1
|
Štěpánová S, Kašička V. Determination of physicochemical parameters of (bio)molecules and (bio)particles by capillary electromigration methods. J Sep Sci 2024; 47:e2400174. [PMID: 38867483 DOI: 10.1002/jssc.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024]
Abstract
The review provides an overview of recent developments and applications of capillary electromigration (CE) methods for the determination of important physicochemical parameters of various (bio)molecules and (bio)particles. These parameters include actual and limiting (absolute) ionic mobilities, effective electrophoretic mobilities, effective charges, isoelectric points, electrokinetic potentials, hydrodynamic radii, diffusion coefficients, relative molecular masses, acidity (ionization) constants, binding constants and stoichiometry of (bio)molecular complexes, changes of Gibbs free energy, enthalpy and entropy and rate constants of chemical reactions and interactions, retention factors and partition and distribution coefficients. For the determination of these parameters, the following CE methods are employed: zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography. In the individual sections, the procedures for the determination of the above parameters by the particular CE methods are described.
Collapse
Affiliation(s)
- Sille Štěpánová
- Electromigration methods, Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Kašička
- Electromigration methods, Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Bílek J, Koval D, Šolínová V, Talele HL, Severa L, Gutiérrez PER, Teplý F, Kašička V. Determination of the binding constants and ionic mobilities of diquat complexes with randomly sulfated cyclodextrins by affinity capillary electrophoresis. J Sep Sci 2024; 47:e2400286. [PMID: 38863086 DOI: 10.1002/jssc.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/13/2024]
Abstract
The enantiomers of diquats (DQs), a new class of functional organic molecules, were recently separated by capillary electrophoresis (CE) with high resolution up to 11.4 within 5-7 min using randomly sulfated α-, β-, and γ-cyclodextrins (CDs) as chiral selectors. These results indicated strong interactions between dicationic diquats and multiply negatively charged sulfated CDs (S-CDs). However, the binding strength of these interactions was not quantified. For that reason, in this study, affinity CE was applied for the determination of the binding constants and ionic mobilities of the complexes of DQ P- and M-enantiomers with CD chiral selectors in an aqueous medium. The non-covalent interactions of 10 pairs of DQ enantiomers with the above CDs were investigated in a background electrolyte (BGE) composed of 22 mM NaOH, 35 mM H3PO4, pH 2.5, and 0.0-1.0 mM concentrations of CDs. The average apparent binding constant and the average actual ionic mobility of the DQ-CD complexes were determined by nonlinear regression analysis of the dependence of the effective mobility of DQ enantiomers on the concentration of CDs in the BGE. The complexes were found to be relatively strong with the averaged apparent binding constants in the range 13 600-547 400 L/mol.
Collapse
Affiliation(s)
- Jan Bílek
- Electromigration Methods, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| | - Dušan Koval
- Electromigration Methods, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| | - Veronika Šolínová
- Electromigration Methods, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| | - Harish L Talele
- Electromigration Methods, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| | - Lukáš Severa
- Electromigration Methods, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| | - Paul E Reyes Gutiérrez
- Electromigration Methods, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| | - Filip Teplý
- Electromigration Methods, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| | - Václav Kašička
- Electromigration Methods, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
3
|
Fung FM, Widyantoro C, Li SFY. Keeping Analytical Chemistry Training Up-to-Date. Anal Chem 2024; 96:6863-6869. [PMID: 38656177 DOI: 10.1021/acs.analchem.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The undergraduate analytical chemistry curriculum serves to equip students with the knowledge and skills for work outside of classroom training. As such, instructors face a challenging task in deciding the breadth and depth of topics for their courses to ensure their syllabi can remain up-to-date with today's needs. We propose that instructors consider covering capillary electrophoresis (CE) and lab-on-a-chip (LOC) technologies in their analytical chemistry courses. Past surveys of the curriculum show a noticeable lack of emphasis on these topics, which we feel is a missed opportunity and one that holds potential for the collective benefit of instructors and students. CE and LOCs are utilized in a diverse array of fields like biochemistry, pharmaceutical production, materials science, and environmental analysis, and their applications are becoming increasingly important amidst the growing movement toward environmentally sustainable practices and green chemistry. They are also more accessible in the analytical chemistry classroom compared with typical benchtop instruments due to the flexibility of their size and cost. This makes them easier to obtain, maintain, and transport for use and demonstration purposes. Additionally, interwoven in these topics are core concepts that are fundamental to analytical chemistry; thus, covering them will inherently reinforce students' understanding of fundamental knowledge. Therefore, we believe increased coverage of CE and LOCs can better prepare undergraduates for modern analytical chemistry work in various industries and fields of research.
