1
|
Carbonell-Rozas L, Lara FJ, García-Campaña AM. Analytical Methods Based on Liquid Chromatography and Capillary Electrophoresis to Determine Neonicotinoid Residues in Complex Matrices. A Comprehensive Review. Crit Rev Anal Chem 2023; 54:2554-2582. [PMID: 36940156 DOI: 10.1080/10408347.2023.2186700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Neonicotinoids (NNIs) are neuro-active and systemic insecticides widely used to protect crops from pest attack. During the last decades, there has been an increase concern about their uses and toxic effects, especially to beneficial and non-target insects such as pollinators. To assess potential health hazards and the environmental impacts derived from NNIs uses, a great variety of analytical procedures for the determination of their residues and their metabolites at trace level in environmental, biological and food samples have been reported. Due to the complexity of the samples, efficient sample pretreatment methods have been developed, which include mostly clean-up and preconcentration steps. On the other hand, among the analytical techniques used for their determination, high-performance liquid chromatography (HPLC) coupled to ultraviolet (UV) or mass spectrometry (MS) detection is the most widely used, although capillary electrophoresis (CE) has also been employed in the last years, considering some improvements in sensitivity when coupling with new MS detectors. In this review, we present a critical overview of analytical methods based on HPLC and CE reported in the last decade, discussing relevant and innovative sample treatments for the analysis of environmental, food and biological samples.
Collapse
Affiliation(s)
- Laura Carbonell-Rozas
- Department of de Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Francisco J Lara
- Department of de Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Ana M García-Campaña
- Department of de Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Fuente-Ballesteros A, Augé C, Bernal J, Ares AM. Development and Validation of a Gas Chromatography-Mass Spectrometry Method for Determining Acaricides in Bee Pollen. Molecules 2023; 28:molecules28062497. [PMID: 36985469 PMCID: PMC10056623 DOI: 10.3390/molecules28062497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Pesticides can be found in beehives for several reasons, including contamination from surrounding crops or for their use by beekeepers, which poses a risk to bee ecosystems and consumers. Therefore, efficient and sensitive methods are needed for determining pesticide residues in bee products. In this study, a new analytical method has been developed and validated to determine seven acaricides (atrazine, chlorpyrifos, chlorfenvinphos, α-endosulfan, bromopropylate, coumaphos, and τ-fluvalinate) in bee pollen using gas chromatography coupled to mass spectrometry. After an optimization study, the best sample treatment was obtained when using a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method employing an ethyl acetate and cyclohexane as the extractant mixture, and a mixture of salts for the clean-up step. A chromatographic analysis (<21 min) was performed in an Agilent DB-5MS column, and it was operated under programmed temperature conditions. The method was fully validated in terms of selectivity, limits of detection (0.2–3.1 µg kg−1) and quantification (0.6–9.7 µg kg−1), linearity, matrix effect (<20% in all cases), trueness (recoveries between 80% and 108%), and precision. Finally, the proposed method was applied to analyze commercial bee pollen samples, and some of the target pesticides (chlorfenvinphos, α-endosulfan, coumaphos, and τ-fluvalinate) were detected.
