1
|
Warren CG, Dasgupta PK. Liquid phase detection in the miniature scale. Microfluidic and capillary scale measurement and separation systems. A tutorial review. Anal Chim Acta 2024; 1305:342507. [PMID: 38677834 DOI: 10.1016/j.aca.2024.342507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Microfluidic and capillary devices are increasingly being used in analytical applications while their overall size keeps decreasing. Detection sensitivity for these microdevices gains more importance as device sizes and consequently, sample volumes, decrease. This paper reviews optical, electrochemical, electrical, and mass spectrometric detection methods that are applicable to capillary scale and microfluidic devices, with brief introduction to the principles in each case. Much of this is considered in the context of separations. We do consider theoretical aspects of separations by open tubular liquid chromatography, arguably the most potentially fertile area of separations that has been left fallow largely because of lack of scale-appropriate detection methods. We also examine the theoretical basis of zone electrophoretic separations. Optical detection methods discussed include UV/Vis absorbance, fluorescence, chemiluminescence and refractometry. Amperometry is essentially the only electrochemical detection method used in microsystems. Suppressed conductance and especially contactless conductivity (admittance) detection are in wide use for the detection of ionic analytes. Microfluidic devices, integrated to various mass spectrometers, including ESI-MS, APCI-MS, and MALDI-MS are discussed. We consider the advantages and disadvantages of each detection method and compare the best reported limits of detection in as uniform a format as the available information allows. While this review pays more attention to recent developments, our primary focus has been on the novelty and ingenuity of the approach, regardless of when it was first proposed, as long as it can be potentially relevant to miniature platforms.
Collapse
Affiliation(s)
- Cable G Warren
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, United States
| | - Purnendu K Dasgupta
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, United States.
| |
Collapse
|
2
|
Li L, Song YP, Ren DD, Li TX, Gao MH, Zhou L, Zeng ZC, Pu QA. A compact and high-performance setup of capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C 4D). Analyst 2024; 149:3034-3040. [PMID: 38624147 DOI: 10.1039/d4an00354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) has the advantages of high throughput (simultaneous detection of multiple ions), high separation efficiency (higher than 105 theoretical plates) and rapid analysis capability (less than 5 min for common inorganic ions). A compact CE-C4D system is ideal for water quality control and on-site analysis. It is suitable not only for common cations (e.g. Na+, K+, Li+, NH4+, Ca2+, etc.) and anions (e.g. Cl-, SO42-, BrO3-, etc.) but also for some ions (e.g. lanthanide ions, Pb2+, Cd2+, etc.) that require complex derivatization procedures to be detected by ion chromatography (IC). However, an obvious limitation of the CE-C4D method is that its sensitivity (e.g. 0.3-1 μM for common inorganic ions) is often insufficient for trace analysis (e.g. 1 ppb or 20 nM level for common inorganic ions) without preconcentration. For this technology to become a powerful and routine analytical technique, the system should be made compact while maintaining trace analysis sensitivity. In this study, we developed an all-in-one version of the CE-C4D instrument with custom-made modular components to make it a convenient, compact and high-performance system. The system was designed using direct digital synthesis (DDS) technology to generate programmable sinusoidal waveforms with any frequency for excitation, a kilovolt high-voltage power supply for capillary electrophoresis separation, and an "effective" differential C4D cell with a low-noise circuitry for high-sensitivity detection. We characterized the system with different concentrations of Cs+, and even a low concentration of 20 nM was detectable without preconcentration. Moreover, the optimized CE-C4D setup was applied to analyse mixed ions at a trace concentration of 200 nM with excellent signal-to-noise ratios. In typical applications, the limits of detection based on the 3σ criterion (without baseline filtering) were 9, 10, 24, 5, and 12 nM for K+, Cs+, Li+, Ca2+, and Mg2+, respectively, and about 7, 6, 6 and 6 nM for Br-, ClO4-, BrO3- and SO42-, respectively. Finally, the setup was also applied for the analysis of all 14 lanthanide ions and rare-earth minerals, and it showed an improvement in sensitivity by more than 25 times.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Yun-Peng Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Dou-Dou Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Tang-Xiu Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Ming-Hui Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Lei Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Zhi-Cong Zeng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Qi-Aosheng Pu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| |
Collapse
|
3
|
Elbashir AA, Osman A, Elawad M, Ziyada AK, Aboul-Enein HY. Application of capillary electrophoresis with capacitively contactless conductivity detection for biomedical analysis. Electrophoresis 2024; 45:400-410. [PMID: 38100198 DOI: 10.1002/elps.202300216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 03/20/2024]
Abstract
The coupling of capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C4 D) has become convenient analytical method for determination of small molecules that do not possess chromogenic or fluorogenic group. The implementations of CE with C4 D in the determination of inorganic and organic ions and amino acids in biomedical field are demonstrated. Attention on background electrolyte composition, sample treatment procedures, and the utilize of multi-detection systems are described. A number of tables summarizing highly developed CE-C4 D methods and the figures of merit attained are involved. Lastly, concluding remarks and perspectives are argued.
Collapse
Affiliation(s)
- Abdalla A Elbashir
- Department, of Chemistry, College of Science, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Abdelbagi Osman
- Department of Chemical Engineering, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Mohammed Elawad
- Department of Chemistry, Faculty of Science, Omdurman Islamic University, Omdurman, Sudan
| | - Abobakr K Ziyada
- Department of General Studies, Jubail Industrial College, Jubail Industrial City, Saudi Arabia
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Division of Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
4
|
Alatawi H, Hogan A, Alabalawi I, O'Sullivan-Carroll E, Wang Y, Moore E. Fast determination of paracetamol and its hydrolytic degradation product p-aminophenol by capillary and microchip electrophoresis with contactless conductivity detection. Electrophoresis 2021; 43:857-864. [PMID: 34936709 DOI: 10.1002/elps.202100347] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022]
Abstract
Paracetamol (PAC) is one of the most extensively used analgesics and antipyretic drugs to treat mild and moderate pain. P-aminophenol (PAP), the main hydrolytic degradation product of PAC, can be found in environmental water. Recently, capillary electrophoresis (CE) has been developed for the detection of a wide variety of chemical substances. The purpose of this study is to develop a simple and fast method for the detection and separation of PAC and its main hydrolysis product PAP, using CE and microchip electrophoresis (ME) with capacitively coupled contactless conductivity detection (C4 D). The determination of these compounds using ME with C4 D is being reported for the first time. The separation was run for all analytes using a background electrolyte (BGE) (20 Mm β-alanine, pH 11) containing 14% (v/v) methanol. The RSDs obtained for migration time were less than 0.05%, and RSDs obtained for peak area were less than 3%. The detection limits (S/N = 3) that were achieved ranged from 0.3 to 0.6 mg/L without sample preconcentration. The presented method showed rapid analysis time (less than 1 min), high efficiency and precision, low cost, and a significant decrease in the consumption of reagents. The microchip system has proved to be an excellent analytical technique for fast and reliable environmental applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hanan Alatawi
- School of Chemistry, University College Cork, Cork, Ireland
| | - Anna Hogan
- School of Chemistry, University College Cork, Cork, Ireland
| | | | | | | | - Eric Moore
- School of Chemistry, University College Cork, Cork, Ireland.,Tyndall National Institute, Cork, Ireland
| |
Collapse
|
5
|
Jaramillo EA, Ferreira Santos MS, Noell AC, Mora MF. Capillary electrophoresis method for analysis of inorganic and organic anions related to habitability and the search for life. Electrophoresis 2021; 42:1956-1964. [PMID: 34287988 DOI: 10.1002/elps.202100134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/08/2022]
Abstract
In situ missions of exploration require analytical methods that are capable of detecting a wide range of molecular targets in complex matrices without a priori assumptions of sample composition. Furthermore, these methods should minimize the number of reagents needed and any sample preparation steps. We have developed a method for the detection of metabolically relevant inorganic and organic anions that is suitable for implementation on in situ spaceflight missions. Using 55 mM acetic acid, 50 mM triethylamine, and 5% glycerol, more than 21 relevant anions are separated in less than 20 min. The method is robust to sample ionic strength, tolerating high concentrations of background salts (up to 900 mM NaCl and 300 mM MgSO4 ). This is an important feature for future missions to ocean worlds. The method was validated using a culture of Escherichia coli and with high salinity natural samples collected from Mono Lake, California.
