1
|
Li Z, Lin G, Yang X. Rapid Determination of Galantamine in Human Plasma by Microchip Electrophoresis With a Highly Integrated Contactless Conductivity Detector. J Sep Sci 2024; 47:e70013. [PMID: 39494763 DOI: 10.1002/jssc.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
A novel and rapid method was developed for the determination of galantamine in human plasma by microchip electrophoresis with a highly integrated contactless conductivity detector (CCD). The instrumental parameters affecting the response of the detector, such as excitation frequency and excitation voltage, were examined and optimized. The electrophoresis conditions that influenced the separation and detection of galantamine, including the composition of buffer solution, buffer pH, buffer concentration, additives, injection time, and separation voltage were systematically investigated. Under the optimal conditions, the peak height had a good linear relationship with the concentration of galantamine in human plasma from 10 to 160 µg/L, and the correlation coefficient was 0.9992, the limit of detection reached 1.1 µg/L. The recoveries were between 98.6% and 102.1%. This sensitive, rapid, and convenient method is a good alternative to existing methods for galantamine determination. Also, this highly integrated CCD holds great promise in clinical biochemical analysis.
Collapse
Affiliation(s)
- Zhilei Li
- Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Gangyuan Lin
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiujuan Yang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Li L, Ren DD, Zhang PY, Song YP, Li TX, Gao MH, Xu JN, Zhou L, Zeng ZC, Pu Q. Pushing the Limits of Capacitively Coupled Contactless Conductivity Detection for Capillary Electrophoresis. Anal Chem 2024; 96:10356-10364. [PMID: 38863415 DOI: 10.1021/acs.analchem.4c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) has proven to be an efficient technique for the separation and detection of charged inorganic, organic, and biochemical analytes. It offers several advantages, including cost-effectiveness, nanoliter injection volume, short analysis time, good separation efficiency, suitability for miniaturization, and portability. However, the routine determination of common inorganic cations (NH4+, K+, Na+, Ca2+, Mg2+, and Li+) and inorganic anions (F-, Cl-, Br-, NO2-, NO3-, PO43-, and SO42-) in water quality monitoring typically exhibits limits of detection of about 0.3-1 μM without preconcentration. This sensitivity often proves insufficient for the applications of CE-C4D in trace analysis situations. Here, we explore methods to push the detection limits of CE-C4D through a comprehensive consideration of signal and noise sources. In particular, we (i) studied the model of C4D and its guiding roles in C4D and CE-C4D, (ii) optimized the bandwidth and noise performance of the current-to-voltage (I-V) converter, and (iii) reduced the noise level due to the strong background signal of the background electrolyte by adaptive differential detection. We characterized the system with Li+; the 3-fold signal-to-noise (S/N) detection limit for Li+ was determined at 20 nM, with a linear range spanning from 60 nM to 1.6 mM. Moreover, the optimized CE-C4D method was applied to the analysis of common mixed inorganic cations (K+, Na+, Ca2+, Mg2+, and Li+), anions (F-, Cl-, Br-, NO2-, NO3-, PO43-, and SO42-), toxic halides (BrO3-) and heavy metal ions (Pb2+, Cd2+, Cr3+, Co2+, Ni2+, Zn2+, and Cu2+) at trace concentrations of 200 nM. All electropherograms showed good S/N ratios, thus proving its applicability and accuracy. Our results have shown that the developed CE-C4D method is feasible for trace ion analysis in water quality control.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dou-Dou Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Yu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yun-Peng Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tang-Xiu Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ming-Hui Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jia-Nan Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Lei Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Cong Zeng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Warren CG, Dasgupta PK. Liquid phase detection in the miniature scale. Microfluidic and capillary scale measurement and separation systems. A tutorial review. Anal Chim Acta 2024; 1305:342507. [PMID: 38677834 DOI: 10.1016/j.aca.2024.342507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Microfluidic and capillary devices are increasingly being used in analytical applications while their overall size keeps decreasing. Detection sensitivity for these microdevices gains more importance as device sizes and consequently, sample volumes, decrease. This paper reviews optical, electrochemical, electrical, and mass spectrometric detection methods that are applicable to capillary scale and microfluidic devices, with brief introduction to the principles in each case. Much of this is considered in the context of separations. We do consider theoretical aspects of separations by open tubular liquid chromatography, arguably the most potentially fertile area of separations that has been left fallow largely because of lack of scale-appropriate detection methods. We also examine the theoretical basis of zone electrophoretic separations. Optical detection methods discussed include UV/Vis absorbance, fluorescence, chemiluminescence and refractometry. Amperometry is essentially the only electrochemical detection method used in microsystems. Suppressed conductance and especially contactless conductivity (admittance) detection are in wide use for the detection of ionic analytes. Microfluidic devices, integrated to various mass spectrometers, including ESI-MS, APCI-MS, and MALDI-MS are discussed. We consider the advantages and disadvantages of each detection method and compare the best reported limits of detection in as uniform a format as the available information allows. While this review pays more attention to recent developments, our primary focus has been on the novelty and ingenuity of the approach, regardless of when it was first proposed, as long as it can be potentially relevant to miniature platforms.
Collapse
Affiliation(s)
- Cable G Warren
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, United States
| | - Purnendu K Dasgupta
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, United States.
| |
Collapse
|
4
|
Li L, Song YP, Ren DD, Li TX, Gao MH, Zhou L, Zeng ZC, Pu QA. A compact and high-performance setup of capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C 4D). Analyst 2024; 149:3034-3040. [PMID: 38624147 DOI: 10.1039/d4an00354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) has the advantages of high throughput (simultaneous detection of multiple ions), high separation efficiency (higher than 105 theoretical plates) and rapid analysis capability (less than 5 min for common inorganic ions). A compact CE-C4D system is ideal for water quality control and on-site analysis. It is suitable not only for common cations (e.g. Na+, K+, Li+, NH4+, Ca2+, etc.) and anions (e.g. Cl-, SO42-, BrO3-, etc.) but also for some ions (e.g. lanthanide ions, Pb2+, Cd2+, etc.) that require complex derivatization procedures to be detected by ion chromatography (IC). However, an obvious limitation of the CE-C4D method is that its sensitivity (e.g. 0.3-1 μM for common inorganic ions) is often insufficient for trace analysis (e.g. 1 ppb or 20 nM level for common inorganic ions) without preconcentration. For this technology to become a powerful and routine analytical technique, the system should be made compact while maintaining trace analysis sensitivity. In this study, we developed an all-in-one version of the CE-C4D instrument with custom-made modular components to make it a convenient, compact and high-performance system. The system was designed using direct digital synthesis (DDS) technology to generate programmable sinusoidal waveforms with any frequency for excitation, a kilovolt high-voltage power supply for capillary electrophoresis separation, and an "effective" differential C4D cell with a low-noise circuitry for high-sensitivity detection. We characterized the system with different concentrations of Cs+, and even a low concentration of 20 nM was detectable without preconcentration. Moreover, the optimized CE-C4D setup was applied to analyse mixed ions at a trace concentration of 200 nM with excellent signal-to-noise ratios. In typical applications, the limits of detection based on the 3σ criterion (without baseline filtering) were 9, 10, 24, 5, and 12 nM for K+, Cs+, Li+, Ca2+, and Mg2+, respectively, and about 7, 6, 6 and 6 nM for Br-, ClO4-, BrO3- and SO42-, respectively. Finally, the setup was also applied for the analysis of all 14 lanthanide ions and rare-earth minerals, and it showed an improvement in sensitivity by more than 25 times.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Yun-Peng Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Dou-Dou Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Tang-Xiu Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Ming-Hui Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Lei Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Zhi-Cong Zeng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| | - Qi-Aosheng Pu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China.