Collapse
Affiliation(s)
- Adrián Fuente-Ballesteros
- Analytical Chemistry Group (TESEA), I.U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Camille Augé
- SIGMA Clermont, Clermont-Ferrand Campus, 63178 Aubiere, France
| | - José Bernal
- Analytical Chemistry Group (TESEA), I.U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Ana M. Ares
- Analytical Chemistry Group (TESEA), I.U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
- Correspondence: ; Tel.: +34-983184249
| |
Collapse
|
3
|
Sawicki T, Surma M, Sadowska-Rociek A. Characteristics of contaminants in the polish-origin bee products and cancer risk assessment. Food Chem Toxicol 2023; 175:113693. [PMID: 36849088 DOI: 10.1016/j.fct.2023.113693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The aim of this study was to evaluate the concentration of 5-hydroxymethylfurfural (HMF), furfural, polycyclic aromatic hydrocarbons (PAHs), and pesticide residues, as well as assessment of cancer risk of the Polish-origin bee products. The bee product samples were prepared using a modified QuEChERS method, then PAHs and pesticides were analysed by gas chromatography-mass spectrometry (GC-MS), neonicotinoids by high-performance liquid chromatography with a diode array detector (HPLC-DAD), and HMF and furfural by spectrophotometry (HPLC-UV/Vis). The results showed that the highest furfural content was found in bee bread from the northeast part of Poland; moreover, samples obtained from the same region were also characterized with a higher level of HMF. The total sum of PAHs ranged from 324.0 to 866.4 μg/kg; the highest content of PAH4 (the sum of benzo[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene) was 21.0 μg/kg, but only benzo[a]anthracene and chrysene were detected in the samples. Imidacloprid and acetamiprid were found only in bee bread from the northeast part of Poland, while clothianidin was detected in honey samples. The acceptable cancer risk has been calculated for PAHs due to ingestion of honey, while increasing the risk of cancer was calculated for bee bread and bee pollen. Due to the high concentration of PAHs and excessively high recommended consumption dose, regular consumption of bee bread and pollen may pose a severe threat to human health and should be strictly limited.
Collapse
Affiliation(s)
- Tomasz Sawicki
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Ul. Słoneczna 45F, 10-719, Olsztyn, Poland.
| | - Magdalena Surma
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Ul. Balicka 122, 30-149, Krakow, Poland
| | - Anna Sadowska-Rociek
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Ul. Balicka 122, 30-149, Krakow, Poland
| |
Collapse
|
4
|
Effects of Thiamethoxam-Dressed Oilseed Rape Seeds and Nosema ceranae on Colonies of Apis mellifera iberiensis, L. under Field Conditions of Central Spain. Is Hormesis Playing a Role? INSECTS 2022; 13:insects13040371. [PMID: 35447813 PMCID: PMC9032297 DOI: 10.3390/insects13040371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The collapse of the honey bee colonies is a complex phenomenon in which different factors may participate in an interrelated manner (e.g., pathogen interactions, exposure to chemicals, beekeeping practices, climatology, etc.). In light of the current debate regarding the interpretation of field and monitoring studies in prospective risk assessments, here we studied how exposure to thiamethoxam affects honey bee colonies in Central Spain when applied as a seed treatment to winter oilseed rape, according to the good agricultural practice in place prior to the EU restrictions. Under the experimental conditions, exposure to thiamethoxam, alone or in combination with other stressors, did not generate and maintain sufficient chronic stress as to provoke honey bee colony collapse. The stress derived from exposure to thiamethoxam and honey bee pathogens was compensated by adjustments in the colony’s dynamics, and by an increase in the worker bee population, a behavior known as hormesis. An analysis of the factors underlying this phenomenon should be incorporated into the prospective risk assessment of plant protection products in order to improve the future interpretation of field studies and management practices. Abstract To study the influence of thiamethoxam exposure on colony strength and pathogen prevalence, an apiary (5 colonies) was placed in front of a plot sown with winter oilseed rape (wOSR), just before the flowering phase. Before sowing, the seeds were treated with an equivalent application of 18 g thiamethoxam/ha. For comparison, a second apiary (5 colonies) was located in front of a separate 750 m plot sown with untreated wOSR. Dead foragers at the entrance of hives were assessed every 2–3 days throughout the exposure period, while the colony strength (number of combs covered with adult honey bees and brood) and pathogens were monitored each month until the following spring. Foraging on the wOSR crop was confirmed by melissopalynology determination of the corbicular pollen collected periodically, while the chemical analysis showed that exposure to thiamethoxam was mainly through nectar. There was an increase in the accumulation of dead bees in the apiary exposed to thiamethoxam relating with the control, which was coped with an increment of bee brood surface and adult bee population. However, we did not find statistically significant differences between apiaries (α = 0.05) in terms of the evolution of pathogens. We discuss these results under hormesis perspective.