Collapse
Affiliation(s)
| | | | - Aaron C Noell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Maria F Mora
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
6
|
Graf HG, Rudisch BM, Manegold J, Huhn C. Advancements in capacitance-to-digital converter-based C 4 D technology for detection in capillary electrophoresis using amplified excitation voltages and comparison to classical and open-source C 4 Ds. Electrophoresis 2021; 42:1306-1316. [PMID: 33710630 DOI: 10.1002/elps.202000394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 11/05/2022]
Abstract
This work introduces new hardware configurations for a capacitively coupled contactless conductivity detector (C4 D) based on capacitance-to-digital conversion (CDC) technology for CE. The aim was to improve sensitivity, handling, price, and portability of CDC-based C4 D detectors (CDCD) to reach LODs similar to classic C4 Ds with more sophisticated electric circuits. To achieve this, a systematic study on the CDCDs was carried out including a direct comparison to already established C4 D setups. Instrumental setups differing in electrode lengths, measurement modes, and amplification of excitation voltages were investigated to achieve LODs for alkali metal ions of 4 to 12 μM, similar to LODs obtained by classic C4 D setups. Lowest LODs were achieved for a setup with two 10 mm electrodes at a distance of 0.2 mm and an excitation voltage of 24 V. The detection head was exceptionally lightweight with only 2.6 g and covered only 20 mm of the capillary on total. This allowed the use of multiple detectors along the separation path to enable spatial tracking of analytes during separation. The entirely battery-powered detector assembly weighs less than 200 g, and the data are transmitted wirelessly for possible portable applications. The freely accessible hardware and software were optimized for fully automated measurements with real time data plotting and allowed handling multidetector setups. The new developments were applied to quantify the potassium salt of glyphosate in its herbicide formulation.
Collapse
Affiliation(s)
- Hannes Georg Graf
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | | | - Johanna Manegold
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Hata K, Nonaka N, Sato N, Kaneta T. Simultaneous separation of 17 anions by capillary electrophoresis with the addition of an organic solvent. Electrophoresis 2021; 42:1317-1322. [PMID: 33724495 DOI: 10.1002/elps.202100014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/06/2022]
Abstract
Seventeen inorganic and organic anions, that normally are insufficiently separated via ion chromatography, were completely separated by the addition of an organic solvent to a solution of BGE combined with an adjustment of the apparent pH via CE in combination with indirect UV absorbance detection. Methanol, ethanol, and acetonitrile were examined for their utility in manipulating the selective separation of anions. Methanol and acetonitrile were better modifiers than ethanol at enhancing the resolution of anions comigrating in an aqueous solution of BGE. Methanol was selected as the modifier that provided the largest separation window that could achieve a complete separation of the target analytes. Via the use of methanol, manipulation of the selectivity between inorganic anions and that between inorganic and organic anions was enhanced, but the separation between organic anions remained difficult when only methanol was used. By varying the apparent pH of the BGE in the presence of 10% v/v methanol, however, the separation selectivity between organic anions was substantially improved. Eventually, 7 inorganic and 10 organic anions were simultaneously separated using BGE at a pH of 6.3 in the presence of 10% v/v methanol.
Collapse
Affiliation(s)
- Kazuki Hata
- Inorganic Analysis Laboratories, Toray Research Center, Inc., Otsu, Shiga, Japan
| | - Noriko Nonaka
- Inorganic Analysis Laboratories, Toray Research Center, Inc., Otsu, Shiga, Japan
| | - Nobuyuki Sato
- Inorganic Analysis Laboratories, Toray Research Center, Inc., Otsu, Shiga, Japan
| | - Takashi Kaneta
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Okayama, Japan
| |
Collapse
|
8
|
Development of a Mobile Analytical Chemistry Workstation Using a Silicon Electrochromatography Microchip and Capacitively Coupled Contactless Conductivity Detector. MICROMACHINES 2021; 12:mi12030239. [PMID: 33673410 PMCID: PMC7996726 DOI: 10.3390/mi12030239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022]
Abstract
Capillary electrochromatography (CEC) is a separation technique that hybridizes liquid chromatography (LC) and capillary electrophoresis (CE). The selectivity offered by LC stationary phase results in rapid separations, high efficiency, high selectivity, minimal analyte and buffer consumption. Chip-based CE and CEC separation techniques are also gaining interest, as the microchip can provide precise on-chip control over the experiment. Capacitively coupled contactless conductivity detection (C4D) offers the contactless electrode configuration, and thus is not in contact with the solutions under investigation. This prevents contamination, so it can be easy to use as well as maintain. This study investigated a chip-based CE/CEC with C4D technique, including silicon-based microfluidic device fabrication processes with packaging, design and optimization. It also examined the compatibility of the silicon-based CEC microchip interfaced with C4D. In this paper, the authors demonstrated a nanofabrication technique for a novel microchip electrochromatography (MEC) device, whose capability is to be used as a mobile analytical equipment. This research investigated using samples of potassium ions, sodium ions and aspirin (acetylsalicylic acid).
