1
|
Norouzi H, Dastan D, Abdullah FO, Al-Qaaneh AM. Recent advances in methods of extraction, pre-concentration, purification, identification, and quantification of kaempferol. J Chromatogr A 2024; 1735:465297. [PMID: 39243588 DOI: 10.1016/j.chroma.2024.465297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
As a naturally widely-occurring dietary, cosmetic, and therapeutic flavonoid, kaempferol has gained much consideration for its nutritional and pharmaceutical properties in recent years. Although there have been performed a high number of studies associated with different aspects of kaempferol's analytical investigations, the lack of a comprehensive summary of the various methods and other plant sources that have been reported for this compound is being felt, especially for many biological applications. This study, aimed to provide a detailed compilation consisting of sources (plant species) and analytical information that was precisely related to the natural flavonoid (kaempferol). There is a trend in analytical research that supports the application of modern eco-friendly instruments and methods. In conclusion, ultrasound-assisted extraction (UAE) is the most general advanced method used widely today for the extraction of kaempferol. During recent years, there is an increasing tendency towards the identification of kaempferol by different methods.
Collapse
Affiliation(s)
- Hooman Norouzi
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fuad O Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq; Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq.
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt 19117 Jordan
| |
Collapse
|
2
|
Capillary electrophoresis in phytochemical analysis: Advances and applications in the period 2018–2021. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
3
|
Lis H, Paszkiewicz M, Godlewska K, Maculewicz J, Kowalska D, Stepnowski P, Caban M. Ionic liquid-based functionalized materials for analytical chemistry. J Chromatogr A 2022; 1681:463460. [DOI: 10.1016/j.chroma.2022.463460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022]
|
4
|
Semail NF, Abdul Keyon AS, Saad B, Kamaruzaman S, Mohamad Zain NN, Lim V, Miskam M, Wan Abdullah WN, Yahaya N, Chen DDY. Simultaneous preconcentration and determination of sulfonamide antibiotics in milk and yoghurt by dynamic pH junction focusing coupled with capillary electrophoresis. Talanta 2022; 236:122833. [PMID: 34635223 DOI: 10.1016/j.talanta.2021.122833] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
A dynamic pH junction was used in capillary electrophoresis (CE-DAD) to on-line preconcentrate, separate, and determine trace amounts of sulfonamide antibiotics (SAs) in milk and yoghurt samples in this study. A sample matrix with 0.15% acetic acid and 10% methanol (MeOH) at a pH of 4.0, and a background electrolyte (BGE) that contained 35 mM sodium citrate with 10% MeOH at a pH of 8.5, and an acidic barrage of 0.4% acetic acid with 10% MeOH at a pH of 2.5 were utilised to achieve a stacking effect for SAs through a dynamic pH junction. Under optimised conditions, the proposed preconcentration method showed good linearity (30-500 ng/mL, r2 ≥ 0.9940), low limits of detection (LODs) of 4.1-6.3 ng/mL, and acceptable analytes recovery (81.2-106.9%) with relative standard deviations (RSDs) within 5.3-13.7 (n = 9). The limits of quantification (LOQs) were below the maximum residue limit approved by the European Union (EU) in this type of matrices. Sensitivity enhancement factors of up to 129 were reached with the optimised dynamic pH junction using CE with a diode array detector (DAD). The method was used to determine SAs in fresh milk, low-fat milk, full-cream milk, and yoghurt samples.
Collapse
Affiliation(s)
- Nadhiratul-Farihin Semail
- Integrative Medicine Clusters, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Aemi Syazwani Abdul Keyon
- Department of Chemistry, Faculty of Science and Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - Bahruddin Saad
- Fundamental & Applied Sciences Department, Universiti Teknologi PETRONAS, 32601, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Sazlinda Kamaruzaman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Integrative Medicine Clusters, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Vuanghao Lim
- Integrative Medicine Clusters, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Mazidatulakmam Miskam
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, USM Pulau Pinang, Malaysia
| | | | - Noorfatimah Yahaya
- Integrative Medicine Clusters, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - David D Y Chen
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada.
| |
Collapse
|
5
|
Yeast Synthetic Biology for the Production of Lycium barbarum Polysaccharides. Molecules 2021; 26:molecules26061641. [PMID: 33804230 PMCID: PMC8000229 DOI: 10.3390/molecules26061641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
The fruit of Lycium barbarum L. (goji berry) is used as traditional Chinese medicine, and has the functions of immune regulation, anti-tumor, neuroprotection, anti-diabetes, and anti-fatigue. One of the main bioactive components is L. barbarum polysaccharide (LBP). Nowadays, LBP is widely used in the health market, and it is extracted from the fruit of L. barbarum. The planting of L. barbarum needs large amounts of fields, and it takes one year to harvest the goji berry. The efficiency of natural LBP production is low, and the LBP quality is not the same at different places. Goji berry-derived LBP cannot satisfy the growing market demands. Engineered Saccharomyces cerevisiae has been used for the biosynthesis of some plant natural products. Recovery of LBP biosynthetic pathway in L. barbarum and expression of them in engineered S. cerevisiae might lead to the yeast LBP production. However, information on LBP biosynthetic pathways and the related key enzymes of L. barbarum is still limited. In this review, we summarized current studies about LBP biosynthetic pathway and proposed the strategies to recover key enzymes for LBP biosynthesis. Moreover, the potential application of synthetic biology strategies to produce LBP using engineered S. cerevisiae was discussed.
Collapse
|
6
|
Yang S, Ma S, Zhu K, Wang M, Li J, Arabi M, Liu H, Li Y, Chen L. Simultaneous enrichment/determination of six sulfonamides in animal husbandry products and environmental waters by pressure-assisted electrokinetic injection coupled with capillary zone electrophoresis. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Lou C, Zheng M, Xu Y, Shen Y, Kang J. Detection of 2,2′-Azobis(2-amidinopropane) Dihydrochloride in Polyvinylpyrrolidone by Capillary Electrophoresis with Field-Amplified Sample Injection. Chromatographia 2019. [DOI: 10.1007/s10337-019-03765-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Wang W, Yang J. Advances in screening enzyme inhibitors by capillary electrophoresis. Electrophoresis 2019; 40:2075-2083. [DOI: 10.1002/elps.201900013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/06/2019] [Accepted: 05/19/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Wei‐Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources Key Laboratory for Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou P. R. China
| | - Jun‐Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources Key Laboratory for Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou P. R. China
| |
Collapse
|