Collapse
|
5
|
Hrynko I, Kaczyński P, Łozowicka B. A global study of pesticides in bees: QuEChERS as a sample preparation methodology for their analysis - Critical review and perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148385. [PMID: 34153771 DOI: 10.1016/j.scitotenv.2021.148385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/29/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
To this day, it remains unknown what the cause of decline of honey bee populations is and how to prevent this phenomenon efficiently. Poisonings with pesticides are assumed to be among the main causes for the decline of the honey bee population. Despite the significant progress observed in analytics over recent years, research aimed at improving methods applied in diagnostics of bee poisoning is still in progress. This is no easy task, since determination of the content of trace amounts (often equal to sublethal doses) of a wide range of compounds with diverse physico-chemical properties in honey bee samples with a complex matrix composition poses a serious challenge to modern analytics. This overview is the first to include a comprehensive critical assessment of analytical methods proposed for quantification of pesticides in honey bees over the last decade. Since the QuEChERS method is currently of great significance to ensuring accurate and reliable results of pesticide quantification in honey bees, the present overview focuses on the major aspects of this method, which will provide a comprehensive reference for scientists. The review focuses on the limitations of methods and on potential future prospects. It also contains information on the detection of pesticides in honey bees between 2010 and 2020 and characterizes the pesticide classes which are most toxic to these insects. This is extremely important, not just in the context of understanding the potential adverse impact of pesticides, manifesting as losses in bee colonies; it is also intended to facilitate decision-making in future research related to this difficult yet very important subject.
Collapse
Affiliation(s)
- Izabela Hrynko
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, Bialystok, Poland.
| | - Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, Bialystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, Bialystok, Poland
| |
Collapse
|
6
|
Alonso-Prados E, González-Porto AV, Bernal JL, Bernal J, Martín-Hernández R, Higes M. A Case Report of Chronic Stress in Honey Bee Colonies Induced by Pathogens and Acaricide Residues. Pathogens 2021; 10:955. [PMID: 34451419 PMCID: PMC8398566 DOI: 10.3390/pathogens10080955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022] Open
Abstract
In this case report, we analyze the possible causes of the poor health status of a professional Apis mellifera iberiensis apiary located in Gajanejos (Guadalajara, Spain). Several factors that potentially favor colony collapse were identified, including Nosema ceranae infection, alone or in combination with other factors (e.g., BQCV and DWV infection), and the accumulation of acaricides commonly used to control Varroa destructor in the beebread (coumaphos and tau-fluvalinate). Based on the levels of residues, the average toxic unit estimated for the apiary suggests a possible increase in vulnerability to infection by N. ceranae due to the presence of high levels of acaricides and the unusual climatic conditions of the year of the collapse event. These data highlight the importance of evaluating these factors in future monitoring programs, as well as the need to adopt adequate preventive measures as part of national and international welfare programs aimed at guaranteeing the health and fitness of bees.
Collapse
Affiliation(s)
- Elena Alonso-Prados
- Unidad de Productos Fitosanitarios, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), 28040 Madrid, Spain;
| | - Amelia-Virginia González-Porto
- Laboratorio de Mieles y Productos de las Colmenas Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain;
| | - José Luis Bernal
- Analytical Chemistry Group, Instituto Universitario Centro de Innovación en Química y Materiales Avanzados (I.U.CINQUIMA), Universidad de Valladolid, 47011 Valladolid, Spain; (J.L.B.); (J.B.)
| | - José Bernal
- Analytical Chemistry Group, Instituto Universitario Centro de Innovación en Química y Materiales Avanzados (I.U.CINQUIMA), Universidad de Valladolid, 47011 Valladolid, Spain; (J.L.B.); (J.B.)