Collapse
|
9
|
Huang W. Open tubular ion chromatography: A state-of-the-Art review. Anal Chim Acta 2021; 1143:210-224. [PMID: 33384120 DOI: 10.1016/j.aca.2020.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 11/19/2022]
Abstract
This review summarizes the progress in open tubular ion chromatography (OTIC) over the period from 1981 to 2020. Although OTIC columns provide superior column efficiency, require very little sample volumes, and consume a minimum level of eluents compared to regular packed columns, not many reports can be found from the literature mainly due to the difficulties in the preparation of OTIC columns and the harsh system requirements, such as pL-nL injections and extremely small detection volumes. However, technical advances, e.g., capacitively coupled contactless conductivity detectors (C4Ds), hydroxide eluent compatible polymer-based OTIC columns, electrodialytic capillary suppressors, and nanovolume gas-free hydroxide eluent generators (EGs), have removed the obstacles to OTIC. As such, in this review, the author focused on the development of the key components in an OTIC system from the perspective of instrument development. A brief revisit of open tubular (OT) column theory is first presented, followed by a discussion of the system configuration and component development. Attention is given to the advances in the development of the suppressed open tubular ion chromatography (SOTIC) system.
Collapse
Affiliation(s)
- Weixiong Huang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, Hubei, China.
| |
Collapse
|
10
|
Hauser PC, Kubáň P. Capacitively coupled contactless conductivity detection for analytical techniques - Developments from 2018 to 2020. J Chromatogr A 2020; 1632:461616. [PMID: 33096295 DOI: 10.1016/j.chroma.2020.461616] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022]
Abstract
The developments of analytical contactless conductivity measurements based on capacitive coupling over the two years from mid-2018 to mid-2020 are covered. This mostly concerns applications of the technique in zone electrophoresis employing conventional capillaries and to a lesser extent lab-on-chip devices. However, its use for the detection in several other flow-based analytical methods has also been reported. Detection of bubbles and measurements of flow rates in two-phase flows are also recurring themes. A few new applications in stagnant aqueous samples, e.g. endpoint detection in titrations and measurement on paper-based devices, have been reported. Some variations of the design of the measuring cells and their read-out electronics have also been described.
Collapse
Affiliation(s)
- Peter C Hauser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056, Basel, Switzerland.
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic.
| |
Collapse
|
11
|
Elbashir AA, Elgorashe REE, Alnajjar AO, Aboul-Enein HY. Application of Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection (CE-C 4D): 2017-2020. Crit Rev Anal Chem 2020; 52:535-543. [PMID: 32835492 DOI: 10.1080/10408347.2020.1809340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Capacitively coupled contactless conductivity detection (C4D) has emerged as influential to detect analytes that do not have chromogenic or fluorogenic functional group. Since our last review several new capillary electrophoresis (CE) methods coupled with (CE-C4D) have been communicated. The aim of this review is to give an update of the almost all the new applications of CE-C4D in the field of pharmaceutical, food and biomedical analysis covering the period from 2017 to April 2020. The utilization of CE with C4D in the areas of pharmaceutical, food and biomedical analysis is presented. Finally, concluding remarks and outlooks are discussed.
Collapse
Affiliation(s)
- Abdalla Ahmed Elbashir
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | | | - Ahmed O Alnajjar
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
12
|
Ferreira Santos MS, Noell AC, Mora MF. Methods for onboard monitoring of silver biocide during future human space exploration missions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3205-3209. [PMID: 32930182 DOI: 10.1039/d0ay00518e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silver ions (Ag+) have been proposed as a biocide to treat the water in NASA's next generation of human space exploration vehicles/habitats. One advantage of Ag+ is that it is effective as a biocide in a range (200 to 500 ppb) safe for human consumption. So, monitoring Ag+ is essential to ensure the safety and health of the crew. Here we present two analytical methods based on capillary electrophoresis and capacitively coupled contactless conductivity detection (CE-C4D) to address the need to monitor Ag+ levels in water. Using 5 M acetic acid as a background electrolyte (BGE), 100 ppb of Ag+ could be detected in a simulant of the International Space Station (ISS) water. In addition to Ag+, other inorganic cations (K+, Ca2+, Na+, Mg2+, Ni2+, and Zn2+) frequently found in the ISS potable water can be detected simultaneously using this BGE in less than 4.5 min. By using a BGE composed of 0.5 M acetic acid, levels of Ag+ as low as 25 ppb could be detected in the ISS water simulant in less than 2.5 min. Although in this condition none of the other cations interfered with the detection of Ag+, some of them co-migrated, which could prevent obtaining additional information about the sample composition.
Collapse
Affiliation(s)
- Mauro Sergio Ferreira Santos
- Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 302-306L, 4800 Oak Grove Dr., Pasadena, California 91109, USA.
| | - Aaron Craig Noell
- Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 302-306L, 4800 Oak Grove Dr., Pasadena, California 91109, USA.
| | - Maria Fernanda Mora
- Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 302-306L, 4800 Oak Grove Dr., Pasadena, California 91109, USA.
| |
Collapse
|
13
|
Hamidi S. Recent Progresses in Sensitive Determination of Drugs of Abuse by Capillary Electrophoresis. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666190115153531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Today, “drugs of abuse” pose serious social problems such as many crimes,
medical treatment costs, and economic repercussions. Several worldwide clinical laboratories use analytical
separation methods to analyze their patient samples for drugs and poisons. In this way, they
provide qualitative and quantitative data on the substances in various biological matrices (e.g., urine,
plasma or serum, saliva, and breath).
Methods:
An extensive review of the published articles indicates that the use of Capillary Electrophoresis
(CE) coupled with sensitivity enhancing methods is a very attractive area of interest in the
assay of drugs of abuse.
Results:
This review was prepared to have a comprehensive study on applications of sensitivity enhancing
methods on the determination of drugs of abuse especially from 2007 to present. The sample
preconcentration approaches almost address all methods from online preconcentration (both electrophoretic
and chromatographic-based methods) to offline preconcentration. Furthermore, detection
system modification and capillary column fabrications were investigated in order to increase the detection
sensitivity of complex samples in CE.
Conclusion:
The present review summarizes the most recent developments in the detection of drugs
of abuse using CE. Although CE still has a limitation in sensitive detection, several publications in
recent years have proposed valuable methods to overcome this problem.