| |
Collapse
|
5
|
Dezhakam E, Tavakkol M, Kafili T, Nozohouri E, Naseri A, Khalilzadeh B, Rahbarghazi R. Electrochemical and optical (bio)sensors for analysis of antibiotic residuals. Food Chem 2024; 439:138145. [PMID: 38091787 DOI: 10.1016/j.foodchem.2023.138145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Antibiotic residuals in foods may lead to crucial health and safety issues in the human body. Rapid and in-time analysis of antibiotics using simple and sensitive techniques is in high demand. Among the most commonly applicable modalities, chromatography-based techniques like HPLC and LC-MS, along with immunological approaches, particularly ELISA have been exampled in the analysis of antibiotics. Despite being highly sensitive, these methods are considerably time-consuming, thus the presence of skilled personnel and costly equipment is essential. Nanomaterial-based (bio)sensors, however, are de novo analytical equipment with some beneficial characteristics, such as simplicity, low price, on-site, high accuracy, and sensitivity for the detection of analytes. This review aimed to collect the latest developments in NM-based sensors and biosensors for the observation of highly used antibiotics like Vancomycin (Van), Linezolid (Lin), and Clindamycin (Clin). The current challenges and developmental perspectives are also debated in detail for future research directions.
Collapse
Affiliation(s)
- Ehsan Dezhakam
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Tavakkol
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
| | - Taha Kafili
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Abdolhosein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Wang Y, Li L, Sutton AT, Tu Q, Zhao K, Wen E, Osborn J, Singh A, Gunsch MJ, Rustandi RR, Foley D, He Y. Development of a capillary zone electrophoresis method to monitor magnesium ion consumption during in vitro transcription for mRNA production. Anal Bioanal Chem 2024:10.1007/s00216-024-05242-8. [PMID: 38594392 DOI: 10.1007/s00216-024-05242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
Messenger RNA (mRNA) vaccines represent a landmark in vaccinology, especially with their success in COVID-19 vaccines, which have shown great promise for future vaccine development and disease prevention. As a platform technology, synthetic mRNA can be produced with high fidelity using in vitro transcription (IVT). Magnesium plays a vital role in the IVT process, facilitating the phosphodiester bond formation between adjacent nucleotides and ensuring accurate transcription to produce high-quality mRNA. The development of the IVT process has prompted key inquiries about in-process characterization of magnesium ion (Mg++) consumption, relating to the RNA polymerase (RNAP) activation, fed-batch mode production yield, and mRNA quality. Hence, it becomes crucial to monitor the free Mg++ concentration throughout the IVT process. However, no free Mg++ analysis method has been reported for complex IVT reactions. Here we report a robust capillary zone electrophoresis (CZE) method with indirect UV detection. The assay allows accurate quantitation of free Mg++ for the complex IVT reaction where it is essential to preserve IVT samples in their native-like state during analysis to avoid dissociation of bound Mg complexes. By applying this CZE method, the relationships between free Mg++ concentration, the mRNA yield, and dsRNA impurity level were investigated. Such mechanistic understanding facilitates informed decisions regarding the quantity and timing of feeding starting materials to increase the yield. Furthermore, this approach can serve as a platform method for analyzing the free Mg++ in complex sample matrices where preserving the native-like state of Mg++ binding is key for accurate quantitation.
Collapse
Affiliation(s)
- Ying Wang
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA.
| | - Li Li
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA.
| | - Adam T Sutton
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Qiang Tu
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Kaixi Zhao
- Process Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Emily Wen
- Process Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - James Osborn
- Process Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Andrew Singh
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Matthew J Gunsch
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | | | - David Foley
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Yu He
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| |
Collapse
|
7
|
Bržezická T, Mlčochová H, Glatz Z, Kohútová L. Contactless conductivity detector as a tool for improving universality and sensitivity of capillary electrophoresis-frontal analysis: Proof of concept. J Sep Sci 2024; 47:e2300667. [PMID: 38234025 DOI: 10.1002/jssc.202300667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Drug binding to plasma proteins influences processes such as liberation, adsorption, disposition, metabolism, and elimination of drugs, which are thus one of the key steps of a new drug development. As a result, the characterization of drug-protein interactions is an essential part of these time- and money-consuming processes. It is important to determine not only the binding strength and the stoichiometry of interaction, but also the binding site of a drug on a protein molecule, because two drugs with the same binding site can mutually affect free drug concentration. Capillary electrophoresis-frontal analysis with mobility shift affinity capillary electrophoresis is one of the most used affinity capillary electrophoresis methods for the characterization of these interactions. In this study, a well-known sensitivity problem of most capillary electrophoresis-frontal analyses using ultraviolet detection is solved by its combination with contactless conductivity detection, which provided sixfold lower limits of quantitation and detection. Binding parameters of the human serum albumin-salicylic acid model affinity pair were evaluated by this newly developed approach and by the classical approach with ultraviolet detection primarily used for their mutual comparison. The results of both approaches agreed well and are also in agreement with literature data obtained using different techniques.