| | - Raquel Martín-Hernández
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla—La Mancha, 02006 Albacete, Spain;
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain
| |
Collapse
|
7
|
Bruzaca EES, de Oliveira RC, Duarte MSS, Sousa CP, Morais S, Correia AN, de Lima-Neto P. Electrochemical sensor based on multi-walled carbon nanotubes for imidacloprid determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2124-2136. [PMID: 33876058 DOI: 10.1039/d1ay00198a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple and robust sensor (fMWCNT-Nafion®0.5%/GCE) for determination of imidacloprid (IMI), a widely used neonicotinoid, was developed using a glassy carbon electrode (GCE) modified with functionalized multi-walled carbon nanotubes (fMWCNT) and Nafion®. The obtained data suggest that IMI reduction is an irreversible process, due to the reduction of the nitro group to hydroxylamine derivatives, with the participation of two protons and four electrons, and a charge transfer coefficient of 0.141. The optimized square-wave voltammetric conditions were: McIlvaine buffer at pH 6.0, 0.5% of Nafion® in the fMWCNT suspension, -0.6 V and 180 s as accumulation potential and time, respectively. A linearity in the range of 2.00 × 10-7 to 1.77 × 10-6 mol L-1 IMI, with the values of limit of detection and limit of quantification were equal to 3.74 × 10-8 mol L-1 and 1.25 × 10-7 mol L-1, respectively. Repeatability and reproducibility displayed relative standard deviations lower than 5%. Recovery tests performed in tap water, melon, and shrimp yielded mean values of 94 ± 6%, 97 ± 10% and 93 ± 10%, respectively. Moreover, several inorganic and organic compounds did not significantly interfere (0.6 to 4.5%) on the IMI signal, proving the selectivity and applicability of the developed sensor for IMI detection in complex samples.
Collapse
Affiliation(s)
- Evellin E S Bruzaca
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| | - Raissa C de Oliveira
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| | - Mateus S S Duarte
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| | - Camila P Sousa
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Adriana N Correia
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| | - Pedro de Lima-Neto
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| |
Collapse
|
8
|
Abdulhussein AQ, Jamil AKM, Bakar NKA. Magnetic molecularly imprinted polymer nanoparticles for the extraction and clean-up of thiamethoxam and thiacloprid in light and dark honey. Food Chem 2021; 359:129936. [PMID: 33957328 DOI: 10.1016/j.foodchem.2021.129936] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022]
Abstract
In this work, new selective and sensitive dual-template molecularly imprinted polymer nanoparticles (MIPs) were synthesized and characterized. Sorbent MIPs were investigated for simultaneous extraction and clean-up of thiamethoxam and thiacloprid from light and dark honey samples. In this study, ultra-high-performance liquid chromatography-tandem mass spectrometry triple-quadrupole (UHPLC-MS/MS) (QQQ) was used to detect and quantify the pesticides. The kinetic model with adsorption kinetics of sorbent was investigated. The optimal adsorption conditions were 80 mg of polymer MIPs, a 30-min extraction time, and a pH of 7. The detection limit (LOD) and the quantification limit (LOQ) varied from 0.045 to 0.070 µg kg-1 and from 0.07 to 0.10 µg kg-1, respectively. The intra-day and inter-day precision (RSD, %) ranged from 1.3 to 2.0% and from 8.2 to 12.0%, respectively. The recovery of thiamethoxam and thiacloprid ranged from 96.8 to 106.5% and 95.3 to 104.4%, respectively, in light and dark honey samples.