Collapse
Affiliation(s)
- Samin Hamidi
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Özçelik S, Öztekin N, Kıykım E, Cansever MŞ, Aktuğlu‐Zeybek AÇ. Capillary electrophoresis with capacitively coupled contactless conductivity detection for the determination of urinary ethylmalonic acid for the diagnosis of ethylmalonic aciduria. J Sep Sci 2020; 43:1365-1371. [DOI: 10.1002/jssc.201901044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/30/2019] [Accepted: 01/16/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Sirun Özçelik
- Department of ChemistryTechnical University of Istanbul Istanbul Turkey
| | - Nevin Öztekin
- Department of ChemistryTechnical University of Istanbul Istanbul Turkey
| | - Ertuğrul Kıykım
- Cerrahpaşa Medical FacultyDivision of Nutrition and MetabolismDepartment of PediatricsIstanbul University‐Cerrahpaşa Istanbul Turkey
| | | | - Ayşe Çiğdem Aktuğlu‐Zeybek
- Cerrahpaşa Medical FacultyDivision of Nutrition and MetabolismDepartment of PediatricsIstanbul University‐Cerrahpaşa Istanbul Turkey
| |
Collapse
|
15
|
Zhu HT, Chen Y, Xiong YF, Xu F, Lu YQ. A Flexible Wireless Dielectric Sensor for Noninvasive Fluid Monitoring. SENSORS 2019; 20:s20010174. [PMID: 31892240 PMCID: PMC6982699 DOI: 10.3390/s20010174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 01/28/2023]
Abstract
A flexible wireless dielectric sensor is presented here for noninvasively monitoring the permittivity and conductivity of fluids, based on resistor–inductor–capacitor (RLC) resonant circuit and capacitively coupled contactless conductivity detection (C4D) technique. The RLC sensor consists of one single-turn inductor and one interdigital capacitor. The resonant frequency of the device is sensitive to the surrounding environment, thanks to the electric field leaked out between the interdigital capacitor electrodes. Through the high-frequency structure simulator (HFSS) simulation, and experiments on ethanol/water solutions and NaCl solutions, it was confirmed that a fluid’s permittivity and conductivity could be detected by the return loss curve (S11). With great repeatability and stability, the proposed sensor has potential for broad applications, especially in wearable low-cost smart devices.
Collapse
|
16
|
Kraikaew P, Pluangklang T, Ratanawimarnwong N, Uraisin K, Wilairat P, Mantim T, Nacapricha D. Simultaneous determination of ethanol and total sulfite in white wine using on-line cone reservoirs membraneless gas-liquid separation flow system. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Fuiko R, Saracevic E, Koenka IJ, Hauser PC, Krampe J. Capillary electrophoresis for continuous nitrogen quantification in wastewater treatment processes. Talanta 2019; 195:366-371. [DOI: 10.1016/j.talanta.2018.11.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
|
18
|
He Y, Ye X, Ji H, Huang Z, Wang B, Li H. A new method for online monitoring of boiling process in mini-channels. AIChE J 2019. [DOI: 10.1002/aic.16528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuchen He
- State Key Laboratory of Industrial Control Technology; College of Control Science and Engineering, Zhejiang University; Hangzhou, 310027 P.R. China
| | - Xin Ye
- State Key Laboratory of Industrial Control Technology; College of Control Science and Engineering, Zhejiang University; Hangzhou, 310027 P.R. China
| | - Haifeng Ji
- State Key Laboratory of Industrial Control Technology; College of Control Science and Engineering, Zhejiang University; Hangzhou, 310027 P.R. China
| | - Zhiyao Huang
- State Key Laboratory of Industrial Control Technology; College of Control Science and Engineering, Zhejiang University; Hangzhou, 310027 P.R. China
| | - Baoliang Wang
- State Key Laboratory of Industrial Control Technology; College of Control Science and Engineering, Zhejiang University; Hangzhou, 310027 P.R. China
| | - Haiqing Li
- State Key Laboratory of Industrial Control Technology; College of Control Science and Engineering, Zhejiang University; Hangzhou, 310027 P.R. China
| |
Collapse
|
19
|
Chagas CLS, Cardoso TMG, Coltro WKT. Paper-Based Electrophoresis Microchip as a Powerful Tool for Bioanalytical Applications. Methods Mol Biol 2019; 1906:133-142. [PMID: 30488391 DOI: 10.1007/978-1-4939-8964-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This chapter describes the development of paper-based microchip electrophoresis (pME) devices for the separation of clinically relevant compounds. pME were fabricated by laser cut and thermal lamination process using polyester pouches. In addition, hand-drawn pencil electrodes were integrated to the device to perform capacitively coupled contactless conductivity detection (C4D). Finished device costs less than US$ 0.10 and did not require either sophisticated instrumentation or clean room facilities. Furthermore, pME is lightweight, easy to handle, flexible, and robust. pME-C4D device revealed an excellent capacity to separate BSA and creatinine in less than 150 s with baseline resolution. The device proposed in this chapter has proven to be a good alternative as a platform for the diagnosis of diseases from renal disorders such as diabetes mellitus and heart disease.
Collapse
Affiliation(s)
- Cyro L S Chagas
- Institute of Chemistry, Federal University of Goias, Goiania, GO, Brazil
| | - Thiago M G Cardoso
- Institute of Chemistry, Federal University of Goias, Goiania, GO, Brazil
| | - Wendell K T Coltro
- Institute of Chemistry, Federal University of Goias, Goiania, GO, Brazil.
| |
Collapse
|
20
|
Rapid and Sensitive Determination of Branched-Chain Amino Acids in Human Plasma by Capillary Electrophoresis with Contactless Conductivity Detection for Physiological Studies. Methods Mol Biol 2019; 1972:15-24. [PMID: 30847781 DOI: 10.1007/978-1-4939-9213-3_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Capillary electrophoresis (CE) with contactless conductivity detection (C4D) represents a strong tool for determining amino acids in clinical samples. This chapter provides detailed instructions for CE/C4D determination of the branched-chain amino acids (BCAAs) valine, isoleucine, and leucine in human plasma, which can be readily employed in physiological studies. Baseline separation of all the BCAAs is achieved on a short separation length equal to 18 cm in optimized background electrolyte consisting of 3.2 M acetic acid dissolved in 20% v/v methanol with addition of 1.0% v/v INST-coating solution. The analysis time does not exceed 3 min and the limit of detection is 0.4 μM for all BCAAs. The pretreatment of human plasma is very simple and is based on fourfold plasma dilution by acetonitrile and subsequent filtration. Only 50 μL of plasma is used for the analysis. The high sensitivity of the CE/C4D method is achieved by injecting a large volume of sample, combined with application of negative pressure to flush the acetonitrile zone out of the capillary.
Collapse
|
21
|
CHANG SY, LEE MY, WU CC. A Microchip Electrophoresis Device Integrated with the Top–bottom Antiparallel Electrodes of Indium Tin Oxide to Detect Inorganic Ions by Contact Conductivity. ANAL SCI 2018; 34:1231-1236. [DOI: 10.2116/analsci.18p115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Sheng-Yao CHANG
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University
| | - Ming-Yuan LEE
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University
| | - Ching-Chou WU
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University
| |
Collapse
|
22
|
Kubáň P, Hauser PC. Contactless conductivity detection for analytical techniques: Developments from 2016 to 2018. Electrophoresis 2018; 40:124-139. [PMID: 30010203 DOI: 10.1002/elps.201800248] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 01/05/2023]
Abstract
The publications concerning capacitively coupled contactless conductivity detection for the 2-year period from mid-2016 to mid-2018 are covered in this update to the earlier reviews of the series. Relatively few reports on fundamental investigations or new designs have appeared in the literature in this time interval, but the development of new applications with the detection method has continued strongly. Most often, contactless conductivity measurements have been employed for the detection of inorganic or small organic ions in conventional capillary electrophoresis, less often in microchip electrophoresis. A number of other uses, such as detection in chromatography or the gauging of bubbles in streams have also been reported.
