1
|
Li B, Xiang G, Huang G, Jiang X, He L. Self-exothermic reaction assisted green synthesis of carbon dots for the detection of para-nitrophenol and β-glucosidase activity. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
2
|
Skolariki TA, Chatzimitakos TG, Sygellou L, Stalikas CD. Two-Birds-with-One-Stone Synthesis of Hydrophilic and Hydrophobic Fluorescent Carbon Nanodots from Dunaliella salina Biomass as 4-Nitrophenol Nanoprobes Based on Inner Filter Effect and First Derivative Redshift of Emission Band. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101689. [PMID: 37242105 DOI: 10.3390/nano13101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
4-Nitrophenol (4-NP) has been listed as a priority pollutant and has also been reported as a human urinary metabolite used as a marker to evaluate exposure to certain pesticides. In the work herein, a solvothermal approach is applied to the one-pot synthesis of both hydrophilic and hydrophobic fluorescent carbon nanodots (CNDs), utilizing the halophilic microalgae Dunaliella salina as a biomass precursor. Both kinds of the produced CNDs showed appreciable optical properties and quantum yields, good photostability and they were capable of probing 4-NP by quenching their fluorescence through the inner filter effect. Interestingly, a prominent 4-NP concentration-dependent redshift of the corresponding emission band of the hydrophilic CNDs was noticed, which was further exploited, for the first time, as an analytical platform. Capitalizing on these properties, analytical methods were developed and applied to a variety of matrixes, such as tap water, treated municipal wastewater and human urine. The method based on the hydrophilic CNDs (λex/λem: 330/420 nm) was linear in the range of 0.80-45.0 μM and showed acceptable recoveries (from 102.2 to 113.7%) with relative standard deviations of 2.1% (intra-day) and 2.8% (inter-day) for the quenching-based detection mode and 2.9% (intra-day) and 3.5% (inter-day) for the redshift one. The method based on the hydrophobic CNDs (λex/λem: 380/465 nm) was linear in the range of 1.4-23.0 μM, with recoveries laying within the range of 98.2-104.5% and relative standard deviations of 3.3% and 4.0% for intra-day and inter-day assays, respectively.
Collapse
Affiliation(s)
- Thomais A Skolariki
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Theodoros G Chatzimitakos
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Lamprini Sygellou
- Foundation for Research and Technology Hellas/Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou Str., P.O. Box 1414, 26504 Rio-Patras, Greece
| | - Constantine D Stalikas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
3
|
Wang S, Zhang T, Jia L, Yang P, He P, Xiao F, Zhou P, Wang Y, Wang X. Electrochemical reduction of nickel selenide/reduced graphene oxide nanocomposites: highly sensitive detection of 4-nitrophenol. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Electrochemical detection of methyl parathion using calix[6]arene/bismuth ferrite/multiwall carbon nanotube-modified fluorine-doped tin oxide electrode. Mikrochim Acta 2022; 189:461. [DOI: 10.1007/s00604-022-05562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022]
|
5
|
Microchip electrophoresis and electrochemical detection: A review on a growing synergistic implementation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Silva Junior GJ, Selva JSG, Sukeri A, Gonçalves JM, Regiart M, Bertotti M. Fabrication of dendritic nanoporous gold via a two-step amperometric approach: Application for electrochemical detection of methyl parathion in river water samples. Talanta 2021; 226:122130. [PMID: 33676684 DOI: 10.1016/j.talanta.2021.122130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
In this work, nanoporous gold (NPG) was prepared according to three different approaches, such as (i) anodization-electrochemical reduction (A-ECR, NPGA), (ii) dynamic hydrogen bubble template (DHBT, NPGB), and (iii) the combination of both methods (NPGA+B). Field-emission scanning electron microscopy (FE-SEM) and cyclic voltammetry (CV) were used to investigate the structural morphology and the electrochemical behavior of the fabricated materials. The NPGA+B electrode showed a large amount of surface defects and/or edges, greater electrochemical surface area (2.5 cm2), and increased roughness factor (35.4). Such outstanding features of the NPGA+B platform were demonstrated by the sensitive detection of methyl parathion (MP) in river water samples. CV results indicated nearly 25-fold, 6-fold, and 2.5-fold higher sensitivity for NPGA+B compared to that of bare Au, NPGA, and NPGB, respectively. Differential pulse voltammetry (DPV) results show a linear behavior in the MP concentration range of 5-50 ng mL-1 with a limit of detection (LOD) of 0.6 ng mL-1 and limit of quantification (LOQ) of 2.0 ng mL-1. Besides, the NPGA+B sensor also revealed excellent selectivity towards MP detection in the presence of other interfering molecules or ions, reproducibility, and repeatability.