Collapse
Affiliation(s)
- Taťána Bržezická
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hana Mlčochová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Kohútová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
8
|
Santos HI, Pinheiro KMP, Richter EM, Coltro WKT. Determination of scopolamine and butylscopolamine in beverages, urine and Buscopan® tablets samples using electrophoresis microchip with integrated contactless conductivity detection. Talanta 2024; 266:124960. [PMID: 37487267 DOI: 10.1016/j.talanta.2023.124960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/16/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
The number of cases in which scopolamine (SCO) was used for both recreational and predatory purposes has increased dramatically in recent decades. Linked to this, there is a concern about obtaining SCO through thermal degradation of butylscopolamine (BSCO) - an active ingredient of Buscopan® - a drug sold without a medical prescription. In this study, mixtures containing SCO and BSCO were separated and detected on a microchip electrophoresis (ME) device with integrated capacitively coupled contactless conductivity detection (C4D) using a running buffer composed of 40 mmol L-1 of butyric acid and 25 mmol L-1 of sodium hydroxide (pH 5.0). The separation was performed within ca. 115 s with a resolution of 1.3 and separation efficiency ranging from 1.4 × 105 to 1.5 × 105 theoretical plates m-1. A detection limit of 1.1 μmol L-1 was achieved for both species and the developed method revealed satisfactory repeatability with relative standard deviation (RSD) values for forty-eight injections between 4.8 and 9.4% for peak areas and lower than 3.3% for migration times. Furthermore, inter-day precision was evaluated for sixteen injections (a sequence of four injections performed over four days), and RSD values were less than 6.6% for peak areas and 2.2% for migration times. Satisfactory recovery values (95-114%) were obtained for all evaluated beverage samples (cachaça, vodka, whiskey, beer, Coca-Cola, and grape juice) as well as for artificial urine samples (95-107%). Finally, the conversion of BSCO into SCO was observed after simple heating procedure of Buscopan® sample (not subject to medical prescription), which was successfully confirmed through analysis by capillary electrophoresis coupled to the mass spectrometry (CE-MS). Based on the reported results, the use of ME-C4D devices has demonstrated a huge potential for applications in the forensic chemistry field.
Collapse
Affiliation(s)
- Hellen I Santos
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Kemilly M P Pinheiro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Eduardo M Richter
- Instituto de Química, Universidade Federal de Uberlândia, 38408-100, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|
9
|
Novel developments in capillary electrophoresis miniaturization, sampling, detection and portability: An overview of the last decade. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Abstract
Isotachophoresis (ITP) is a versatile electrophoretic technique that can be used for sample preconcentration, separation, purification, and mixing, and to control and accelerate chemical reactions. Although the basic technique is nearly a century old and widely used, there is a persistent need for an easily approachable, succinct, and rigorous review of ITP theory and analysis. This is important because the interest and adoption of the technique has grown over the last two decades, especially with its implementation in microfluidics and integration with on-chip chemical and biochemical assays. We here provide a review of ITP theory starting from physicochemical first-principles, including conservation of species, conservation of current, approximation of charge neutrality, pH equilibrium of weak electrolytes, and so-called regulating functions that govern transport dynamics, with a strong emphasis on steady and unsteady transport. We combine these generally applicable (to all types of ITP) theoretical discussions with applications of ITP in the field of microfluidic systems, particularly on-chip biochemical analyses. Our discussion includes principles that govern the ITP focusing of weak and strong electrolytes; ITP dynamics in peak and plateau modes; a review of simulation tools, experimental tools, and detection methods; applications of ITP for on-chip separations and trace analyte manipulation; and design considerations and challenges for microfluidic ITP systems. We conclude with remarks on possible future research directions. The intent of this review is to help make ITP analysis and design principles more accessible to the scientific and engineering communities and to provide a rigorous basis for the increased adoption of ITP in microfluidics.
Collapse
Affiliation(s)
- Ashwin Ramachandran
- Department
of Aeronautics and Astronautics, Stanford
University, Stanford, California 94305, United States
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Multi-channel contactless conductivity detection device for online detection of free-flow electrophoresis separation. Se Pu 2022; 40:384-390. [PMID: 35362686 PMCID: PMC9404027 DOI: 10.3724/sp.j.1123.2021.11011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
现有自由流电泳(FFE)装置因不具备在线检测功能,其实用性仍然存在明显不足。针对这一问题,该工作发展了一种多通道电容耦合式非接触电导检测(MC-C4D)装置并开发了自动测量软件。MC-C4D装置采用了并行分时的非接触电导检测技术,即由多个同样的非接触电导检测模块并行排列,而单个电导检测模块又由多个非接触电导检测池组成,采用模拟开关切换这些检测池,能够分时检测流经相应检测池溶液的电导率。多个电导检测模块的检测池总数等于FFE的组分数,它们分别串行接入到FFE各流路中,这样MC-C4D装置就可在线并行分时在线测量各组分溶液的电导率。为验证所设计MC-C4D装置的检测性能,采用配制的氯化钾标准溶液作为检测对象对MC-C4D装置进行了标定和测试。实验数据表明,MC-C4D装置电导率检测范围为0.015~2.5 mS/cm,检出限(LOD)为0.002 mS/cm,日内相对标准偏差(RSD, n=3)为2.31%,测量相对误差(RE)为3.03%和通道间测量相对偏差为1.60%,这些参数表明该装置检测范围较大,LOD低,重复性好,准确性高,通道间测量相对偏差小。另外,将MC-C 4D装置应用于往复式自由流等电聚焦电泳(RFFIEF)在蛋白质聚焦过程中对各组分溶液电导率进行实时在线检测,结果表明,所开发的MC-C4D装置不仅可实现对FFE各组分溶液电导率的实时在线检测,而且还可在RFFIEF实验中辅助掌握分离的实验进度,提高FFE装置的实用性。
Collapse
|
12
|
Štěpánová S, Kašička V. Applications of capillary electromigration methods for separation and analysis of proteins (2017–mid 2021) – A review. Anal Chim Acta 2022; 1209:339447. [DOI: 10.1016/j.aca.2022.339447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
|
13
|
Liu W, Liang Z, Wang Y, Cao J, Zhang Q, Liu X, Wang Y, Cao C. A facile online multi-gear capacitively coupled contactless conductivity detector for an automatic and wide range monitoring of high salt in HPLC. Analyst 2022; 147:496-504. [DOI: 10.1039/d1an02249k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensing the electrolyte solution or aqueous–organic mixture has attracted much interest in chemical separation, pharmaceutical engineering, bioprocess, and biochemical experiments.
Collapse
Affiliation(s)
- Weiwen Liu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziqi Liang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanyu Wang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Zhang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoping Liu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuxing Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengxi Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Alhusban AA, Hamadneh LA, Albustanji S, Shallan AI. Lactate and pyruvate levels correlation with lactate dehydrogenase gene expression and glucose consumption in Tamoxifen-resistant MCF-7 cells using capillary electrophoresis with contactless conductivity detection (CE-C 4 D). Electrophoresis 2021; 43:446-455. [PMID: 34687464 DOI: 10.1002/elps.202100217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/11/2022]
Abstract
Breast cancer is the second leading cause of cancer death in women after lung cancer. The first-line treatment of metastatic breast cancer in premenopausal women relies on tamoxifen. The development of tamoxifen resistance is not fully understood. In this study, capillary electrophoresis with capacitively coupled contactless conductivity detector was developed to monitor the changes in lactate and pyruvate levels in supernatant media of three models of developed MCF-7 tamoxifen-resistant cells and correlate these metabolites changes with lactate dehydrogenase genes expression and glucose consumption. The electrophoretic separation was achieved under reversed electroosmotic flow conditions. The linear ranges were 0.15-5 and 0.01-1 mM with a correlation coefficient of 0.9966 and 0.9971 and the limits of detection were 0.01 and 0.02 μM for lactate and pyruvate, respectively. Inter- and intrarun accuracy were in the range of 96.88-105.94% with precision (CV, %) of ≤7.35%. The method was completely validated and the results were in agreement with those obtained using the lactate and glucose assay kits. The results revealed a significant increase in both lactate and pyruvate production in the three tamoxifen-resistant MCF-7 cells models compared to control cells. This increase was correlated with the increase of lactate dehydrogenase genes expression and the increase of glucose consumption.
