1
|
Huang C, Qiu Z, Wang M, Ji J, Xiao X, Wang Y, Xu X, Gao Z, Gao C. N-glycan signatures identified in the serum from biliary tract cancer patients: Association with clinical diagnosis and prognosis. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2024; 31:537-548. [PMID: 38824438 DOI: 10.1002/jhbp.12011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
BACKGROUND Changes in the expression of genes related to glycosyltransferases may lead to alterations in N-glycan structure abundance, potentially acting as markers for diagnosis and prognosis in biliary tract cancer (BTC). METHODS This study was divided into cross-sectional and longitudinal approaches. The cross-sectional study included 316 BTC and 301 non-BTC. Propensity score matching was applied to adjust for sex and age differences between BTC and non-BTC. Univariate and multivariate logistic regression identified independent risk factors for BTC and constructed the BTC-G model. The ROC curve was used to validate the diagnostic performance of BTC-G. Longitudinal follow-up studies included postoperative (N = 50) and immunotherapy (N = 43) follow-up cohorts. Cox regression analysis identified N-glycan structures impacting BTC prognosis postoperative and immunotherapy, with further confirmation through Kaplan-Meier curves. RESULTS Univariate and multivariate analyses identified Peak3 (OR: 0.790, 95% CI: 0.658-0.949), Peak9 (OR: 1.646, 95% CI: 1.409-1.922), and Peak9p (OR: 2.467, 95% CI: 1.267-4.804) as independent BTC risk factors, leading to the creation of the BTC-G. The ROC curve confirmed that BTC-G performed well in training (AUC: 0.753, 95% CI: 0.703-0.799), validation (AUC: 0.811, 95% CI: 0.740-0.870), and CA19-9 negative cohorts (AUC: 0.717, 95% CI: 0.664-0.767). Cox regression analysis and Kaplan-Meier curves established that Peak12 (HR: 5.578, 95% CI: 1.145-27.170) and Peak11 (HR: 1.104, 95% CI: 0.611-1.994) are independent risk factors for BTC prognosis following surgery and immunotherapy, respectively. CONCLUSIONS Our NGFP technology supplements BTC diagnostics, distinguishing survival and recurrence subtypes for postoperative and immunotherapy, thereby supporting the development of treatment strategies.
Collapse
Affiliation(s)
- Chenjun Huang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiquan Qiu
- Department of Biliary Tract Surgery I, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun Ji
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiao Xiao
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Wang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuewen Xu
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiyuan Gao
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunfang Gao
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Ochoa-Rios S, Grauzam SE, Gregory R, Angel PM, Drake RR, Helke KL, Mehta AS. Spatial Omics Reveals that Cancer-Associated Glycan Changes Occur Early in Liver Disease Development in a Western Diet Mouse Model of MASLD. J Proteome Res 2024; 23:786-796. [PMID: 38206822 DOI: 10.1021/acs.jproteome.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disease and comprises different stages of liver damage; it is significantly associated with obese and overweight patients. Untreated MASLD can progress to life-threatening end-stage conditions, such as cirrhosis and liver cancer. N-Linked glycosylation is one of the most common post-translational modifications in the cell surface and secreted proteins. N-Linked glycan alterations have been established to be signatures of liver diseases. However, the N-linked glycan changes during the progression of MASLD to liver cancer are still unknown. Here, we induced different stages of MASLD in mice and liver-cancer-related phenotypes and elucidated the N-glycome profile during the progression of MASLD by quantitative and qualitative profiling in situ using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). Importantly, we identified specific N-glycan structures including fucosylated and highly branched N-linked glycans at very early stages of liver injury (steatosis), which in humans are associated with cancer development, establishing the importance of these modifications with disease progression. Finally, we report that N-linked glycan alterations can be observed in our models by MALDI-IMS before liver injury is identified by histological analysis. Overall, we propose these findings as promising biomarkers for the early diagnosis of liver injury in MASLD.