Collapse
Affiliation(s)
| | | | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Giorio C, Safer A, Sánchez-Bayo F, Tapparo A, Lentola A, Girolami V, van Lexmond MB, Bonmatin JM. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 1: new molecules, metabolism, fate, and transport. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11716-11748. [PMID: 29105037 PMCID: PMC7920890 DOI: 10.1007/s11356-017-0394-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/02/2017] [Indexed: 05/04/2023]
Abstract
With the exponential number of published data on neonicotinoids and fipronil during the last decade, an updated review of literature has been conducted in three parts. The present part focuses on gaps of knowledge that have been addressed after publication of the Worldwide Integrated Assessment (WIA) on systemic insecticides in 2015. More specifically, new data on the mode of action and metabolism of neonicotinoids and fipronil, and their toxicity to invertebrates and vertebrates, were obtained. We included the newly detected synergistic effects and/or interactions of these systemic insecticides with other insecticides, fungicides, herbicides, adjuvants, honeybee viruses, and parasites of honeybees. New studies have also investigated the contamination of all environmental compartments (air and dust, soil, water, sediments, and plants) as well as bees and apicultural products, food and beverages, and the exposure of invertebrates and vertebrates to such contaminants. Finally, we review new publications on remediation of neonicotinoids and fipronil, especially in water systems. Conclusions of the previous WIA in 2015 are reinforced; neonicotinoids and fipronil represent a major threat worldwide for biodiversity, ecosystems, and all the services the latter provide.
Collapse
Affiliation(s)
- Chiara Giorio
- Laboratoire Chimie de l'Environnement, Centre National de la Recherche Scientifique (CNRS) and Aix Marseille University, Marseille, France
| | - Anton Safer
- Institute of Public Health, Ruprecht-Karls-University, INF324, 69120, Heidelberg, Germany
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, NSW, 2015, Australia
| | - Andrea Tapparo
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131, Padua, Italy
| | - Andrea Lentola
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131, Padua, Italy
| | - Vincenzo Girolami
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131, Padua, Italy
| | | | - Jean-Marc Bonmatin
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
10
|
Senovieski ML, Gegenschatz SA, Chiappini FA, Teglia CM, Culzoni MJ, Goicoechea HC. In-syringe dispersive liquid-liquid microextraction vs. solid phase extraction: A comparative analysis for the liquid chromatographic determination of three neonicotinoids in cotyledons. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Ma L, Wang Y, Li H, Peng F, Qiu B, Yang Z. Development of QuEChERS-DLLME method for determination of neonicotinoid pesticide residues in grains by liquid chromatography-tandem mass spectrometry. Food Chem 2020; 331:127190. [DOI: 10.1016/j.foodchem.2020.127190] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/02/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022]
|
12
|
Simultaneous determination of betaines and other quaternary ammonium related compounds in bee pollen by hydrophilic interaction liquid chromatography-mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Ruiz P, Ares AM, Nozal MJ, Martín MT, Bernal J. Simultaneous determination of spinetoram J and L in bee pollen by liquid chromatography-mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Tu X, Chen W. Overview of Analytical Methods for the Determination of Neonicotinoid Pesticides in Honeybee Products and Honeybee. Crit Rev Anal Chem 2020; 51:329-338. [PMID: 32072823 DOI: 10.1080/10408347.2020.1728516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Neonicotinoid pesticides are widely applied for controlling pests in a variety of agriculture crops. Due to the systemic distribution in plants, neonicotinoid pesticides have been found in nectar and pollen, which are the main source of food for the important pollinator honeybee. The risk of neonicotinoid residues in honeybee products and honeybee has caused great attention since their impacts on the environment, ecology, and food safety issues. These concerns require the accurate and sensitive determination of neonicotinoids and their metabolites in the honeybee products and honeybee. Since the trace residue level of neonicotinoid and the complexity of the samples, analysis of neonicotinoid targets in these important matrices is still a great challenge. The present review provides general overview of analytical methods for the determination of neonicotinoid pesticides and their metabolites in honeybee products and honeybee.