Collapse
Affiliation(s)
- Ala A Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Lama A Hamadneh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Sokiyna Albustanji
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Aliaa I Shallan
- Department of Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
15
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis 2021; 43:82-108. [PMID: 34632606 DOI: 10.1002/elps.202100243] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The review provides a comprehensive overview of developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical characterization of peptides from 2019 up to approximately the middle of 2021. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis, such as sample preparation, sorption suppression, EOF control, and detection, are presented. New developments in the individual CE and CEC methods are demonstrated and several types of their applications are shown. They include qualitative and quantitative analysis, determination in complex biomatrices, monitoring of chemical and enzymatic reactions and physicochemical changes, amino acid, sequence, and chiral analyses, and peptide mapping of proteins. In addition, micropreparative separations and determination of significant physicochemical parameters of peptides by CE and CEC methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
16
|
He Y, Huang Q, He Y, Ji H, Zhang T, Wang B, Huang Z. A Low Excitation Working Frequency Capacitively Coupled Contactless Conductivity Detection (C 4D) Sensor for Microfluidic Devices. SENSORS 2021; 21:s21196381. [PMID: 34640701 PMCID: PMC8512373 DOI: 10.3390/s21196381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
In this work, a new capacitively coupled contactless conductivity detection (C4D) sensor for microfluidic devices is developed. By introducing an LC circuit, the working frequency of the new C4D sensor can be lowered by the adjustments of the inductor and the capacitance of the LC circuit. The limits of detection (LODs) of the new C4D sensor for conductivity/ion concentration measurement can be improved. Conductivity measurement experiments with KCl solutions were carried out in microfluidic devices (500 µm × 50 µm). The experimental results indicate that the developed C4D sensor can realize the conductivity measurement with low working frequency (less than 50 kHz). The LOD of the C4D sensor for conductivity measurement is estimated to be 2.2 µS/cm. Furthermore, to show the effectiveness of the new C4D sensor for the concentration measurement of other ions (solutions), SO42− and Li+ ion concentration measurement experiments were also carried out at a working frequency of 29.70 kHz. The experimental results show that at low concentrations, the input-output characteristics of the C4D sensor for SO42− and Li+ ion concentration measurement show good linearity with the LODs estimated to be 8.2 µM and 19.0 µM, respectively.
Collapse
Affiliation(s)
| | | | | | - Haifeng Ji
- Correspondence: ; Tel.: +86-571-8795-2145
| | | | | | | |
Collapse
|
17
|
Valdés A, Álvarez-Rivera G, Socas-Rodríguez B, Herrero M, Cifuentes A. Capillary electromigration methods for food analysis and Foodomics: Advances and applications in the period February 2019-February 2021. Electrophoresis 2021; 43:37-56. [PMID: 34473359 DOI: 10.1002/elps.202100201] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022]
Abstract
This work presents a revision of the main applications of capillary electromigration methods in food analysis and Foodomics. Articles that were published during the period February 2019-February 2021 are included. The work shows the multiple CE methods that have been developed and applied to analyze different types of molecules in foods. Namely, CE methods have been applied to analyze amino acids, biogenic amines, carbohydrates, chiral compounds, contaminants, DNAs, food additives, heterocyclic amines, lipids, secondary metabolites, peptides, pesticides, phenols, pigments, polyphenols, proteins, residues, toxins, vitamins, small organic and inorganic compounds, as well as other minor compounds. The last results on the use of CE for monitoring food interactions and food processing, including recent microchips developments and new applications of CE in Foodomics, are discussed too. The new procedures of CE to investigate food quality and safety, nutritional value, storage and bioactivity are also included in the present review work.
Collapse
|
18
|
Chip-based separation of organic and inorganic anions and multivariate analysis of wines according to grape varieties. Talanta 2021; 231:122381. [PMID: 33965044 DOI: 10.1016/j.talanta.2021.122381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/22/2022]
Abstract
This report describes the use of electrophoresis microchips integrated with contactless conductivity detection for the determination of organic acids and inorganic anions in wine samples and the subsequent classification based on the grape varieties. The best separation was achieved using a buffer composed of 30 mmol L-1 2-(N-morpholino)ethanesulfonic acid, 15 mmol L-1l-histidine and 0.05 mmol L-1 cetyltrimethylammonium bromide (pH 5.8), allowing the determination of chloride, nitrate, sulfate, oxalate, tartrate, maleate, succinate, citrate, acetate, lactate, pyroglutamate and phosphate within ca. 100 s. The relative standard deviations obtained for the migration times were lower than 2%, while the obtained values for peak areas ranged from 2.5 to 8.4%. The limits of detection achieved for all compounds ranged between 3.0 and 12.6 μmol L-1. A total of 18 wines from Brazil and Chile were successfully investigated, including red, white and rosé, and the anionic species were quantified with recovery values between 92 and 117%. A statistical difference has not been observed between the data obtained by using electrophoresis microchips integrated with contactless conductivity detection (ME-C4D) and capillary electrophoresis with ultra-violet detection (CE-UV) and thus the results from newly developed method is validated. Finally, similarities among the anionic profile of wines were investigated by using a multivariate approach, and it was possible to discriminate samples mainly by grapes varieties. Furthermore, the proposed methodology has provided instrumental simplicity and good analytical performance, demonstrating to be useful for routine quality control of wines.
Collapse
|
19
|
|
20
|
Jaramillo EA, Ferreira Santos MS, Noell AC, Mora MF. Capillary electrophoresis method for analysis of inorganic and organic anions related to habitability and the search for life. Electrophoresis 2021; 42:1956-1964. [PMID: 34287988 DOI: 10.1002/elps.202100134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/08/2022]
Abstract
In situ missions of exploration require analytical methods that are capable of detecting a wide range of molecular targets in complex matrices without a priori assumptions of sample composition. Furthermore, these methods should minimize the number of reagents needed and any sample preparation steps. We have developed a method for the detection of metabolically relevant inorganic and organic anions that is suitable for implementation on in situ spaceflight missions. Using 55 mM acetic acid, 50 mM triethylamine, and 5% glycerol, more than 21 relevant anions are separated in less than 20 min. The method is robust to sample ionic strength, tolerating high concentrations of background salts (up to 900 mM NaCl and 300 mM MgSO4 ). This is an important feature for future missions to ocean worlds. The method was validated using a culture of Escherichia coli and with high salinity natural samples collected from Mono Lake, California.