Collapse
Affiliation(s)
- Gilberto J Silva Junior
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748, 05513-970, São Paulo, SP, Brazil
| | - Jéssica Soares Guimarães Selva
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748, 05513-970, São Paulo, SP, Brazil
| | - Anandhakumar Sukeri
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400 - Parque Arnold Schimidt, PO Box 369, CEP-13566-590, São Carlos, São Paulo, Brazil
| | - Josué M Gonçalves
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748, 05513-970, São Paulo, SP, Brazil
| | - Matias Regiart
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748, 05513-970, São Paulo, SP, Brazil.
| | - Mauro Bertotti
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748, 05513-970, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Wang X, Liu Y, Wang Q, Bu T, Sun X, Jia P, Wang L. Nitrogen, silicon co-doped carbon dots as the fluorescence nanoprobe for trace p-nitrophenol detection based on inner filter effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118876. [PMID: 32920501 DOI: 10.1016/j.saa.2020.118876] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
P-nitrophenol (PNP) has been widely applied to industry processing for many purposes, but the persistence and toxicity of residuum may pose risks to human health. To analyze PNP in industrial and agricultural wastewater, a versatile fluorescent probe sensing platform was proposed. In this work, we devised a fluorescence approach that utilized nitrogen, silicon co-doped carbon dots (N,Si-CDs) to monitor PNP originating from the inner filter effect (IFE). The N,Si-CDs were generated in a one-step hydrothermal synthesis, and which possessed outstanding fluorescence signal and water-dispersity. Emission at 441 nm was monitored with excitation at 360 nm using a common spectrofluorometer. The method achieved an exceptionally low limit of detection (LOD) of 0.011 μM. Furthermore, this method not only eliminates the interference from metal ions and acid ions, but also provides a potential application prospect for N,Si-CDs in the field of water monitoring. Analysis of tap and lake water led to 93.30-106.30% recoveries and <1% relative standard deviation at 2.5-25 μM PNP concentrations.
Collapse
Affiliation(s)
- Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yingnan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Qinzhi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Pei Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
8
|
Meng Z, Bi J, Zhang Q, Ren H, Qin W. Recent advances in nanomaterial-assisted detection coupled with capillary and microchip electrophoresis. Electrophoresis 2020; 42:269-278. [PMID: 33159339 DOI: 10.1002/elps.202000293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022]
Abstract
Nanomaterials have drawn much attention because of their unique properties enabling them to play important roles in various applications in different areas. This review covers literature data in the Web of Science from January 2017 to August 2020, focusing on the applications of nanomaterials (nanoparticles, quantum dots, nanotubes, and graphene) in CE and MCE to achieve enhanced sensitivity of several detection techniques: fluorescence, colorimetry, amperometry, and chemiluminescence /electrochemiluminescence. For the articles surveyed, the types of nanomaterials used, detection mechanisms, analytical performance, and applications are presented and discussed.
Collapse
Affiliation(s)
- Zhao Meng
- College of Chemistry, Beijing Normal University, Beijing, P. R. China
| | - Junmin Bi
- College of Chemistry, Beijing Normal University, Beijing, P. R. China
| | - Qianqian Zhang
- College of Chemistry, Beijing Normal University, Beijing, P. R. China
| | - Hang Ren
- College of Chemistry, Beijing Normal University, Beijing, P. R. China
| | - Weidong Qin
- College of Chemistry, Beijing Normal University, Beijing, P. R. China
| |
Collapse
|
9
|
Ragab MAA, El-Kimary EI. Recent Advances and Applications of Microfluidic Capillary Electrophoresis: A Comprehensive Review (2017-Mid 2019). Crit Rev Anal Chem 2020; 51:709-741. [PMID: 32447968 DOI: 10.1080/10408347.2020.1765729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microfluidic capillary electrophoresis (MCE) is the novel technique resulted from the CE mininaturization as planar separation and analysis device. This review presents and discusses various application fields of this advanced technology published in the period 2017 till mid-2019 in eight different sections including clinical, biological, single cell analysis, environmental, pharmaceuticals, food analysis, forensic and ion analysis. The need for miniaturization of CE and the consequence advantages achieved are also discussed including high-throughput, miniaturized detection, effective separation, portability and the need for micro- or even nano-volume of samples. Comprehensive tables for the MCE applications in the different studied fields are provided. Also, figure comparing the number of the published papers applying MCE in the eight discussed fields within the studied period is included. The future investigation should put into consideration the possibility of replacing conventional CE with the MCE after proper validation. Suitable validation parameters with their suitable accepted ranges should be tailored for analysis methods utilizing such unique technique (MCE).
