective screening methods for early cancer detection is one of the foremost challenges facing modern cancer research. Urinary metabolomics has recently emerged as a potentially transformative approach to cancer biomarker discovery owing to its noninvasive sampling characteristics and robust analytical feasibility. OBJECTIVE To provide an overview of new developments in urinary metabolomics, cover the most promising aspects of hyphenated techniques in untargeted and targeted metabolomics, and to discuss technical and clinical limitations in addition to the emerging challenges in the field of urinary metabolomics and its application to cancer biomarker discovery. METHODS A systematic review of research conducted in the past five years on the application of urinary metabolomics to cancer biomarker discovery was performed. Given the breadth of this topic, our review focused on the five most widely studied cancers employing urinary metabolomics approaches, including lung, breast, bladder, prostate, and ovarian cancers. RESULTS As an extension of conventional metabolomics, urinary metabolomics has benefitted from recent technological developments in nuclear magnetic resonance, mass spectrometry, gas and liquid chromatography, and capillary electrophoresis that have improved urine metabolome coverage and analytical reproducibility. Extensive metabolic profiling in urine has revealed a significant number of altered metabolic pathways and putative biomarkers, including pteridines, modified nucleosides, and acylcarnitines, that have been associated with cancer development and progression. CONCLUSION Urinary metabolomics presents a transformative new approach toward cancer biomarker discovery with high translational capacity to early cancer screening.
Collapse
Affiliation(s)
- Casey Burton
- Department of Chemistry and Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO, United States
| | - Yinfa Ma
- Department of Chemistry and Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO, United States
| |
Collapse
|
7
|
Liu Y, Wang W, Jia M, Liu R, Liu Q, Xiao H, Li J, Xue Y, Wang Y, Yan C. Recent advances in microscale separation. Electrophoresis 2017; 39:8-33. [DOI: 10.1002/elps.201700271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Yuanyuan Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Weiwei Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Mengqi Jia
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Rangdong Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Qing Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Han Xiao
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Jing Li
- Unimicro (shanghai) Technologies Co., Ltd.; Shanghai P. R. China
| | - Yun Xue
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Yan Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Chao Yan
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| |
Collapse
|
8
|
Jiang Y, He MY, Zhang WJ, Luo P, Guo D, Fang X, Xu W. Recent advances of capillary electrophoresis-mass spectrometry instrumentation and methodology. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Fanali S. An overview to nano-scale analytical techniques: Nano-liquid chromatography and capillary electrochromatography. Electrophoresis 2017; 38:1822-1829. [PMID: 28256745 DOI: 10.1002/elps.201600573] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/04/2023]
Abstract
Nano-liquid chromatography (nano-LC) and CEC are microfluidic techniques mainly used for analytical purposes. They have been applied to the separation and analysis of a large number of compounds, e.g., peptides, proteins, drugs, enantiomers, antibiotics, pesticides, nutraceutical, etc. Analytes separation is carried out into capillaries containing selected stationary phase. The mobile phase is moved either by a pump (nano-LC) or by an EOF, respectively. The two tools can offer some advantages over conventional techniques, e.g., high selectivity, separation efficiency, resolution, short analysis time and consumption of low volumes of mobile phase. Flow rates in the range 50-800 nL/min are usually applied. The low flow rate reduces the chromatographic dilution increasing the mass sensitivity. Special attention must be paid in avoiding peak dispersion selecting the appropriate detector, injector and tube connection. Finally due to the low flow rate these microfluidic techniques can be easily coupled with mass spectrometry.