Collapse
Affiliation(s)
| | | | - Aaron C Noell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Maria F Mora
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
21
|
Investigation of the Effects of Electrode Geometry on the Performance of C 4D Sensor with Radial Configuration. SENSORS 2021; 21:s21134454. [PMID: 34209920 PMCID: PMC8272098 DOI: 10.3390/s21134454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/21/2022]
Abstract
Electrodes are basic components of C4D (capacitively coupled contactless conductivity detection) sensors, and different electrode structures (the configuration pattern or the electrode geometry) can lead to different measurement results. In this work, the effects of electrode geometry of radial configuration on the measurement performance of C4D sensors are investigated. Two geometrical parameters, the electrode length and the electrode angle, are considered. A FEM (finite element method) model based on the C4D method is developed. With the FEM model, corresponding simulation results of conductivity measurement with different electrode geometry are obtained. Meanwhile, practical experiments of conductivity measurement are also conducted. According to the simulation results and experimental results, the optimal electrode geometry of the C4D sensor with radial configuration is discussed and proposed. The recommended electrode length is 5–10 times of the pipe inner diameter and the recommended electrode angle is 120–160°.
Collapse
|
22
|
Figueredo F, Stolowicz F, Vojnov A, Coltro WKT, Larocca L, Carrillo C, Cortón E. Towards a versatile and economic Chagas Disease point-of-care testing system, by integrating loop-mediated isothermal amplification and contactless/label-free conductivity detection. PLoS Negl Trop Dis 2021; 15:e0009406. [PMID: 33989282 PMCID: PMC8153438 DOI: 10.1371/journal.pntd.0009406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/26/2021] [Accepted: 04/25/2021] [Indexed: 01/17/2023] Open
Abstract
Rapid diagnosis by using small, simple, and portable devices could represent one of the best strategies to limit the damage and contain the spread of viral, bacterial or protozoa diseases, principally when they can be transmitted by air and are highly contagious, as some respiratory viruses are. The presence of antibodies in blood or serum samples is not the best option for deciding when a person must be quarantined to stop transmission of disease, given that cured patients have antibodies, so the best diagnosis methods rely on the use of nucleic acid amplification procedures. Here we present a very simple device and detection principle, based on paper discs coupled to contactless conductivity (C4D) sensors, can provide fast and easy diagnostics that are needed when an epidemic outbreak develops. The paper device presented here solves one of the main drawbacks that nucleic acid amplification tests have when they are performed outside of central laboratories. As the device is sealed before amplification and integrally disposed in this way, amplimers release cannot occur, allowing repetitive testing in the physician’s practice, ambulances, or other places that are not prepared to avoid cross-contamination of new samples. The use of very low volume samples allows efficient reagent use and the development of low cost, simple, and disposable point-of-care diagnostic systems. In 2005, the World Health Organization (WHO) recognized Chagas Disease as a neglected tropical disease. Meanwhile the serological tests, recommended by WHO, can be performed for chronic disease diagnosis, the nucleic acid amplification tests must be performed for the detection of the acute phase of the disease. Although the existing laboratory diagnosis tests for Chagas Disease are sensitive and highly reproducible, they cannot be performed in rural, low infrastructure environments, where this disease prevails. In this sense, the use of simple and portable analytical devices may be able to offer an affordable solution to this problem, allowing fast sampling, diagnosis and treatment prescription in one simple and fast intervention, as the performed by short term medical missions. In this study we show for the first time a diagnosis test comprising low cost materials and employing a contactless and label-free conductivity detection system that is used to read the result of a nucleic acid amplification reaction. The test showed high sensitivity for Chagas Disease diagnosis showing the potential to be used in rural and low income places.
Collapse
Affiliation(s)
- Federico Figueredo
- Biological Chemistry Department, Science School and IQUIBICEN (FCEN–UBA-CONICET), Argentine
- Science and Technology Institute Cesar Milstein (ICT–Milstein–CONICET), Argentine
| | - Fabiana Stolowicz
- Science and Technology Institute Cesar Milstein (ICT–Milstein–CONICET), Argentine
| | - Adrián Vojnov
- Science and Technology Institute Cesar Milstein (ICT–Milstein–CONICET), Argentine
| | - Wendell K. T. Coltro
- Chemistry Institute, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
- National Institute of Science and Technology in Bioanalytics, Campinas, Brazil
| | - Luciana Larocca
- Science and Technology Institute Cesar Milstein (ICT–Milstein–CONICET), Argentine
| | - Carolina Carrillo
- Science and Technology Institute Cesar Milstein (ICT–Milstein–CONICET), Argentine
| | - Eduardo Cortón
- Biological Chemistry Department, Science School and IQUIBICEN (FCEN–UBA-CONICET), Argentine
- * E-mail:
| |
Collapse
|
23
|
Graf HG, Rudisch BM, Manegold J, Huhn C. Advancements in capacitance-to-digital converter-based C 4 D technology for detection in capillary electrophoresis using amplified excitation voltages and comparison to classical and open-source C 4 Ds. Electrophoresis 2021; 42:1306-1316. [PMID: 33710630 DOI: 10.1002/elps.202000394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 11/05/2022]
Abstract
This work introduces new hardware configurations for a capacitively coupled contactless conductivity detector (C4 D) based on capacitance-to-digital conversion (CDC) technology for CE. The aim was to improve sensitivity, handling, price, and portability of CDC-based C4 D detectors (CDCD) to reach LODs similar to classic C4 Ds with more sophisticated electric circuits. To achieve this, a systematic study on the CDCDs was carried out including a direct comparison to already established C4 D setups. Instrumental setups differing in electrode lengths, measurement modes, and amplification of excitation voltages were investigated to achieve LODs for alkali metal ions of 4 to 12 μM, similar to LODs obtained by classic C4 D setups. Lowest LODs were achieved for a setup with two 10 mm electrodes at a distance of 0.2 mm and an excitation voltage of 24 V. The detection head was exceptionally lightweight with only 2.6 g and covered only 20 mm of the capillary on total. This allowed the use of multiple detectors along the separation path to enable spatial tracking of analytes during separation. The entirely battery-powered detector assembly weighs less than 200 g, and the data are transmitted wirelessly for possible portable applications. The freely accessible hardware and software were optimized for fully automated measurements with real time data plotting and allowed handling multidetector setups. The new developments were applied to quantify the potassium salt of glyphosate in its herbicide formulation.