Collapse
Affiliation(s)
- Shaaron Ochoa-Rios
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Stéphane Elie Grauzam
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Rebecca Gregory
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
3
|
Huang C, Xu X, Wang M, Xiao X, Cheng C, Ji J, Fang M, Gao C. Serum N-glycan fingerprint helps to discriminate intrahepatic cholangiocarcinoma from hepatocellular carcinoma. Electrophoresis 2021; 42:1187-1195. [PMID: 33570803 DOI: 10.1002/elps.202000392] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are two main types of primary liver cancer, and reliable discrimination is important for optimal treatment. Aberrant glycosylation was detected in HCC and ICC. Both cross-sectional and follow-up studies were performed to establish a differential diagnosis model using N-glycans. A total of 420 participants were enrolled, with 310 patients in training cohort and 110 patients in validation cohort. The follow-up cohort was used to assess the prognosis of ICC. As the results, the diagnostic efficacy of the model was superior to alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA 19-9) when identifying ICC from HCC (AUC of the nomogram: 0.845, 95%CI: 0.788-0.902; AFP: 0.793, 95%CI: 0.732-0.854; CEA: 0.592, 95%CI: 0.496-0.687; CA 19-9: 0.674, 95%CI: 0.582-0.767) in training cohort. In validation cohort, this model (AUC: 0.810, 95% CI: 0.728-0.891) also demonstrated high efficacy in distinguishing ICC from HCC. Furthermore, the nomogram helps to stratify ICC into two subgroups with high or low risk of survival and recurrence. Therefore, a nomogram integrating six N-glycans [NGA2FB(Peak2), NG1A2F (Peak3), NA2 (Peak5), NA2F (Peak6), NA3 (Peak8) and NA4 (Peak11)] was established for ICC and HCC differentiation, and for prognosis assessment in ICC patients.
Collapse
Affiliation(s)
- Chenjun Huang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Xuewen Xu
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, P. R. China
| | - Xiao Xiao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Cheng Cheng
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Jun Ji
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Meng Fang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Chunfang Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| |
Collapse
|
4
|
Huang C, Liu L, Wang H, Fang M, Feng H, Li Y, Wang M, Tong L, Xiao X, Wang Z, Xu X, He Y, Gao C. Serum N-glycan fingerprint nomogram predicts liver fibrosis: a multicenter study. Clin Chem Lab Med 2021; 59:1087-1097. [PMID: 33554541 DOI: 10.1515/cclm-2020-1588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/11/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Liver cirrhosis (LC) is the end-stage of fibrosis in chronic liver diseases, non-invasive early detection of liver fibrosis (LF) is particularly essential for therapeutic decision. Aberrant glycosylation of glycoproteins has been demonstrated to be closely related to liver abnormalities. METHODS This study was designed to enroll a total of 1,565 participants with LC/LF, chronic hepatitis virus (CHB) and healthy controls. Fibrosis was confirmed by liver biopsy. Using capillary electrophoresis N-glycan fingerprint (NGFP) analysis, we developed a nomogram algorithm (FIB-G) to discriminate LC from non-cirrhotic subjects. RESULTS The FIB-G demonstrated good diagnostic performances in identifying LC with the area under the curve (AUC) 0.895 (95%CI: 0.857-0.915). Furthermore, the diagnostic efficiencies of FIB-G were superior to that of log (P2/P8), procollagen III N-terminal (PIIINP), type IV collage (IV-C), laminin (LN), hyaluronic acid (HA), aspartate transaminase to platelets ratio index (APRI), and FIB-4 when detecting significant fibrosis (S0-1 vs. S2-4, AUC: 0.787, 95%CI: 0.701-0.873), severe fibrosis (S0-2 vs. S3-4, AUC: 0.844, 95%CI: 0.763-0.924), and LC (S0-3 vs. S4, AUC: 0.773, 95%CI: 0.667-0.880). Besides, changes of FIB-G were associated well with the regression of fibrosis and liver function Child-Pugh classification. CONCLUSIONS FIB-G is an accurate multivariant N-glycomic algorithm for LC prediction and fibrosis progression/regression monitoring. The high throughput feasible NGFP using only 2 μL of serum could help physicians make the more precise non-invasive staging of LF or cirrhosis and reduce the need for invasive liver biopsy.