Collapse
Affiliation(s)
- Marwa A A Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, El-Messalah, Alexandria, Egypt
| | - Eman I El-Kimary
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, El-Messalah, Alexandria, Egypt
| |
Collapse
|
10
|
Xicota L, Ichou F, Lejeune FX, Colsch B, Tenenhaus A, Leroy I, Fontaine G, Lhomme M, Bertin H, Habert MO, Epelbaum S, Dubois B, Mochel F, Potier MC. Multi-omics signature of brain amyloid deposition in asymptomatic individuals at-risk for Alzheimer's disease: The INSIGHT-preAD study. EBioMedicine 2019; 47:518-528. [PMID: 31492558 PMCID: PMC6796577 DOI: 10.1016/j.ebiom.2019.08.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND One of the biggest challenge in Alzheimer's disease (AD) is to identify pathways and markers of disease prediction easily accessible, for prevention and treatment. Here we analysed blood samples from the INveStIGation of AlzHeimer's predicTors (INSIGHT-preAD) cohort of elderly asymptomatic individuals with and without brain amyloid load. METHODS We performed blood RNAseq, and plasma metabolomics and lipidomics using liquid chromatography-mass spectrometry on 48 individuals amyloid positive and 48 amyloid negative (SUVr cut-off of 0·7918). The three data sets were analysed separately using differential gene expression based on negative binomial distribution, non-parametric (Wilcoxon) and parametric (correlation-adjusted Student't) tests. Data integration was conducted using sparse partial least squares-discriminant and principal component analyses. Bootstrap-selected top-ten features from the three data sets were tested for their discriminant power using Receiver Operating Characteristic curve. Longitudinal metabolomic analysis was carried out on a subset of 22 subjects. FINDINGS Univariate analyses identified three medium chain fatty acids, 4-nitrophenol and a set of 64 transcripts enriched for inflammation and fatty acid metabolism differentially quantified in amyloid positive and negative subjects. Importantly, the amounts of the three medium chain fatty acids were correlated over time in a subset of 22 subjects (p < 0·05). Multi-omics integrative analyses showed that metabolites efficiently discriminated between subjects according to their amyloid status while lipids did not and transcripts showed trends. Finally, the ten top metabolites and transcripts represented the most discriminant omics features with 99·4% chance prediction for amyloid positivity. INTERPRETATION This study suggests a potential blood omics signature for prediction of amyloid positivity in asymptomatic at-risk subjects, allowing for a less invasive, more accessible, and less expensive risk assessment of AD as compared to PET studies or lumbar puncture. FUND: Institut Hospitalo-Universitaire and Institut du Cerveau et de la Moelle Epiniere (IHU-A-ICM), French Ministry of Research, Fondation Alzheimer, Pfizer, and Avid.
Collapse
Affiliation(s)
- Laura Xicota
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France
| | - Farid Ichou
- ICANalytcis Platforms, Institute of Cardiometabolism and Nutrition ICAN, Paris, France
| | - François-Xavier Lejeune
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France
| | - Benoit Colsch
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, MetaboHUB, Gif-sur-Yvette, France
| | - Arthur Tenenhaus
- Laboratoire des Signaux et Systèmes, CentraleSupélec, Université Paris-Saclay, Gif sur Yvette, France
| | - Inka Leroy
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France
| | - Gaëlle Fontaine
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France
| | - Marie Lhomme
- ICANalytcis Platforms, Institute of Cardiometabolism and Nutrition ICAN, Paris, France
| | - Hugo Bertin
- Centre Acquisition et Traitement des Images, Paris, France
| | - Marie-Odile Habert
- Laboratoire d'Imagerie Biomédicale, Nuclear Medicine Department, Sorbonne Université, Hôpital de la Salpêtrière, Paris, France
| | - Stéphane Epelbaum
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France; Centre des Maladies Cognitives et Comportementales, Sorbonne Université, Hôpital de la Salpêtrière, Paris, France; Inria, Aramis-Project Team, Paris, France
| | - Bruno Dubois
- Centre des Maladies Cognitives et Comportementales, Sorbonne Université, Hôpital de la Salpêtrière, Paris, France
| | - Fanny Mochel
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France.