Collapse
Affiliation(s)
- Hannes Georg Graf
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | | | - Johanna Manegold
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Hata K, Nonaka N, Sato N, Kaneta T. Simultaneous separation of 17 anions by capillary electrophoresis with the addition of an organic solvent. Electrophoresis 2021; 42:1317-1322. [PMID: 33724495 DOI: 10.1002/elps.202100014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/06/2022]
Abstract
Seventeen inorganic and organic anions, that normally are insufficiently separated via ion chromatography, were completely separated by the addition of an organic solvent to a solution of BGE combined with an adjustment of the apparent pH via CE in combination with indirect UV absorbance detection. Methanol, ethanol, and acetonitrile were examined for their utility in manipulating the selective separation of anions. Methanol and acetonitrile were better modifiers than ethanol at enhancing the resolution of anions comigrating in an aqueous solution of BGE. Methanol was selected as the modifier that provided the largest separation window that could achieve a complete separation of the target analytes. Via the use of methanol, manipulation of the selectivity between inorganic anions and that between inorganic and organic anions was enhanced, but the separation between organic anions remained difficult when only methanol was used. By varying the apparent pH of the BGE in the presence of 10% v/v methanol, however, the separation selectivity between organic anions was substantially improved. Eventually, 7 inorganic and 10 organic anions were simultaneously separated using BGE at a pH of 6.3 in the presence of 10% v/v methanol.
Collapse
Affiliation(s)
- Kazuki Hata
- Inorganic Analysis Laboratories, Toray Research Center, Inc., Otsu, Shiga, Japan
| | - Noriko Nonaka
- Inorganic Analysis Laboratories, Toray Research Center, Inc., Otsu, Shiga, Japan
| | - Nobuyuki Sato
- Inorganic Analysis Laboratories, Toray Research Center, Inc., Otsu, Shiga, Japan
| | - Takashi Kaneta
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Okayama, Japan
| |
Collapse
|
25
|
Lancioni C, Aspromonte J, Tascon M, Gagliardi LG. Development of a background electrolyte for the determination of inorganic cations in high ionic strength samples by capillary electrophoresis with indirect UV-absorption detection. J Chromatogr A 2021; 1645:462091. [PMID: 33845250 DOI: 10.1016/j.chroma.2021.462091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/30/2022]
Abstract
In this study, a background electrolyte capable to separate and quantify inorganic cations in high ionic strength samples by UV-absorption indirect detection was designed. In this regard, the four most abundant monovalent and divalent cations in earth crust (K+, Na+, Ca+2, Mg+2) were selected as model compounds. A group of small carboxylic acids and, several toluidines and pyridines were evaluated as mild strength complexing agents and chromophoric probes, respectively. The optimized background electrolyte was composed of 200 mM 2,4,6-trimethylpyridine as the chromophoric probe, 250 mM lactic acid as the weak complexing agent and pH buffering reagent (adjusted to pH 4.5), and 5% v/v methanol as organic solvent modifier. Based on a minimum number of components, it provided outstanding separation performance in less than 4 min in a wide linear dynamic range (10 - 2500 µg·mL-1). Performances were contrasted against a reference method based on conductometric detection. Furthermore, studies of separation efficiency and peak shape were carried out at different analyte concentrations in high electric conductivity solutions. The herein developed method demonstrated exceptional features in terms of limits of detection (~10 µg·mL-1), resolution, speed of analysis, sensitivity and peak capacity in high electric conductivity samples. Moreover, the method was successfully applied to high ionic strength samples such as rock digest, sea water, soy sauce and isotonic drinks.
Collapse
Affiliation(s)
- Carlina Lancioni
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas (Universidad Nacional de La Plata, CIC-PBA, CONICET), Calle 47 esq. 115, La Plata, 1900, Argentina
| | - Juan Aspromonte
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas (Universidad Nacional de La Plata, CIC-PBA, CONICET), Calle 47 esq. 115, La Plata, 1900, Argentina; Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Herestraat 49 - PB923, 3000, Leuven, Belgium
| | - Marcos Tascon
- Instituto de Investigación e Ingeniería Ambiental (IIIA-CONICET-UNSAM), Universidad Nacional de San Martín, 25 de Mayo y Francia, B1650, San Martín, Argentina.
| | - Leonardo G Gagliardi
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas (Universidad Nacional de La Plata, CIC-PBA, CONICET), Calle 47 esq. 115, La Plata, 1900, Argentina.
| |
Collapse
|
26
|
Davis JJ, Foster SW, Grinias JP. Low-cost and open-source strategies for chemical separations. J Chromatogr A 2021; 1638:461820. [PMID: 33453654 PMCID: PMC7870555 DOI: 10.1016/j.chroma.2020.461820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
In recent years, a trend toward utilizing open access resources for laboratory research has begun. Open-source design strategies for scientific hardware rely upon the use of widely available parts, especially those that can be directly printed using additive manufacturing techniques and electronic components that can be connected to low-cost microcontrollers. Open-source software eliminates the need for expensive commercial licenses and provides the opportunity to design programs for specific needs. In this review, the impact of the "open-source movement" within the field of chemical separations is described, primarily through a comprehensive look at research in this area over the past five years. Topics that are covered include general laboratory equipment, sample preparation techniques, separations-based analysis, detection strategies, electronic system control, and software for data processing. Remaining hurdles and possible opportunities for further adoption of open-source approaches in the context of these separations-related topics are also discussed.
Collapse
Affiliation(s)
- Joshua J Davis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - Samuel W Foster
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - James P Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States.
| |
Collapse
|
27
|
Opekar F, Tůma P. Characterization of various geometric arrangements of "air-assisted" flow gating interfaces for capillary electrophoresis. Electrophoresis 2020; 42:749-755. [PMID: 33191565 DOI: 10.1002/elps.202000305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/11/2022]
Abstract
For connecting flow-through analytical methods with capillary electrophoresis, a chip working in the air-assisted flow gating interface regime is cast from poly(dimethylsiloxane). In the injection space, the exit from the delivery capillary is placed close to the entrance to the separation capillary. Prior to injecting the sample into the separation capillary, the background electrolyte is forced out of the injection space by a stream of air. In the empty space, a drop of the sample with a volume of <100 nL is formed between the exit from the delivery capillary and the entrance into the separation capillary, from which the sample is injected hydrodynamically into the separation capillary. After injection, the injection space is filled with BGE, and the separation can be begun. Three geometric variants for the mutual geometric arrangement of the delivery and separation capillaries were tested: the delivery capillary is placed perpendicular to the separation capillary, from either above or below, or the capillaries are placed axially, that is, directly opposite one another. All of the variants are equivalent from the analytical and separation efficiency viewpoints. The repeatability expressed by RSD is up to 5%. The tested flow gating interface variants are also suitable for continuous and discontinuous sampling at flow rates of the order of units of μL/min. The developed instrument for sequential electrophoretic analysis operates fully automatically and is suitable for rapid sequential monitoring of dynamic processes.