Collapse
Affiliation(s)
- Chenjun Huang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Lijuan Liu
- Department of Laboratory Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Hao Wang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Shanghai, P.R. China
| | - Meng Fang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Huijuan Feng
- Department of Laboratory Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Ya Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Mengmeng Wang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China.,Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Lin Tong
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Xiao Xiao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Ziyi Wang
- Department of Data Analysis, Wonders Information Co. LTD., Shanghai, P.R. China
| | - Xuewen Xu
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Yutong He
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Chunfang Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| |
Collapse
|
5
|
Omics-Based Platforms: Current Status and Potential Use for Cholangiocarcinoma. Biomolecules 2020; 10:biom10101377. [PMID: 32998289 PMCID: PMC7600697 DOI: 10.3390/biom10101377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) has been identified as a highly malignant cancer that can be transformed from epithelial cells of the bile duct, including intrahepatic, perihilar and extrahepatic. High-resolution imaging tools (abdominal ultrasound, computed tomography and percutaneous transhepatic cholangial drainage) are recruited for diagnosis. However, the lack of early diagnostic biomarkers and treatment evaluation can lead to serious outcomes and poor prognosis (i.e., CA19-9, MUC5AC). In recent years, scientists have established a large number of omics profiles to reveal underlying mechanisms and networks (i.e., IL-6/STAT3, NOTCH). With these results, we achieved several genomic alteration events (i.e., TP53mut, KRASmut) and epigenetic modifications (i.e., DNA methylation, histone modification) in CCA cells and clinical patients. Moreover, we reviewed candidate gene (such as NF-kB, YAP1) that drive gene transcription factors and canonical pathways through transcriptomics profiles (including microarrays and next-generation sequencing). In addition, the proteomics database also indicates which molecules and their directly binding status could trigger dysfunction signatures in tumorigenesis (carbohydrate antigen 19-9, mucins). Most importantly, we collected metabolomics datasets and pivotal metabolites. These results reflect the pharmacotherapeutic options and evaluate pharmacokinetic/pharmacodynamics in vitro and in vivo. We reversed the panels and selected many potentially small compounds from the connectivity map and L1000CDS2 system. In this paper, we summarize the prognostic value of each candidate gene and correlate this information with clinical events in CCA. This review can serve as a reference for further research to clearly investigate the complex characteristics of CCA, which may lead to better prognosis, drug repurposing and treatment strategies.
Collapse
|
6
|
Wang M, Zhu J, Lubman DM, Gao C. Aberrant glycosylation and cancer biomarker discovery: a promising and thorny journey. Clin Chem Lab Med 2019; 57:407-416. [PMID: 30138110 PMCID: PMC6785348 DOI: 10.1515/cclm-2018-0379] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/15/2018] [Indexed: 12/12/2022]
Abstract
Glycosylation is among the most important post-translational modifications for proteins and is of intrinsic complex character compared with DNAs and naked proteins. Indeed, over 50%-70% of proteins in circulation are glycosylated, and the "sweet attachments" have versatile structural and functional implications. Both the configuration and composition of the attached glycans affect the biological activities of consensus proteins significantly. Glycosylation is generated by complex biosynthetic pathways comprising hundreds of glycosyltransferases, glycosidases, transcriptional factors, transporters and the protein backbone. In addition, lack of direct genetic templates and glyco-specific antibodies such as those commonly used in DNA amplification and protein capture makes research on glycans and glycoproteins even more difficult, thus resulting in sparse knowledge on the pathophysiological implications of glycosylation. Fortunately, cutting-edge technologies have afforded new opportunities and approaches for investigating cancer-related glycosylation. Thus, glycans as well as aberrantly glycosylated protein-based cancer biomarkers have been increasingly recognized. This mini-review highlights the most recent developments in glyco-biomarker studies in an effort to discover clinically relevant cancer biomarkers using advanced analytical methodologies such as mass spectrometry, high-performance liquid chromatographic/ultra-performance liquid chromatography, capillary electrophoresis, and lectin-based technologies. Recent clinical-centered glycobiological studies focused on determining the regulatory mechanisms and the relation with diagnostics, prognostics and even therapeutics are also summarized. These studies indicate that glycomics is a treasure waiting to be mined where the growth of cancer-related glycomics and glycoproteomics is the next great challenge after genomics and proteomics.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Jianhui Zhu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David M. Lubman
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chunfang Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| |
Collapse
|
7
|
Implementation of comprehensive rehabilitation therapy in postoperative care of patients with cholangiocarcinoma and its impact on patients' quality of life. Exp Ther Med 2019; 17:2703-2707. [PMID: 30906460 PMCID: PMC6425235 DOI: 10.3892/etm.2019.7215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
Implementation of comprehensive rehabilitation therapy in postoperative care of patients with cholangiocarcinoma was studied to explore its impact on patients' quality of life. Two hundred and nineteen patients with cholangiocarcinoma who underwent surgery in Yidu Central Hospital of Weifang from April 2014 to June 2017 were selected as study subjects. Of these patients, 116 received comprehensive rehabilitation therapy, in addition to chemotherapy, after surgery and were assigned to the experimental group. The remaining 103 patients received routine treatment after surgery and were assigned to the control group. Under the guidance of experts, patients in the experimental group carried out multiple comprehensive rehabilitation activities, such as exercises on general physical function, adjustment of psychological state and recovery of social family function. The outcome after 1 month of treatment was evaluated for the two groups according to the RECIST 1.1 guidelines. Nutritional status of patients before surgery, at 1 day and at 1 month after surgery was measured according to the Nutritional Risk Screening endorsed by the European Society for Clinical Nutrition and Metabolism (ESPEN). The quality of life at 1 month after surgery was assessed based on the QLQ-C30 quality of life questionnaire. The negative emotions that patients experienced at 1 month after surgery were assessed using the self-rating anxiety scale (SAS) and the self-rating depression scale (SDS). The response rate in the experimental group was 76.72%, which was significantly higher than 46.60% in the control group (P<0.05). At 1 month after surgery, the nutritional status and quality of life, as well as SAS/SDS scores, were significantly better in the experimental group than in the control group, and the differences were statistically significant (P<0.05). In clinical anticancer treatment, synergistic implementation of comprehensive rehabilitation therapy can improve patients' psychological health status, nutritional status and the overall quality of life, and reduce the impact of negative emotions on the physical state.