Collapse
Affiliation(s)
- Fun Man Fung
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- College of Humanities and Sciences, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077
- Centre for Teaching, Learning and Technology, National University of Singapore,15 Kent Ridge Road, Singapore 119225
| | - Clarissa Widyantoro
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- College of Humanities and Sciences, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077
| | - Sam Fong Yau Li
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- College of Humanities and Sciences, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077
- NUS Environmental Research Institute (NERI), #02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
4
|
Marie A, Georgescauld F, Johnson KR, Ray S, Engen JR, Ivanov AR. Native Capillary Electrophoresis-Mass Spectrometry of Near 1 MDa Non-Covalent GroEL/GroES/Substrate Protein Complexes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306824. [PMID: 38191978 PMCID: PMC10953559 DOI: 10.1002/advs.202306824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Protein complexes are essential for proteins' folding and biological function. Currently, native analysis of large multimeric protein complexes remains challenging. Structural biology techniques are time-consuming and often cannot monitor the proteins' dynamics in solution. Here, a capillary electrophoresis-mass spectrometry (CE-MS) method is reported to characterize, under near-physiological conditions, the conformational rearrangements of ∽1 MDa GroEL upon complexation with binding partners involved in a protein folding cycle. The developed CE-MS method is fast (30 min per run), highly sensitive (low-amol level), and requires ∽10 000-fold fewer samples compared to biochemical/biophysical techniques. The method successfully separates GroEL14 (∽800 kDa), GroEL7 (∽400 kDa), GroES7 (∽73 kDa), and NanA4 (∽130 kDa) oligomers. The non-covalent binding of natural substrate proteins with GroEL14 can be detected and quantified. The technique allows monitoring of GroEL14 conformational changes upon complexation with (ATPγS)4-14 and GroES7 (∽876 kDa). Native CE-pseudo-MS3 analyses of wild-type (WT) GroEL and two GroEL mutants result in up to 60% sequence coverage and highlight subtle structural differences between WT and mutated GroEL. The presented results demonstrate the superior CE-MS performance for multimeric complexes' characterization versus direct infusion ESI-MS. This study shows the CE-MS potential to provide information on binding stoichiometry and kinetics for various protein complexes.
Collapse
Affiliation(s)
- Anne‐Lise Marie
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Florian Georgescauld
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Kendall R. Johnson
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Somak Ray
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - John R. Engen
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| |
Collapse
|
5
|
Schwenzer AK, Kruse L, Jooß K, Neusüß C. Capillary electrophoresis-mass spectrometry for protein analyses under native conditions: Current progress and perspectives. Proteomics 2024; 24:e2300135. [PMID: 37312401 DOI: 10.1002/pmic.202300135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
Native mass spectrometry is a rapidly emerging technique for fast and sensitive structural analysis of protein constructs, maintaining the protein higher order structure. The coupling with electromigration separation techniques under native conditions enables the characterization of proteoforms and highly complex protein mixtures. In this review, we present an overview of current native CE-MS technology. First, the status of native separation conditions is described for capillary zone electrophoresis (CZE), affinity capillary electrophoresis (ACE), and capillary isoelectric focusing (CIEF), as well as their chip-based formats, including essential parameters such as electrolyte composition and capillary coatings. Further, conditions required for native ESI-MS of (large) protein constructs, including instrumental parameters of QTOF and Orbitrap systems, as well as requirements for native CE-MS interfacing are presented. On this basis, methods and applications of the different modes of native CE-MS are summarized and discussed in the context of biological, medical, and biopharmaceutical questions. Finally, key achievements are highlighted and concluded, while remaining challenges are pointed out.