Collapse
Affiliation(s)
- František Opekar
- Faculty of Science, Department of Analytical Chemistry, Charles University, Prague, Czechia
| | - Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
28
|
Pont L, Barbosa J, Benavente F. A rapid and simple method for the determination of organic acids in proteolytic enzymes by capillary electrophoresis with indirect ultraviolet detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Hauser PC, Kubáň P. Capacitively coupled contactless conductivity detection for analytical techniques - Developments from 2018 to 2020. J Chromatogr A 2020; 1632:461616. [PMID: 33096295 DOI: 10.1016/j.chroma.2020.461616] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022]
Abstract
The developments of analytical contactless conductivity measurements based on capacitive coupling over the two years from mid-2018 to mid-2020 are covered. This mostly concerns applications of the technique in zone electrophoresis employing conventional capillaries and to a lesser extent lab-on-chip devices. However, its use for the detection in several other flow-based analytical methods has also been reported. Detection of bubbles and measurements of flow rates in two-phase flows are also recurring themes. A few new applications in stagnant aqueous samples, e.g. endpoint detection in titrations and measurement on paper-based devices, have been reported. Some variations of the design of the measuring cells and their read-out electronics have also been described.
Collapse
Affiliation(s)
- Peter C Hauser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056, Basel, Switzerland.
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic.
| |
Collapse
|
30
|
Large volume sample stacking of antiepileptic drugs in counter current electrophoresis performed in PAMAPTAC coated capillary. Talanta 2020; 221:121626. [PMID: 33076153 DOI: 10.1016/j.talanta.2020.121626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022]
Abstract
Electrophoretic stacking is developed for sensitive determination of three zwitterionic antiepileptics, namely vigabatrin, pregabalin and gabapentin, in human serum. CE separation is performed in a 25 μm fused silica capillary covalently coated with the copolymer of acrylamide with 5% content of permanently charged 3-acrylamidopropyl trimethylammonium chloride (PAMAPTAC). In background electrolyte of 500 mM acetic acid, the 5% PAMAPTAC generates an anodic electro-osmotic flow with a magnitude of (-18.6 ± 0.5) · 10-9 m2V-1s-1, which acts against the direction of the electrophoretic migration of the analytes. A sample of the antiepileptic prepared in a 25% v/v infusion solution and 75% v/v acetonitrile is injected into the capillary in a large volume attaining a zone length of up to 270 mm. After turning on the separation voltage, the antiepileptics are isotachophoretically focussed behind the zone of Na+ ions with a sensitivity enhancement factor of 78. For the clinical determination of antiepileptics, the human serum is diluted with acetonitrile in a ratio of 1:3 v/v and a zone with a length of 90 mm is injected into the capillary. The method is linear in the 0.025-2.5 μg/mL concentration range; the attained limit of quantification is in the range 18.3-22.8 nmol/L; the within-day precision for the migration time is 0.8-1.2% and for the peak area 1.5-2.4%.
Collapse
|
31
|
Chau MK, Arega NG, Nhung Tran NA, Song J, Lee S, Kim J, Chung M, Kim D. Capacitively coupled contactless conductivity detection for microfluidic capillary isoelectric focusing. Anal Chim Acta 2020; 1124:60-70. [PMID: 32534676 DOI: 10.1016/j.aca.2020.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/25/2020] [Accepted: 05/09/2020] [Indexed: 12/30/2022]
Abstract
We report capacitively coupled contactless conductivity detection (C4D) of proteins separated by microfluidic capillary isoelectric focusing (μCIEF). To elucidate the evolution of negative conductivity peaks during focusing and seek IEF conditions for sensitive conductivity detection, numerical simulation was performed using a model protein GFP (green fluorescence protein) and hypothetical carrier ampholytes (CAs). C4D was successfully applied to the μCIEF by optimizing assay conditions using a simple and effective pressure-mobilization approach. The conductivity and fluorescence signals of a focused GFP band were co-detected, confirming that the obtained negative C4D peak could be attributed to the actual protein, not the non-uniform background conductivity profile of the focused CAs. GFP concentrations of 10 nM-30 μM was quantified with a detection limit of 10 nM. Finally, the resolving power was analyzed by separating a mixture of R-phycoerythrin (pI 5.01), GFP-F64L (pI 5.48), and RK-GFP (pI 6.02). The conductivities of the three separated fluorescence proteins were measured with average separation resolution of 2.06. We expect the newly developed label-free μCIEF-C4D technique to be widely adopted as a portable, electronics-only protein-analysis tool.
Collapse
Affiliation(s)
- Minh Khang Chau
- Department of Mechanical Engineering, Myongji University, Yongin-si, Gyeonggi-do, 17508, South Korea
| | - Nebiyu Getachew Arega
- Department of Mechanical Engineering, Myongji University, Yongin-si, Gyeonggi-do, 17508, South Korea
| | - Nguyen Anh Nhung Tran
- Department of Chemical Engineering, Hongik University, Mapo-gu, Seoul, 04066, South Korea
| | - Jin Song
- Department of Mechanical Engineering, Myongji University, Yongin-si, Gyeonggi-do, 17508, South Korea
| | - Sangmin Lee
- Department of Chemical Engineering, Hongik University, Mapo-gu, Seoul, 04066, South Korea
| | - Jintae Kim
- Department of Electrical Engineering, Konkuk University, Gwangjin-gu, Seoul, 05029, South Korea
| | - Minsub Chung
- Department of Chemical Engineering, Hongik University, Mapo-gu, Seoul, 04066, South Korea
| | - Dohyun Kim
- Department of Mechanical Engineering, Myongji University, Yongin-si, Gyeonggi-do, 17508, South Korea; Natural Science Research Institute, Myongji University, Yongin-si, Gyeonggi-do, 17508, South Korea.
| |
Collapse
|
32
|
Mantim T, Chaisiwamongkhol K, Uraisin K, Hauser PC, Wilairat P, Nacapricha D. Dual-Purpose Photometric-Conductivity Detector for Simultaneous and Sequential Measurements in Flow Analysis. Molecules 2020; 25:E2284. [PMID: 32414012 PMCID: PMC7287826 DOI: 10.3390/molecules25102284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 01/29/2023] Open
Abstract
This work presents a new dual-purpose detector for photometric and conductivity measurements in flow-based analysis. The photometric detector is a paired emitter-detector diode (PEDD) device, whilst the conductivity detection employs a capacitively coupled contactless conductivity detector (C4D). The flow-through detection cell is a rectangular acrylic block (ca. 2 × 2 × 1.5 cm) with cylindrical channels in Z-configuration. For the PEDD detector, the LED light source and detector are installed inside the acrylic block. The two electrodes of the C4D are silver conducting ink painted on the PEEK inlet and outlet tubing of the Z-flow cell. The dual-purpose detector is coupled with a sequential injection analysis (SIA) system for simultaneous detection of the absorbance of the orange dye and conductivity of the dissolved oral rehydration salt powder. The detector was also used for sequential measurements of creatinine and the conductivity of human urine samples. The creatinine analysis is based on colorimetric detection of the Jaffé reaction using the PEDD detector, and the conductivity of the urine, as measured by the C4D detector, is expressed in millisiemens (mS cm-1).
