1
|
López-Sánchez C, de Andrés F, Ríos Á. Implications of analytical nanoscience in pharmaceutical and biomedical fields: A critical view. J Pharm Biomed Anal 2024; 243:116118. [PMID: 38513499 DOI: 10.1016/j.jpba.2024.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
This review summarizes recent progress performed in the design and application of analytical tools and methodologies using nanomaterials for pharmaceutical analysis, and specifically new nanomedicines at distinct phases of development and translation from preclinical to clinical stages. Over the last 10-15 years, a growing number of studies have utilized various nanomaterials, including carbon-based, metallic nanoparticles, polymeric nanomaterials, materials based on biological molecules, and composite nanomaterials as tools for improving the analysis of pharmaceutical products. New and more complex nanomaterials are currently being explored to influence different stages of the analytical process. These materials provide unique properties to support the extraction of analytes in complex samples, increase the selectivity and efficiency of chromatographic separations, and improve the analytical properties of many sensor applications. Indeed, nanomaterials, including electrochemical detection approaches and biosensing, are expanding at a remarkable rate. Furthermore, the analytical performance of numerous approaches to determine drugs in different matrices can be significantly improved in terms of precision, detection limits, selectivity, and time of analysis. However, the quality control and metrological characterization of the currently synthesized nanomaterials still depend on the development of new and improved analytical methodologies, and the application of specific and improved instrumentation. Therefore, there is still much to explore about the properties of nanomaterials which need to be determined even more precisely and accurately.
Collapse
Affiliation(s)
- Claudia López-Sánchez
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain
| | - Fernando de Andrés
- Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, Dr. José María Sánchez Ibáñez Av. s/n, Albacete 02071, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain.
| |
Collapse
|
2
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
3
|
Huo H, Guan J, Huang Z, Long K, Zhang D, Shi S, Yan F. Preparation of β-cyclodextrin covalent organic framework-immobilized poly(glycidyl methacrylate) nanoparticle-coated open tubular capillary electrochromatography column for chiral separation. J Sep Sci 2023:e2300117. [PMID: 37246276 DOI: 10.1002/jssc.202300117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
A new enantioselective open-tubular capillary electrochromatography was developed employing poly(glycidyl methacrylate) nanoparticles/β-cyclodextrin covalent organic frameworks chemically immobilized on the inner wall of the capillary as a stationary phase. A pretreated silica-fused capillary reacted with 3-aminopropyl-trimethoxysilane followed by poly(glycidyl methacrylate) nanoparticles and β-cyclodextrin covalent organic frameworks through a ring-opening reaction. The resulting coating layer on the capillary was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The electroosmotic flow was studied to evaluate the variation of the immobilized columns. The chiral separation performance of the fabricated capillary columns was validated by the analysis of the four racemic proton pump inhibitors including lansoprazole, pantoprazole, tenatoprazole, and omeprazole. The influences of bonding concentration, bonding time, bonding temperature, buffer type and concentration, buffer pH, and applied voltage on the enantioseparation of four proton pump inhibitors were investigated. Good enantioseparation efficiencies were achieved for all enantiomers. In the optimum conditions, the enantiomers of four proton pump inhibitors were fully resolved within 10 min with high resolutions of 9.5-13.9. The column-to-column and inter- to intra-day repeatability of the fabricated capillary columns through relative standard deviation were found better than 9.54%, exhibiting satisfactory stability and repeatability of the fabricated capillary columns.
Collapse
Affiliation(s)
- Hongyi Huo
- College of Chemical Engineering, Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, P. R. China
| | - Jin Guan
- College of Chemical Engineering, Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, P. R. China
| | - Ziwei Huang
- College of Chemical Engineering, Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, P. R. China
| | - Ke Long
- College of Chemical Engineering, Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, P. R. China
| | - Dongxiang Zhang
- College of Chemical Engineering, Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, P. R. China
| | - Shuang Shi
- College of Chemical Engineering, Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, P. R. China
| | - Feng Yan
- College of Science, Shenyang University of Chemical Technology, Shenyang, P. R. China
| |
Collapse
|
4
|
Recent applications and chiral separation developments based on stationary phases in open tubular capillary electrochromatography (2019–2022). J Pharm Anal 2023; 13:323-339. [PMID: 37181297 PMCID: PMC10173184 DOI: 10.1016/j.jpha.2023.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Capillary electrochromatography (CEC) plays a significant role in chiral separation via the double separation principle, partition coefficient difference between the two phases, and electroosmotic flow-driven separation. Given the distinct properties of the inner wall stationary phase (SP), the separation ability of each SP differs from one another. Particularly, it provides large room for promising applications of open tubular capillary electrochromatography (OT-CEC). We divided the OT-CEC SPs developed over the past four years into six types: ionic liquids, nanoparticle materials, microporous materials, biomaterials, non-nanopolymers, and others, to mainly introduce their characteristics in chiral drug separation. There also added a few classic SPs that occurred within ten years as supplements to enrich the features of each SP. Additionally, we discuss their applications in metabolomics, food, cosmetics, environment, and biology as analytes in addition to chiral drugs. OT-CEC plays an increasingly significant role in chiral separation and may promote the development of capillary electrophoresis (CE) combined with other instruments in recent years, such as CE with mass spectrometry (CE/MS) and CE with ultraviolet light detector (CE/UV).