Collapse
Affiliation(s)
- Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Peter C Hauser
- Department of Chemistry, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
20th anniversary of axial capacitively coupled contactless conductivity detection in capillary electrophoresis. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Ishikawa AA, da Silva RM, Santos MSF, da Costa ET, Sakamoto AC, Carrilho E, de Gaitani CM, Garcia CD. Determination of topiramate by capillary electrophoresis with capacitively-coupled contactless conductivity detection: A powerful tool for therapeutic monitoring in epileptic patients. Electrophoresis 2018; 39:2598-2604. [DOI: 10.1002/elps.201800046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/27/2018] [Accepted: 03/17/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Aline Akemi Ishikawa
- Department of Chemistry; Clemson University; Clemson SC USA
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto SP Brazil
- Instituto de Quimica de São Carlos; Universidade de São Paulo; São Carlos SP Brazil
| | - Rodrigo Moreira da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto SP Brazil
| | - Mauro Sérgio Ferreira Santos
- Department of Chemistry; Clemson University; Clemson SC USA
- Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | | | - Americo Ceiki Sakamoto
- Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto SP Brazil
| | - Emanuel Carrilho
- Instituto de Quimica de São Carlos; Universidade de São Paulo; São Carlos SP Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica - INCTBio; Campinas SP Brazil
| | | | | |
Collapse
|
25
|
Huang Z, Yang M, You H, Xie Y. Concurrent determination and separation of inorganic cations and anions in microchip electrophoresis with precisely controlled high-voltage. Electrophoresis 2018; 39:1802-1807. [PMID: 29676805 DOI: 10.1002/elps.201800077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 11/10/2022]
Abstract
An improved method for the concurrent determination and separation of cations and anions by microchip electrophoresis with capacitively coupled contactless conductivity detection (ME-C4 D) is described. Two kinds of microchip structures were designed. The first microchip has a long bent separation channel. And for the defects of the first microchip, the second microchip with a Y-type separation channel has been proposed. The background electrolyte (BGE) composed of 20 mm His/MES and 0.01 mm CTAB was optimized for inhibiting the electroosmotic flow (EOF). Due to the low electroosmotic flow, the cations and anions migrate in opposite directions and can be separated from each other. With the precisely controlled high-voltage, cations and anions can be migrated in microchannels according to our requirements and sequentially detected by a C4 D detector built in-house. Samples containing K+ , Na+ , Li+ , Cl- , F- and PO43- were analyzed simultaneously in a single run (within 140 s) by both methods. The reproducibility obtained by both methods remained below 5% for migration time and within 3.5-9.1% for peak areas. The proposed concurrent determination methods are inexpensive, simple, fast, ease of operation, high degree of integration.
Collapse
Affiliation(s)
- Zhe Huang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, P. R. China
- Department of Instruments Science and Engineering, University of Science and Technology of China, Hefei, P. R. China
| | - Mingpeng Yang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, P. R. China
- Department of Instruments Science and Engineering, University of Science and Technology of China, Hefei, P. R. China
| | - Hui You
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, P. R. China
- Department of Instruments Science and Engineering, University of Science and Technology of China, Hefei, P. R. China
| | - Yang Xie
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, P. R. China
- Department of Instruments Science and Engineering, University of Science and Technology of China, Hefei, P. R. China
| |
Collapse
|
26
|
Zhao S, Yin D, Du H, Tian X, Chen Y, Zhang W, Yu A, Zhang S. Determination of oxalate and citrate in urine by capillary electrophoresis using solid-phase extraction and capacitively coupled contactless conductivity based on an improved mini-cell. J Sep Sci 2018; 41:2623-2631. [DOI: 10.1002/jssc.201701432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Shengnan Zhao
- College of Chemistry & Molecular Engineering; Zhengzhou University; Zhengzhou P. R. China
| | - Dan Yin
- College of Chemistry & Molecular Engineering; Zhengzhou University; Zhengzhou P. R. China
| | - Huifang Du
- College of Chemistry & Molecular Engineering; Zhengzhou University; Zhengzhou P. R. China
| | - Xiangyu Tian
- First Affiliated Hospital of Zhengzhou University; Zhengzhou P. R. China
| | - Yanlong Chen
- College of Chemistry & Molecular Engineering; Zhengzhou University; Zhengzhou P. R. China
| | - Wenfen Zhang
- College of Chemistry & Molecular Engineering; Zhengzhou University; Zhengzhou P. R. China
| | - Ajuan Yu
- College of Chemistry & Molecular Engineering; Zhengzhou University; Zhengzhou P. R. China
| | - Shusheng Zhang
- College of Chemistry & Molecular Engineering; Zhengzhou University; Zhengzhou P. R. China
| |
Collapse
|
27
|
Tributyl phosphate assisted hollow-fiber liquid-phase microextraction of short-chain fatty acids in microbial degradation fluid using capillary electrophoresis-contactless coupled conductivity detection. J Pharm Biomed Anal 2018; 154:191-197. [PMID: 29550708 DOI: 10.1016/j.jpba.2018.02.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 12/26/2022]
Abstract
A tributyl phosphate assisted hollow-fiber liquid-phase microextraction coupled with capillary electrophoresis-contactless coupled conductivity detection (HF-LPME/CE-C4D) method has been developed for trace analysis of common short-chain fatty acids (SCFAs) without derivatization. Under the optimum conditions, ten SCFAs including a pair of isomers were well separated from their homologous FAs and the main coexisting inorganic anions within 40 min. Tributyl phosphate assisted HF-LPME produced excellent purification and enrichment for the model sample with high-salt matrix, microbial degradation fluid, and the limits of detection could reach 0.072-0.67 ng/mL (S/N = 3). Owing to its high sensitivity, good linearity, and acceptable recovery, this proposed method provided a sensitive and environment-friendly alternative for trace analysis of SCFAs in complicated samples.