Collapse
Affiliation(s)
- Xijuan Tu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenbin Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
Fang Q, Zu Q, Hua X, Lv P, Lin W, Zhou D, Xu Z, Fan J, Li X, Cao H. Quantitative Determination of Acetamiprid in Pollen Based on a Sensitive Enzyme-Linked Immunosorbent Assay. Molecules 2019; 24:molecules24071265. [PMID: 30939790 PMCID: PMC6479566 DOI: 10.3390/molecules24071265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 01/16/2023] Open
Abstract
A sensitive biotinylated indirect competitive enzyme-linked immunosorbent assay (Bic-ELISA) was developed to detect acetamiprid pesticides in pollen, based on the heterogeneous coating antigen and biotinylated anti-acetamiprid monoclonal antibody. Under optimized experimental conditions, the detection limit for the Bic-ELISA was 0.17 ng/mL and the linear range was 0.25–25 ng/mL. The cross-reactivities could be regarded as negligible for the biotinylated antibodies with their analogues except for thiacloprid (1.66%). Analyte recoveries for extracts of spiked pollen (camellia pollen, lotus pollen, rape pollen) ranged from 81.1% to 108.0%, with intra-day relative standard deviations (RSDs) of 4.8% to 10.9%, and the average reproducibility was 85.4% to 110.9% with inter-assay and inter-assay RSDs of 6.1% to 11.7%. The results of Bic-ELISA methods for the Taobao’s website samples were largely consistent with HPLC-MS/MS. Therefore, the established Bic-ELISA methods would be conducive to the monitoring of acetamiprid in pollen.
Collapse
Affiliation(s)
- Qingkui Fang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei 230036, China.
| | - Quan Zu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei 230036, China.
| | - Xiude Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Pei Lv
- School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Wanwen Lin
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Dahe Zhou
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Zihan Xu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Jiarui Fan
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaohan Li
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
16
|
Valverde S, Ibáñez M, Bernal JL, Nozal MJ, Hernández F, Bernal J. Development and validation of ultra high performance-liquid chromatography–tandem mass spectrometry based methods for the determination of neonicotinoid insecticides in honey. Food Chem 2018; 266:215-222. [DOI: 10.1016/j.foodchem.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 01/28/2023]
|
17
|
Fast determination of neonicotinoid insecticides in beeswax by ultra-high performance liquid chromatography-tandem mass spectrometry using an enhanced matrix removal-lipid sorbent for clean-up. Microchem J 2018. [DOI: 10.1016/j.microc.2018.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Gooley ZC, Gooley AC. Assessment of three SPE cleanup sorbents efficiencies for determining neonicotinoid insecticides and selected metabolites in honey bees and bee pollen. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zuyi C. Gooley
- Department of Zoology; Southern Illinois University; Carbondale IL USA
| | - Aaron C. Gooley
- Department of Zoology; Southern Illinois University; Carbondale IL USA
| |
Collapse
|
19
|
Valverde S, Ares AM, Arribas M, Bernal JL, Nozal MJ, Bernal J. Development and validation of UHPLC–MS/MS methods for determination of neonicotinoid insecticides in royal jelly-based products. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Effect of the Storage Conditions (Light and Temperature) on the Detection of Thiamethoxam and Clothianidin Content in Rapeseeds by LC-DAD. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0986-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Valverde S, Ares AM, Bernal JL, Nozal MJ, Bernal J. Simultaneous determination of thiamethoxam, clothianidin, and metazachlor residues in soil by ultrahigh performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. J Sep Sci 2017; 40:1083-1090. [DOI: 10.1002/jssc.201601143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Silvia Valverde
- IU CINQUIMA; Analytical Chemistry Group; University of Valladolid; 47011 Valladolid Spain
| | - Ana M. Ares
- IU CINQUIMA; Analytical Chemistry Group; University of Valladolid; 47011 Valladolid Spain
| | - José Luis Bernal
- IU CINQUIMA; Analytical Chemistry Group; University of Valladolid; 47011 Valladolid Spain
| | - María Jesús Nozal
- IU CINQUIMA; Analytical Chemistry Group; University of Valladolid; 47011 Valladolid Spain
| | - José Bernal
- IU CINQUIMA; Analytical Chemistry Group; University of Valladolid; 47011 Valladolid Spain
| |
Collapse
|
22
|
Liquid-Phase Separation Methods for Environmental Analysis. Electrophoresis 2016; 37:2447-2448. [PMID: 27717076 DOI: 10.1002/elps.201670154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|