Collapse
|
5
|
Carbon dots – Separative techniques: Tools-objective towards green analytical nanometrology focused on bioanalysis. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Adelantado C, Zougagh M, Ríos Á. Contributions of Capillary Electrophoresis in Analytical Nanometrology: A Critical View. Crit Rev Anal Chem 2021; 52:1094-1111. [PMID: 33427485 DOI: 10.1080/10408347.2020.1859983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An overview on the increasing role of capillary electrophoresis in characterization and direct analysis of nanomaterials is herein presented. The niche of electrophoretic approaches in nanometrology is so relevant that nonmetallic, metal, metal oxide nanoparticles, and quantum dots have been analyzed to be targeted via capillary electrophoresis with conventional detection systems or coupling arrangements aimed at increasing selectivity and sensitivity toward either pristine or conjugated nanoparticles. Moreover, parameters altering intrinsic properties of nanoparticles may be optimized to gather the desired results and identify nanomaterials according to their size, shape, or associations with binding agents. The usefulness and quickness of capillary electrophoresis for quantifying or screening ultrasmall-sized particles enables this technique to set an example for analysis of standards or previously synthesized nanostructures in research or routine laboratories. Abundant evidence of the suitability of electrophoretic approaches for characterization and direct determination of nanomaterials in actual samples has been provided in this review, together with a discussion about hyphenation with state-of-the art detectors and comparison between capillary electrophoresis with other separation approaches. This permits scientific community to be optimistic in the short term.
Collapse
Affiliation(s)
- Carlos Adelantado
- Department of Analytical Chemistry and Food Technology, Faculty of Science and chemical Technologies, University of Castilla-La Mancha, Ciudad Real, Spain.,Regional Institute for Applied Scientific Research, IRICA, Ciudad Real, Spain
| | - Mohammed Zougagh
- Regional Institute for Applied Scientific Research, IRICA, Ciudad Real, Spain.,Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, Albacete, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Science and chemical Technologies, University of Castilla-La Mancha, Ciudad Real, Spain.,Regional Institute for Applied Scientific Research, IRICA, Ciudad Real, Spain
| |
Collapse
|
7
|
Kartsova LA, Makeeva DV, Bessonova EA. Current Status of Capillary Electrophoresis. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Meng Z, Bi J, Zhang Q, Ren H, Qin W. Recent advances in nanomaterial-assisted detection coupled with capillary and microchip electrophoresis. Electrophoresis 2020; 42:269-278. [PMID: 33159339 DOI: 10.1002/elps.202000293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022]
Abstract
Nanomaterials have drawn much attention because of their unique properties enabling them to play important roles in various applications in different areas. This review covers literature data in the Web of Science from January 2017 to August 2020, focusing on the applications of nanomaterials (nanoparticles, quantum dots, nanotubes, and graphene) in CE and MCE to achieve enhanced sensitivity of several detection techniques: fluorescence, colorimetry, amperometry, and chemiluminescence /electrochemiluminescence. For the articles surveyed, the types of nanomaterials used, detection mechanisms, analytical performance, and applications are presented and discussed.