Collapse
|
28
|
Boublík M, Riesová M, Dubský P, Gaš B. Enhancement of the conductivity detection signal in capillary electrophoresis systems using neutral cyclodextrins as sweeping agents. Electrophoresis 2018; 39:1390-1398. [DOI: 10.1002/elps.201800027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Milan Boublík
- Faculty of Science; Department of Physical and Macromolecular Chemistry; Charles University in Prague; Prague Czech Republic
| | - Martina Riesová
- Faculty of Science; Department of Physical and Macromolecular Chemistry; Charles University in Prague; Prague Czech Republic
| | - Pavel Dubský
- Faculty of Science; Department of Physical and Macromolecular Chemistry; Charles University in Prague; Prague Czech Republic
| | - Bohuslav Gaš
- Faculty of Science; Department of Physical and Macromolecular Chemistry; Charles University in Prague; Prague Czech Republic
| |
Collapse
|
29
|
Nakatani N, Mosqueda A, Cabot JM, Rodriguez ES, Yoshikawa K, Paull B. Rapid screening of inorganic and organic anions in liquid by-products from hydrothermal treatment of biomass by capillary electrophoresis. Electrophoresis 2018; 39:1014-1020. [DOI: 10.1002/elps.201700366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Nobutake Nakatani
- Department of Environmental and Symbiotic Science; College of Agriculture; Food and Environment Sciences; Rakuno Gakuen University; Ebetsu Hokkaido Japan
- Australian Centre for Research on Separation Science; School of Physical Sciences; University of Tasmania; Hobart Tasmania Australia
| | - Alexander Mosqueda
- Department of Transdisciplinary Science and Engineering; Tokyo Institute of Technology; Yokohama Kanagawa Japan
| | - Joan Marc Cabot
- Australian Centre for Research on Separation Science; School of Physical Sciences; University of Tasmania; Hobart Tasmania Australia
- ARC Centre of Excellence for Electromaterials Science; School of Physical Sciences; University of Tasmania; Hobart Tasmania Australia
| | - Estrella Sanz Rodriguez
- Australian Centre for Research on Separation Science; School of Physical Sciences; University of Tasmania; Hobart Tasmania Australia
| | - Kunio Yoshikawa
- Department of Transdisciplinary Science and Engineering; Tokyo Institute of Technology; Yokohama Kanagawa Japan
| | - Brett Paull
- Australian Centre for Research on Separation Science; School of Physical Sciences; University of Tasmania; Hobart Tasmania Australia
- ARC Centre of Excellence for Electromaterials Science; School of Physical Sciences; University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|
30
|
Sensitive Simultaneous Determination of Synthetic Food Colorants in Preserved Fruit Samples by Capillary Electrophoresis with Contactless Conductivity Detection. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-017-1141-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Zhu Q, Scriba GK. Analysis of small molecule drugs, excipients and counter ions in pharmaceuticals by capillary electromigration methods – recent developments. J Pharm Biomed Anal 2018; 147:425-438. [DOI: 10.1016/j.jpba.2017.06.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022]
|
32
|
Shih TT, Lee HL, Chen SC, Kang CY, Shen RS, Su YA. Rapid analysis of traditional Chinese medicinePinellia ternataby microchip electrophoresis with electrochemical detection. J Sep Sci 2017; 41:740-746. [DOI: 10.1002/jssc.201700901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Tsung-Ting Shih
- Material and Chemical Research Laboratories; Industrial Technology Research Institute; Hsinchu Taiwan
| | - Hui-Ling Lee
- Department of Chemistry; Fu Jen Catholic University; New Taipei City Taiwan
| | - Show-Chuen Chen
- Department of Chemistry; Fu Jen Catholic University; New Taipei City Taiwan
| | - Chih-Yuan Kang
- Department of Chemistry; Fu Jen Catholic University; New Taipei City Taiwan
| | - Ren-Shang Shen
- Department of Chemistry; Fu Jen Catholic University; New Taipei City Taiwan
| | - Yi-An Su
- Material and Chemical Research Laboratories; Industrial Technology Research Institute; Hsinchu Taiwan
| |
Collapse
|
33
|
Wang Y, Kong J, Chen Z, Luo D, Ye J, Chu Q. Determination of Major Sialic Acids in Dairy Products by Electrophoretic Stacking Technology with Contactless Conductivity Detection. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1082-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2015-mid 2017). Electrophoresis 2017; 39:209-234. [PMID: 28836681 DOI: 10.1002/elps.201700295] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
The review brings a comprehensive overview of recent developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) to analysis, microscale isolation, purification, and physicochemical and biochemical characterization of peptides in the years 2015, 2016, and ca. up to the middle of 2017. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis (sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, and detection) are described. New developments in particular CE and CEC methods are presented and several types of their applications to peptide analysis are reported: qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC methods to provide important physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
35
|
Phillips TM. Recent advances in CE and microchip-CE in clinical applications: 2014 to mid-2017. Electrophoresis 2017; 39:126-135. [PMID: 28853177 DOI: 10.1002/elps.201700283] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 11/11/2022]
Abstract
CE and microchip CE (ME) are powerful tools for the analysis of a number of different analytes and have been applied to a variety of clinical fields and human samples. This review will present an overview of the most recent applications of these techniques to different areas of clinical medicine during the period of 2014 to mid-2017. CE and ME have been applied to clinical chemistry, drug detection and monitoring, hematology, infectious diseases, oncology, endocrinology, neonatology, nephrology, and genetic screening. Samples examined range from serum, plasma, and urine to lest utilized materials such as tears, cerebral spinal fluid, sweat, saliva, condensed breath, single cells, and biopsy tissue. Examples of clinical applications will be given along with the various detection systems employed.
Collapse
Affiliation(s)
- Terry M Phillips
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
36
|
Marra MC, Cunha RR, Muñoz RAA, Batista AD, Richter EM. Single-run capillary electrophoresis method for the fast simultaneous determination of amoxicillin, clavulanate, and potassium. J Sep Sci 2017; 40:3557-3562. [DOI: 10.1002/jssc.201700478] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Mariana C. Marra
- Instituto de Química; Universidade Federal de Uberlândia; Uberlândia Brazil
| | - Rafael R. Cunha
- Instituto de Química; Universidade Federal de Uberlândia; Uberlândia Brazil
| | | | - Alex D. Batista
- Instituto de Química; Universidade Federal de Uberlândia; Uberlândia Brazil
| | - Eduardo M. Richter
- Instituto de Química; Universidade Federal de Uberlândia; Uberlândia Brazil
| |
Collapse
|
37
|
Le THH, Nguyen TQH, Tran CS, Vu TT, Nguyen TL, Cao VH, Ta TT, Pham TNM, Nguyen TAH, Mai TD. Screening determination of food additives using capillary electrophoresis coupled with contactless conductivity detection: A case study in Vietnam. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Vu AP, Nguyen TN, Do TT, Doan TH, Ha TH, Ta TT, Nguyen HL, Hauser PC, Nguyen TAH, Mai TD. Clinical screening of paraquat in plasma samples using capillary electrophoresis with contactless conductivity detection: Towards rapid diagnosis and therapeutic treatment of acute paraquat poisoning in Vietnam. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:111-117. [PMID: 28609698 DOI: 10.1016/j.jchromb.2017.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
Abstract
The employment of a purpose-made capillary electrophoresis (CE) instrument with capacitively coupled contactless conductivity detection (C4D) as a simple and cost-effective solution for clinical screening of paraquat in plasma samples for early-stage diagnosis of acute herbicide poisoning is reported. Paraquat was determined using an electrolyte composed of 10mM histidine adjusted to pH 4 with acetic acid. A detection limit of 0.5mg/L was achieved. Good agreement between results from CE-C4D and the confirmation method (HPLC-UV) was obtained, with relative errors for the two pairs of data better than 20% for 31 samples taken from paraquat-intoxicated patients. The results were used by medical doctors for identification and prognosis of acute paraquat poisoning cases. The objective of the work is the deployment of the developed approach in rural areas in Vietnam as a low-cost solution to reduce the mortality rate due to accidental or suicidal ingestion of paraquat.