Collapse
Affiliation(s)
- Salvatore Fanali
- Institute of Chemical Methodologies, Italian National Research Council, Monterotondo, Italy
| |
Collapse
|
10
|
Rodrigues KT, Cieslarová Z, Tavares MFM, Simionato AVC. Strategies Involving Mass Spectrometry Combined with Capillary Electrophoresis in Metabolomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 965:99-141. [DOI: 10.1007/978-3-319-47656-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Barnes S, Benton HP, Casazza K, Cooper SJ, Cui X, Du X, Engler J, Kabarowski JH, Li S, Pathmasiri W, Prasain JK, Renfrow MB, Tiwari HK. Training in metabolomics research. I. Designing the experiment, collecting and extracting samples and generating metabolomics data. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:461-75. [PMID: 27434804 PMCID: PMC4964969 DOI: 10.1002/jms.3782] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/07/2016] [Accepted: 04/24/2016] [Indexed: 05/16/2023]
Abstract
The study of metabolism has had a long history. Metabolomics, a systems biology discipline representing analysis of known and unknown pathways of metabolism, has grown tremendously over the past 20 years. Because of its comprehensive nature, metabolomics requires careful consideration of the question(s) being asked, the scale needed to answer the question(s), collection and storage of the sample specimens, methods for extraction of the metabolites from biological matrices, the analytical method(s) to be employed and the quality control of the analyses, how collected data are correlated, the statistical methods to determine metabolites undergoing significant change, putative identification of metabolites and the use of stable isotopes to aid in verifying metabolite identity and establishing pathway connections and fluxes. The National Institutes of Health Common Fund Metabolomics Program was established in 2012 to stimulate interest in the approaches and technologies of metabolomics. To deliver one of the program's goals, the University of Alabama at Birmingham has hosted an annual 4-day short course in metabolomics for faculty, postdoctoral fellows and graduate students from national and international institutions. This paper is the first part of a summary of the training materials presented in the course to be used as a resource for all those embarking on metabolomics research. The complete set of training materials including slide sets and videos can be viewed at http://www.uab.edu/proteomics/metabolomics/workshop/workshop_june_2015.php. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stephen Barnes
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Pharmacology and Toxicology, School of Medicine University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | - Krista Casazza
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | - Xiangqin Cui
- Section on Statistical Genetics, School of Public Health University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiuxia Du
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Jeffrey Engler
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Janusz H. Kabarowski
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shuzhao Li
- Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Wimal Pathmasiri
- RTI International, Research Triangle Park, Durham, NC, 27709, USA
| | - Jeevan K. Prasain
- Department of Pharmacology and Toxicology, School of Medicine University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hemant K. Tiwari
- Section on Statistical Genetics, School of Public Health University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
12
|
Abstract
In clinical metabolomics, capillary electrophoresis-mass spectrometry (CE-MS) has become a very useful technique for the analysis of highly polar and charged metabolites in complex biologic samples. A comprehensive overview of recent developments in CE-MS for metabolic profiling studies is presented. This review covers theory, CE separation modes, capillary coatings, and practical aspects of CE-MS coupling. Attention is also given to sample pretreatment and data analysis strategies used for metabolomics. The applicability of CE-MS for clinical metabolomics is illustrated using samples ranging from plasma and urine to cells and tissues. CE-MS application to large-scale and quantitative clinical metabolomics is addressed. Conclusions and perspectives on this unique analytic strategy are presented.
Collapse
|
13
|
Zhou W, Kan W, Wang Y, Liu Y, Wang Y, Yan C. Development of Evaporative Light Scattering Detector for Capillary Electrochromatography and Capillary Liquid Chromatography. Anal Chem 2015; 87:9329-35. [DOI: 10.1021/acs.analchem.5b02024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenli Zhou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Wenbin Kan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yuhong Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yuanyuan Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yan Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Chao Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
14
|
Ramautar R, Somsen GW, de Jong GJ. CE-MS for metabolomics: Developments and applications in the period 2012-2014. Electrophoresis 2014; 36:212-24. [DOI: 10.1002/elps.201400388] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Rawi Ramautar
- Division of Analytical Biosciences; LACDR; Leiden University; Leiden The Netherlands
| | - Govert W. Somsen
- AIMMS research group BioMolecular Analysis; Division of BioAnalytical Chemistry; VU University Amsterdam; Amsterdam The Netherlands
| | - Gerhardus J. de Jong
- Biomolecular Analysis; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| |
Collapse
|