| | - Marie-Claude Potier
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France.
| |
Collapse
|
11
|
Crocomo PZ, Winiarski JP, Barros MR, Latocheski E, Nagurniak GR, Parreira RLT, Siebert DA, Micke GA, Magosso HA, Jost CL. Silver Nanoparticles‐Silsesquioxane Nanomaterial Applied to the Determination of 4‐Nitrophenol as a Biomarker. ELECTROANAL 2019. [DOI: 10.1002/elan.201900217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Paola Zimmermann Crocomo
- Universidade Federal de Santa CatarinaDepartamento de Química 88040-900 Florianópolis – SC Brazil
| | - João Paulo Winiarski
- Universidade Federal de Santa CatarinaDepartamento de Química 88040-900 Florianópolis – SC Brazil
| | - Marília Reginato Barros
- Universidade Federal de Santa CatarinaDepartamento de Química 88040-900 Florianópolis – SC Brazil
| | - Eloah Latocheski
- Universidade Federal de Santa CatarinaDepartamento de Química 88040-900 Florianópolis – SC Brazil
| | | | - Renato Luis Tame Parreira
- Universidade de FrancaNúcleo de Pesquisas em Ciências Exatas e Tecnológicas 14404-600 Franca – SP Brazil
| | - Diogo Alexandre Siebert
- Universidade Federal de Santa CatarinaDepartamento de Química 88040-900 Florianópolis – SC Brazil
| | - Gustavo Amadeu Micke
- Universidade Federal de Santa CatarinaDepartamento de Química 88040-900 Florianópolis – SC Brazil
| | - Hérica Aparecida Magosso
- Universidade Federal de Santa CatarinaDepartamento de Química 88040-900 Florianópolis – SC Brazil
| | - Cristiane Luisa Jost
- Universidade Federal de Santa CatarinaDepartamento de Química 88040-900 Florianópolis – SC Brazil
| |
Collapse
|
12
|
Sensitive amperometric detection for capillary electrophoresis of phenol carbamates with in‐line thermal hydrolysis strategy. Electrophoresis 2019; 40:1648-1655. [DOI: 10.1002/elps.201800484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022]
|
13
|
Zhou Y, Zhao J, Li S, Guo M, Fan Z. An electrochemical sensor for the detection of p-nitrophenol based on a cyclodextrin-decorated gold nanoparticle–mesoporous carbon hybrid. Analyst 2019; 144:4400-4406. [DOI: 10.1039/c9an00722a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A novel electrochemical sensor based on a cyclodextrin-decorated gold nanoparticle–mesoporous carbon hybrid was constructed for the detection of p-nitrophenol.
Collapse
Affiliation(s)
- Yongying Zhou
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- P.R. China
| | - Jin Zhao
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- P.R. China
| | - Shenghua Li
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- P.R. China
| | - Minjie Guo
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- P.R. China
| | - Zhi Fan
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- P.R. China
| |
Collapse
|
14
|
Sierra T, Crevillen AG, Escarpa A. Electrochemical detection based on nanomaterials in CE and microfluidic systems. Electrophoresis 2018; 40:113-123. [DOI: 10.1002/elps.201800281] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Tania Sierra
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering; University of Alcala; Madrid Spain
- Chemical Research Institute “Andrés M. del Río” (IQAR); University of Alcalá; Madrid Spain
| | - Agustin G. Crevillen
- Department of Analytical Sciences; Faculty of Sciences; Universidad Nacional de Educación a Distancia (UNED); Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering; University of Alcala; Madrid Spain
- Chemical Research Institute “Andrés M. del Río” (IQAR); University of Alcalá; Madrid Spain
| |
Collapse
|