Collapse
Affiliation(s)
- Anh Phuong Vu
- Poison Control Center, Bach Mai Hospital, 78 Giai Phong road, Dong Da, Hanoi, Viet Nam; Department of Analytical Chemistry, Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi - 19 Le Thanh Tong, Hanoi, Viet Nam(1)
| | - Thi Ngan Nguyen
- Poison Control Center, Bach Mai Hospital, 78 Giai Phong road, Dong Da, Hanoi, Viet Nam; Department of Analytical Chemistry, Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi - 19 Le Thanh Tong, Hanoi, Viet Nam(1)
| | - Thi Trang Do
- Poison Control Center, Bach Mai Hospital, 78 Giai Phong road, Dong Da, Hanoi, Viet Nam; Department of Analytical Chemistry, Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi - 19 Le Thanh Tong, Hanoi, Viet Nam(1)
| | - Thu Ha Doan
- Poison Control Center, Bach Mai Hospital, 78 Giai Phong road, Dong Da, Hanoi, Viet Nam
| | - Tran Hung Ha
- Poison Control Center, Bach Mai Hospital, 78 Giai Phong road, Dong Da, Hanoi, Viet Nam
| | - Thi Thao Ta
- Department of Analytical Chemistry, Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi - 19 Le Thanh Tong, Hanoi, Viet Nam(1)
| | - Hung Long Nguyen
- Vietnam Food Administration, Ministry of Health, 138A Giang Vo, Ba Đinh, Hanoi, Viet Nam
| | - Peter C Hauser
- University of Basel, Department of Chemistry, Spitalstrasse 51, 4056 Basel, Switzerland
| | - Thi Anh Huong Nguyen
- Department of Analytical Chemistry, Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi - 19 Le Thanh Tong, Hanoi, Viet Nam(1).
| | - Thanh Duc Mai
- PNAS, Institut Galien de Paris-Sud, Faculté de Pharmacie, Université Paris-Sud, CNRS, 5 rue JB Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
39
|
Saetear P, Chamieh J, Kammer MN, Manuel TJ, Biron JP, Bornhop DJ, Cottet H. Taylor Dispersion Analysis of Polysaccharides Using Backscattering Interferometry. Anal Chem 2017; 89:6710-6718. [DOI: 10.1021/acs.analchem.7b00946] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Joseph Chamieh
- IBMM, Univ. Montpellier,
CNRS, ENSCM, Montpellier, France
| | - Michael N. Kammer
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- The
Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Thomas J. Manuel
- Department
of Agricultural and Biological Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| | | | - Darryl J. Bornhop
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- The
Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hervé Cottet
- IBMM, Univ. Montpellier,
CNRS, ENSCM, Montpellier, France
| |
Collapse
|
40
|
Wang YX, Ji HF, Huang ZY, Wang BL, Li HQ. Online measurement of conductivity/permittivity of fluid by a new contactless impedance sensor. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:055111. [PMID: 28571398 DOI: 10.1063/1.4983208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
By expanding the contactless conductivity detection (CCD) technique to contactless impedance detection technique, a new contactless impedance sensor is designed to implement the online measurement for both the conductivity of a conductive fluid and the permittivity of a non-conductive fluid. In the new contactless impedance sensor, a new simulated inductor is developed to overcome the unfavorable influences of the coupling capacitances by impedance elimination principle, and the digital phase-sensitive demodulation (DPSD) technique is adopted to realize the impedance measurement. To verify the effectiveness of the new contactless impedance sensor, simulation experiments (using different resistors, capacitors, and their combinations) and practical fluid experiments (using KCl solutions with different concentrations, eight organic solvents, and pure water) are carried out. The experimental results show that the development of the new contactless impedance sensor is successful and the conductivity/permittivity measurement performance of the new sensor is satisfactory. The maximum relative error of conductivity measurement is 3.1% and the maximum relative error of permittivity measurement is 5.5%. Compared with the conventional conductivity/permittivity sensors, the new sensor can implement the contactless online measurement of both the two electrical parameters of fluid. Meanwhile, the new contactless impedance sensor is suitable for industrial applications and has the advantages of simple construction and low cost.
Collapse
Affiliation(s)
- Y X Wang
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - H F Ji
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Z Y Huang
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - B L Wang
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - H Q Li
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
41
|
High performance separation of quaternary amines using microchip non-aqueous electrophoresis coupled with contactless conductivity detection. J Chromatogr A 2017; 1499:190-195. [PMID: 28396087 DOI: 10.1016/j.chroma.2017.03.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 01/29/2023]
Abstract
This study describes the development of an analytical methodology for the separation of quaternary amines using non-aqueous microchip electrophoresis (NAME) coupled with capacitively coupled contactless conductivity detection (C4D). All experiments were performed using a commercial microchip electrophoresis system consisting of a C4D detector, a high-voltage sequencer and a microfluidic platform to assemble a glass microchip with integrated sensing electrodes. The detection parameters were optimized and the best response was reached applying a 700-kHz sinusoidal wave with 14Vpp excitation voltage. The running electrolyte composition was optimized aiming to achieve the best analytical performance. The mixture containing methanol and acetonitrile at the proportion of 90:10 (v:v) as well as sodium deoxycholate provided separations of ten quaternary amines with high efficiency and baseline resolution. The separation efficiencies ranged from 8.7×104 to 3.0×105 plates/m. The proposed methodology provided linear response in the concentration range between 50 and 1000μmol/L and limits of detection between 2 and 27μmol/L. The analytical feasibility of the proposed methodology was tested in the determination of quaternary amines in corrosion inhibitor samples often used for coating oil pipelines. Five quaternary amines (dodecyltrimethylammonium chloride, tetradecyltrimetylammonium bromide, cetyltrimethylammonium bromide, tetraoctylammonium bromide and tetradodecylammonium bromide) were successfully detected at concentration levels from 0.07 to 6.45mol/L. The accuracy of the developed methodology was investigated and the achieved recovery values varied from 85 to 122%. Based on the reported data, NAME-C4D devices exhibited great potential to provide high performance separations of hydrophobic compounds. The developed methodology can be useful for the analysis of species that usually present strong adsorption on the channel inner walls.