Collapse
Affiliation(s)
- Thitirat Mantim
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Bangkok 10400, Thailand; (K.C.); (K.U.); (P.W.)
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumwit 23 Road, Bangkok 10110, Thailand
- Center of Excellence for Innovation in Chemistry and Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Korbua Chaisiwamongkhol
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Bangkok 10400, Thailand; (K.C.); (K.U.); (P.W.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kanchana Uraisin
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Bangkok 10400, Thailand; (K.C.); (K.U.); (P.W.)
- Center of Excellence for Innovation in Chemistry and Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Peter C. Hauser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland;
| | - Prapin Wilairat
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Bangkok 10400, Thailand; (K.C.); (K.U.); (P.W.)
- National Doping Control Centre, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Duangjai Nacapricha
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Bangkok 10400, Thailand; (K.C.); (K.U.); (P.W.)
- Center of Excellence for Innovation in Chemistry and Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| |
Collapse
|
33
|
Tůma P, Sommerová B, Daněček V. On-line coupling of capillary electrophoresis with microdialysis for determining saccharides in dairy products and honey. Food Chem 2020; 316:126362. [PMID: 32050115 DOI: 10.1016/j.foodchem.2020.126362] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/24/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Free sucrose, lactose, galactose, glucose and fructose were determined in yoghurts, milk and honey using on-line coupling of capillary electrophoresis with microdialysis. The dairy products were diluted 50-fold with 10 mmol/L NaOH and sampled using laboratory-made microdialysis probes. The microdialysate was brought to the entrance of the electrophoretic capillary and the coupling consisted in a polydimethylsiloxane (PDMS) cross connector working in the flow-gating interface regime. The electrophoretic analysis was performed in 50 mmol/L NaOH (pH 12.6) background electrolyte, where baseline separation of the five saccharides was achieved in 3.5 min. The LOQs varied in the range 2.3-7.3 mg/L, the number of separation plates varied between 176,000 plates/m for glucose to 326,000 plates/m for galactose and the relative standard deviation (RSD) for ten consecutive analyses of fruit yoghurt was 0.2% for the migration time and 4.4-7.6% for the peak area.
Collapse
Affiliation(s)
- Petr Tůma
- Charles University, Third Faculty of Medicine, Department of Hygiene, Ruská 87, 100 00 Prague 10, Czech Republic.
| | - Blanka Sommerová
- Charles University, Third Faculty of Medicine, Department of Hygiene, Ruská 87, 100 00 Prague 10, Czech Republic
| | - Václav Daněček
- Charles University, Third Faculty of Medicine, Department of Biophysics, Ruská 87, 100 00 Prague 10, Czech Republic
| |
Collapse
|
34
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019). Electrophoresis 2019; 41:10-35. [DOI: 10.1002/elps.201900269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Prague 6 Czechia
| |
Collapse
|
35
|
Kraikaew P, Pluangklang T, Ratanawimarnwong N, Uraisin K, Wilairat P, Mantim T, Nacapricha D. Simultaneous determination of ethanol and total sulfite in white wine using on-line cone reservoirs membraneless gas-liquid separation flow system. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
36
|
Yang S, Li Y, Li F, Yang Z, Quan F, Zhou L, Pu Q. Thiol-ene Click Derivatization for the Determination of Acrylamide in Potato Products by Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8053-8060. [PMID: 31276393 DOI: 10.1021/acs.jafc.9b01525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of analytical methods for acrylamide formed during food processing is of great significance for food safety, but limited by its inherent characteristics, the analysis of acrylamide is a continuing challenge. In this study, an efficient derivatization strategy for acrylamide based on thiol-ene click reaction with cysteine as derivatization reagent was proposed, and the resulting derivative was then analyzed by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D). After systematic investigation including catalyst dosage (0-20 mM), reaction temperature (30-90 °C) and time (1-60 min), and cysteine concentration (0.2-3.6 mM), acrylamide could be efficiently labeled by 2.0 mM cysteine at 70 °C for 10 min using 4 mM n-butylamine as catalyst. Application of 10 mM triethylamine as separation buffer, the labeled acrylamide was analyzed within 2.0 min, and the relative standard deviations of migration time and peak area were less than 0.84% and 5.6%, indicating good precision. The C4D signal of acrylamide derivative showed a good linear relationship with acrylamide concentration in the range of 7-200 μM with the correlation coefficient of 0.9991. The limit of detection and limit of quantification were calculated to be 0.16 μM and 0.52 μM, respectively. Assisted further by the QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample pretreatment, the developed derivatization strategy and subsequent CE-C4D method were successfully applied for the determination of acrylamide in potato products.
Collapse
Affiliation(s)
- Shuping Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Yuting Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Fan Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Zhenyu Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Feifei Quan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Lei Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| |
Collapse
|
37
|
Kubáň P, Dvořák M, Kubáň P. Capillary electrophoresis of small ions and molecules in less conventional human body fluid samples: A review. Anal Chim Acta 2019; 1075:1-26. [PMID: 31196414 DOI: 10.1016/j.aca.2019.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023]
Abstract
In recent years, advances in sensitive analytical techniques have encouraged the analysis of various compounds in biological fluids. While blood serum, blood plasma and urine still remain the golden standards in clinical, toxicological and forensic science, analyses of other body fluids, such as breast milk, exhaled breath condensate, sweat, saliva, amniotic fluid, cerebrospinal fluid, or capillary blood in form of dried blood spots are becoming more popular. This review article focuses on capillary electrophoresis and microchip electrophoresis of small ions and molecules (e.g. inorganic cations/anions, basic/acidic drugs, small acids/bases, amino acids, peptides and other low molecular weight analytes) in various less conventional human body fluids and hopes to stimulate further interest in the field.
Collapse
Affiliation(s)
- Petr Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Miloš Dvořák
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic.
| |
Collapse
|