Collapse
Affiliation(s)
- Zhao Meng
- College of Chemistry, Beijing Normal University, Beijing, P. R. China
| | - Junmin Bi
- College of Chemistry, Beijing Normal University, Beijing, P. R. China
| | - Qianqian Zhang
- College of Chemistry, Beijing Normal University, Beijing, P. R. China
| | - Hang Ren
- College of Chemistry, Beijing Normal University, Beijing, P. R. China
| | - Weidong Qin
- College of Chemistry, Beijing Normal University, Beijing, P. R. China
| |
Collapse
|
9
|
Ahmed MA, Felisilda BMB, Quirino JP. Recent advancements in open-tubular liquid chromatography and capillary electrochromatography during 2014-2018. Anal Chim Acta 2019; 1088:20-34. [PMID: 31623713 DOI: 10.1016/j.aca.2019.08.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
Abstract
This review critically discusses the developments on open-tubular liquid chromatography (OT-LC) and open-tubular capillary electrochromatography (OT-CEC) during 2014-2018. An appropriate Scopus search revealed 5 reviews, 4 theoretical papers on open-tubular format chromatography, 29 OT-LC articles, 68 OT-CEC articles and 4 OT-LC/OT-CEC articles, indicating a sustained interest in these areas. The open-tubular format typically uses a capillary column with inner walls that are coated with an ample layer or coating of solid stationary phase material. The ratio between the capillary internal diameter and coating thickness (CID/CT) is ideally ≤ 100 for appropriate chromatographic retention. We, therefore, approximated the CID/CT ratios and found that 22 OT-LC papers have CID/CT ratios ≤100. The other 7 OT-LC papers have CID/CT ratio >100 but have clearly demonstrated chromatographic retention. These 29 papers utilised reversed phase or ion exchange mechanisms using known or innovative solid stationary phase materials (e.g. metal organic frameworks), stationary pseudophases from ionic surfactants or porous supports. On the other hand, we found that 68 OT-CEC papers, 7 OT-LC papers and 4 OT-LC & OT-CEC papers have CID/CT ratios >100. Notably, 44 papers (42 OT-CEC and 2 OT-LC & OT-CEC) did not report the retention factor and/or effective electrophoretic mobility of analytes. Considering all covered papers, the most popular activity was on the development of new chromatographic materials as coatings. However, we encourage OT-CEC researchers to not only characterise changes in the electroosmotic flow but also verify the interaction of the analytes with the coating. In addition, the articles reported were largely driven by stationary phase or support development and not by practical applications.
Collapse
Affiliation(s)
- Mohamed Adel Ahmed
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia
| | - Bren Mark B Felisilda
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia.
| |
Collapse
|
10
|
Lahouidak S, Soriano ML, Salghi R, Zougagh M, Ríos Á. Graphene quantum dots for enhancement of fluorimetric detection coupled to capillary electrophoresis for detection of ofloxacin. Electrophoresis 2019; 40:2336-2341. [DOI: 10.1002/elps.201900037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/16/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Samah Lahouidak
- Regional Institute for Applied Chemistry Research (IRICA) Ciudad Real Spain
- Department of Analytical Chemistry and Food TechnologyFaculty of Chemical Science and TechnologyUniversity of Castilla‐La Mancha Ciudad Real Spain
- Laboratoire d'Ingénieries des Procédés de l'Energie et de l'EnvironnementENSA Agadir Morocco
| | - M. Laura Soriano
- Regional Institute for Applied Chemistry Research (IRICA) Ciudad Real Spain
- Department of Analytical Chemistry and Food TechnologyFaculty of Chemical Science and TechnologyUniversity of Castilla‐La Mancha Ciudad Real Spain
- Department of Analytical Chemistry and Food TechnologyFaculty of PharmacyUniversity of Castilla–La Mancha Albacete Spain
| | - Rachid Salghi
- Laboratoire d'Ingénieries des Procédés de l'Energie et de l'EnvironnementENSA Agadir Morocco
| | - Mohammed Zougagh
- Regional Institute for Applied Chemistry Research (IRICA) Ciudad Real Spain
- Department of Analytical Chemistry and Food TechnologyFaculty of Chemical Science and TechnologyUniversity of Castilla‐La Mancha Ciudad Real Spain
- Department of Analytical Chemistry and Food TechnologyFaculty of PharmacyUniversity of Castilla–La Mancha Albacete Spain
| | - Ángel Ríos
- Regional Institute for Applied Chemistry Research (IRICA) Ciudad Real Spain
- Department of Analytical Chemistry and Food TechnologyFaculty of Chemical Science and TechnologyUniversity of Castilla‐La Mancha Ciudad Real Spain
| |
Collapse
|
11
|
Alharthi S, El Rassi Z. CE with multi-walled carbon nanotubes (MWCNTs). Part I. Functionalized and SDS coated MWCNTs as pseudo-stationary phases in nanoparticle EKC - Studies on retention energetics. Talanta 2019; 192:534-544. [PMID: 30348427 DOI: 10.1016/j.talanta.2018.09.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022]