Collapse
|
42
|
Cunha RR, Ribeiro MMAC, Muñoz RAA, Richter EM. Fast determination of codeine, orphenadrine, promethazine, scopolamine, tramadol, and paracetamol in pharmaceutical formulations by capillary electrophoresis. J Sep Sci 2017; 40:1815-1823. [PMID: 28217928 DOI: 10.1002/jssc.201601275] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/16/2022]
Abstract
Paracetamol is an active ingredient commonly found in pharmaceutical formulations in combination with one of the following compounds: codeine, orphenadrine, promethazine, scopolamine, and tramadol. In this work, we propose a unique analytical method for determination of these active ingredients in pharmaceutical samples. The method is based on capillary electrophoresis with capacitively coupled contactless conductivity detection. The separation was achieved on a fused silica capillary (50 cm total length, 40 cm effective length, and 50 μm id) using an optimized background electrolyte composed of 20 mmol/L β-alanine/4 mmol/L sodium chloride/4 μmol/L sodium hydroxide (pH 9.6). Each sample can be analyzed in a single run (≤2 min) and the limits of detection were 2.5, 0.62, 0.63, 2.5, 15, and 1.6 μmol/L for scopolamine, tramadol, orphenadrine, promethazine, codeine, and paracetamol, respectively. Recovery values for spiked samples were between 94 and 104%.
Collapse
Affiliation(s)
- Rafael R Cunha
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Rodrigo A A Muñoz
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Eduardo M Richter
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
43
|
Tůma P. Frequency-tuned contactless conductivity detector for the electrophoretic separation of clinical samples in capillaries with very small internal dimensions. J Sep Sci 2017; 40:940-947. [PMID: 27995764 DOI: 10.1002/jssc.201601213] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/19/2016] [Accepted: 11/28/2016] [Indexed: 12/27/2022]
Abstract
An axial design of a capacitively coupled contactless conductivity detector was tested in combination with fused-silica capillaries with internal diameters of 10, 15, and 25 μm, which are used for high-efficiency electrophoretic separation. The transmission of the signal in the detection probe dependent on the specific conductivity of the solution in the capillary in the range 0-278 mS.m-1 has a complex character and a minimum appears on the curve at very low conductivities. The position of the minimum of the calibration dependence gradually shifts with decreasing frequency of the exciting signal from 1.0 to 0.25 MHz toward lower specific conductivity values. The presence of a minimum on the calibration curves is a natural property of the axial design of contactless conductivity detector, demonstrated by solution of the equivalent electrical circuit of the detection probe, and is specifically caused by the use of shielding foil. The behavior of contactless conductivity detector in the vicinity of the minimum was documented for practical separations of amino acids in solutions of 3.2 M acetic acid with addition of 0-50% v/v methanol.
Collapse
Affiliation(s)
- Petr Tůma
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
44
|
Gamat SN, Fotouhi L, Talebpour Z. The application of electrochemical detection in capillary electrophoresis. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-1023-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Ribeiro MM, Oliveira TC, Batista AD, Muñoz RA, Richter EM. A sub-minute electrophoretic method for simultaneous determination of naphazoline and zinc. J Chromatogr A 2016; 1472:134-137. [DOI: 10.1016/j.chroma.2016.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 12/01/2022]
|
46
|
Šlampová A, Kubáň P. Rapid determination of meldonium in urine samples by capillary electrophoresis with capacitively coupled contactless conductivity detection. J Chromatogr A 2016; 1468:236-240. [DOI: 10.1016/j.chroma.2016.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 01/01/2023]
|
47
|
Coelho AG, de Jesus DP. A simple method for determination of erythritol, maltitol, xylitol, and sorbitol in sugar-free chocolates by capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis 2016; 37:2986-2991. [DOI: 10.1002/elps.201600263] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 11/08/2022]
Affiliation(s)
| | - Dosil Pereira de Jesus
- Institute of Chemistry; University of Campinas, UNICAMP; Campinas Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica; Campinas Brazil
| |
Collapse
|
48
|
Rezende KCA, Moreira RC, Logrado LPL, Talhavini M, Coltro WKT. Authenticity screening of seized whiskey samples using electrophoresis microchips coupled with contactless conductivity detection. Electrophoresis 2016; 37:2891-2895. [DOI: 10.1002/elps.201600277] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 02/01/2023]
Affiliation(s)
| | - Roger Cardoso Moreira
- Instituto de Química, Universidade Federal de Goiás; Campus Samambaia; Goiânia GO Brazil
| | | | - Márcio Talhavini
- Instituto Nacional de Criminalística; Departamento de Polícia Federal; Brasília DF Brazil
| | - Wendell K. T. Coltro
- Instituto de Química, Universidade Federal de Goiás; Campus Samambaia; Goiânia GO Brazil
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio); Campinas SP Brazil
| |
Collapse
|
49
|
Kubáň P, Hauser PC. Contactless conductivity detection for analytical techniques- Developments from 2014 to 2016. Electrophoresis 2016; 38:95-114. [DOI: 10.1002/elps.201600280] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences; Brno Czech Republic
| | - Peter C. Hauser
- Department of Chemistry; University of Basel; Basel Switzerland
| |
Collapse
|
50
|
Le MD, Duong HA, Nguyen MH, Sáiz J, Pham HV, Mai TD. Screening determination of pharmaceutical pollutants in different water matrices using dual-channel capillary electrophoresis coupled with contactless conductivity detection. Talanta 2016; 160:512-520. [PMID: 27591645 DOI: 10.1016/j.talanta.2016.07.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 01/07/2023]
Abstract
In this study, the employment of purpose-made dual-channel compact capillary electrophoresis (CE) instrument with capacitively coupled contactless conductivity detection (C(4)D) as a simple and inexpensive solution for screening determination of various pharmaceutical pollutants frequently occurring in surface water and hospital wastewater in Hanoi, Vietnam is reported. Five negatively charged pharmaceutically active compounds, namely ibuprofen, diclofenac, bezafibrate, ketoprofen and mefenamic acid were determined using the first channel whereas three positively charged ones, namely diphenhydramine, metoprolol and atenolol were determined with the second channel of the CE-C(4)D instrument. Two different background electrolytes (BGEs) were used in these two CE channels independently. The best detection limits achieved were in the range of 0.2-0.8mg/L without sample pre-concentration. Enrichment factors up to 200 were obtainable with the inclusion of a solid phase extraction step. Good agreement between results obtained from CE-C(4)D and those with the standard confirmation method (HPLC-DAD) was achieved, with correlation coefficients higher than 0.98.
Collapse
Affiliation(s)
- Minh Duc Le
- Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi, Vietnam
| | - Hong Anh Duong
- Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi, Vietnam
| | - Manh Huy Nguyen
- Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi, Vietnam
| | - Jorge Sáiz
- Institute of General Organic Chemistry (IQOG), Spanish National Research Council (CSIC), Calle Juan de la Cierva, 3, Madrid, 28006 Spain
| | - Hung Viet Pham
- Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi, Vietnam.
| | - Thanh Duc Mai
- Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi, Vietnam.
| |
Collapse
|