Collapse
|
8
|
Lu G, Crihfield CL, Gattu S, Veltri LM, Holland LA. Capillary Electrophoresis Separations of Glycans. Chem Rev 2018; 118:7867-7885. [PMID: 29528644 PMCID: PMC6135675 DOI: 10.1021/acs.chemrev.7b00669] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 01/04/2023]
Abstract
Capillary electrophoresis has emerged as a powerful approach for carbohydrate analyses since 2014. The method provides high resolution capable of separating carbohydrates by charge-to-size ratio. Principle applications are heavily focused on N-glycans, which are highly relevant to biological therapeutics and biomarker research. Advances in techniques used for N-glycan structural identification include migration time indexing and exoglycosidase and lectin profiling, as well as mass spectrometry. Capillary electrophoresis methods have been developed that are capable of separating glycans with the same monosaccharide sequence but different positional isomers, as well as determining whether monosaccharides composing a glycan are alpha or beta linked. Significant applications of capillary electrophoresis to the analyses of N-glycans in biomarker discovery and biological therapeutics are emphasized with a brief discussion included on carbohydrate analyses of glycosaminoglycans and mono-, di-, and oligosaccharides relevant to food and plant products. Innovative, emerging techniques in the field are highlighted and the future direction of the technology is projected based on the significant contributions of capillary electrophoresis to glycoscience from 2014 to the present as discussed in this review.
Collapse
Affiliation(s)
- Grace Lu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Cassandra L. Crihfield
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Srikanth Gattu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lindsay M. Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
9
|
Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, Monti D, Capri M, Salvioli S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front Med (Lausanne) 2018; 5:61. [PMID: 29662881 PMCID: PMC5890129 DOI: 10.3389/fmed.2018.00061] [Citation(s) in RCA: 495] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
Geroscience, the new interdisciplinary field that aims to understand the relationship between aging and chronic age-related diseases (ARDs) and geriatric syndromes (GSs), is based on epidemiological evidence and experimental data that aging is the major risk factor for such pathologies and assumes that aging and ARDs/GSs share a common set of basic biological mechanisms. A consequence is that the primary target of medicine is to combat aging instead of any single ARD/GSs one by one, as favored by the fragmentation into hundreds of specialties and sub-specialties. If the same molecular and cellular mechanisms underpin both aging and ARDs/GSs, a major question emerges: which is the difference, if any, between aging and ARDs/GSs? The hypothesis that ARDs and GSs such as frailty can be conceptualized as accelerated aging will be discussed by analyzing in particular frailty, sarcopenia, chronic obstructive pulmonary disease, cancer, neurodegenerative diseases such as Alzheimer and Parkinson as well as Down syndrome as an example of progeroid syndrome. According to this integrated view, aging and ARDs/GSs become part of a continuum where precise boundaries do not exist and the two extremes are represented by centenarians, who largely avoided or postponed most ARDs/GSs and are characterized by decelerated aging, and patients who suffered one or more severe ARDs in their 60s, 70s, and 80s and show signs of accelerated aging, respectively. In between these two extremes, there is a continuum of intermediate trajectories representing a sort of gray area. Thus, clinically different, classical ARDs/GSs are, indeed, the result of peculiar combinations of alterations regarding the same, limited set of basic mechanisms shared with the aging process. Whether an individual will follow a trajectory of accelerated or decelerated aging will depend on his/her genetic background interacting lifelong with environmental and lifestyle factors. If ARDs and GSs are manifestations of accelerated aging, it is urgent to identify markers capable of distinguishing between biological and chronological age to identify subjects at higher risk of developing ARDs and GSs. To this aim, we propose the use of DNA methylation, N-glycans profiling, and gut microbiota composition to complement the available disease-specific markers.
Collapse
Affiliation(s)
- Claudio Franceschi
- Institute of Neurological Sciences, University of Bologna, Bellaria Hospital, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden.,Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy.,CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy
| | - Cristina Morsiani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Andrea Grignolio
- Unit and Museum of History of Medicine, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|