Abstract
In this study, multi-walled carbon nanotubes (MWCNTs) in either unmodified, hydroxylated (MWCNT-OH), carboxylated (MWCNT-COOH) or sulfonated (MWCNT-SO3H) forms were incorporated into the running electrolytes in capillary electrophoresis (CE) to play the role of pseudo-stationary phases (PSPs) and perform nanoparticle electrokinetic capillary chromatography (NPEKC). MWCNT-COOH and MWCNT-SO3H were derived from MWCNTs via their treatment with concentrated strong acids. These functionalized MWCNTs were characterized by Raman and FTIR spectroscopies to demonstrate their covalent functionalization. The study of MWCNT-SO3H and MWCNT-OH as PSPs were introduced in this research report for the first time in NPEKC. The results obtained with functionalized MWCNTs were compared to those obtained using unmodified MWCNTs for better understanding the electrophoretic behavior of these functionalized MWCNTs. While only MWCNT-COOH allowed the separation of some nucleic acid bases and nucleosides, neutral solutes such as alkylbenzenes (ABs), phenyl alkyl alcohols (PAAs) and aniline derivatives in neutral forms (i.e., at basic pH) were not resolved in the presence of neither MWCNT-COOH nor MWCNT-SO3H in the running electrolytes, indicating that these functionalized MWCNTs do not have enough surface charge density to function as effective PSPs in NPEKC. This necessitated the coating of the functionalized MWCNTs under investigation with sodium dodecyl sulfate (SDS) to bring about the separation of neutral solutes by NPEKC. The SDS coated MWCNTs whether unmodified or functionalized were characterized with two homologous series namely ABs and PAAs in order to evaluate their relative retention energetics under the same electrolyte composition. The results showed that the systems pairs SDS-MWCNT-COOH/SDS-MWCNTs and SDS-MWCNT-OH/SDS-MWCNTs were homoenergetics (i.e., same energetics) while the system pair SDS-MWCNT-SO3H/SDS-MWCNTs was homeoenergetics (i.e., similar energetics). On the other hand, all the systems pairs SDS coated MWCNTs/SDS were homeoenergetics. Homoenergetics means that the solute retention has an identical physico-chemical basis and the differences observed in the magnitude of solute retention on the various PSPs are attributed to differences in the nonpolar phase ratios of the PSPs under otherwise the same electrolyte composition. Conversely, homeoenergetics signifies that the solute retention has a similar physico-chemical basis in the PSPs systems under investigation, which also differ in their phase ratios.
Collapse
Affiliation(s)
- Sarah Alharthi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, United States
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, United States.
| |
Collapse
|
12
|
Alharthi S, El Rassi Z. CE with multi-walled carbon nanotubes (MWCNTs). Part II. SDS coated functionalized MWCNTs as pseudo-stationary phases in nanoparticle EKC - Retention behaviors of small and large solutes. Talanta 2018; 192:545-552. [PMID: 30348428 DOI: 10.1016/j.talanta.2018.09.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/25/2022]
Abstract
In this study, functionalized multi-walled carbon nanotubes (MWCNTs), namely hydroxylated MWCNTs (MWCNT-OH), carboxylated MWCNTs (MWCNT-COOH) and sulfonated MWCNTs (MWCNT-SO3H) coated with sodium dodecyl sulfate (SDS) were demonstrated as effective pseudo-stationary phases (PSPs) in the separation of various species by the nanoparticle capillary electrokinetic chromatography (NPEKC) mode of capillary electrophoresis (CE). Due to the significant increase in their surface charge density in the presence of SDS, the three SDS coated MWCNTs yielded high performance separation for herbicides, barbiturates, dansyl-DL-amino acids (Dns-AAs), dipeptides and proteins by NPEKC. In addition, high resolution tryptic peptide maps of three standard proteins including myoglobin, cytochrome C and lysozyme were readily obtained. The three PSPs systems yielded high plate numbers that spanned a wide range of values depending on the type of species. The values of the observed selectivity factors (i.e., α values) were significantly different among the three PSPs for solutes that underwent strong interactions with the SDS coated functionalized MWCNTs while for negatively charged solutes (e.g., Dns-AAs) of the same charge sign as the PSPs the α values were about the same on the three different PSPs indicating weak association with the PSPs and signaling separation based chiefly on the differences in electro-migration arising from differences in charge-to-mass ratios.
Collapse
Affiliation(s)
- Sarah Alharthi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, USA
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, USA.
| |
Collapse
|