Collapse
Affiliation(s)
| | - Lena Kruse
- Department of Chemistry, Aalen University, Aalen, Germany
| | - Kevin Jooß
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | | |
Collapse
|
6
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2021-mid-2023). Electrophoresis 2024; 45:165-198. [PMID: 37670208 DOI: 10.1002/elps.202300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
This review article brings a comprehensive survey of developments and applications of high-performance capillary and microchip electromigration methods (zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, micropreparation, and physicochemical characterization of peptides in the period from 2021 up to ca. the middle of 2023. Progress in the study of electromigration properties of peptides and various aspects of their analysis, such as sample preparation, adsorption suppression, electroosmotic flow regulation, and detection, are presented. New developments in the particular capillary electromigration methods are demonstrated, and several types of their applications are reported. They cover qualitative and quantitative analysis of synthetic or isolated peptides and determination of peptides in complex biomatrices, peptide profiling of biofluids and tissues, and monitoring of chemical and enzymatic reactions and physicochemical changes of peptides. They include also amino acid and sequence analysis of peptides, peptide mapping of proteins, separation of stereoisomers of peptides, and their chiral analyses. In addition, micropreparative separations and physicochemical characterization of peptides and their interactions with other (bio)molecules by the above CE methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Bržezická T, Mlčochová H, Glatz Z, Kohútová L. Contactless conductivity detector as a tool for improving universality and sensitivity of capillary electrophoresis-frontal analysis: Proof of concept. J Sep Sci 2024; 47:e2300667. [PMID: 38234025 DOI: 10.1002/jssc.202300667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Drug binding to plasma proteins influences processes such as liberation, adsorption, disposition, metabolism, and elimination of drugs, which are thus one of the key steps of a new drug development. As a result, the characterization of drug-protein interactions is an essential part of these time- and money-consuming processes. It is important to determine not only the binding strength and the stoichiometry of interaction, but also the binding site of a drug on a protein molecule, because two drugs with the same binding site can mutually affect free drug concentration. Capillary electrophoresis-frontal analysis with mobility shift affinity capillary electrophoresis is one of the most used affinity capillary electrophoresis methods for the characterization of these interactions. In this study, a well-known sensitivity problem of most capillary electrophoresis-frontal analyses using ultraviolet detection is solved by its combination with contactless conductivity detection, which provided sixfold lower limits of quantitation and detection. Binding parameters of the human serum albumin-salicylic acid model affinity pair were evaluated by this newly developed approach and by the classical approach with ultraviolet detection primarily used for their mutual comparison. The results of both approaches agreed well and are also in agreement with literature data obtained using different techniques.
Collapse
Affiliation(s)
- Taťána Bržezická
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hana Mlčochová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Kohútová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
8
|
Bržezická T, Glatz Z, Kohútová L. Sensitivity enhancement of capillary electrophoresis-frontal analysis-based method for characterization of drug-protein interactions using on-line sample preconcentration. J Sep Sci 2023; 46:e2300152. [PMID: 37386816 DOI: 10.1002/jssc.202300152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023]
Abstract
Capillary electrophoresis-frontal analysis is one of the most frequently used approaches for the study of plasma protein-drug interactions as a substantial part of new drug development. However, the capillary electrophoresis-frontal analysis typically combined with ultraviolet-visible detection suffers from insufficient concentration sensitivity, particularly for substances with limited solubility and low molar absorption coefficient. The sensitivity problem has been solved in this work by its combination with an on-line sample preconcentration. According to the knowledge of the authors this combination has never been used to characterize plasma protein-drug binding. It resulted in a fully automated and versatile methodology for the characterization of binding interactions. Further, the validated method minimalizes the experimental errors due to a reduction in the manipulation of samples. Moreover, employing an on-line preconcentration strategy with capillary electrophoresis-frontal analysis using human serum albumin-salicylic acid as a model system improves the drug concentration sensitivity 17-fold compared to the conventional method. The value of binding constant (1.51 ± 0.63) · 104 L/mol obtained by this new capillary electrophoresis-frontal analysis modification is in agreement with the value (1.13 ± 0.28) ·104 L/mol estimated by a conventional variant of capillary electrophoresis-frontal analysis without the preconcentration step, as well as with literature data obtained using different techniques.
Collapse
Affiliation(s)
- Taťána Bržezická
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Kohútová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Thalhammer A, Bröker NK. Biophysical Approaches for the Characterization of Protein-Metabolite Interactions. Methods Mol Biol 2023; 2554:199-229. [PMID: 36178628 DOI: 10.1007/978-1-0716-2624-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With an estimate of hundred thousands of protein molecules per cell and the number of metabolites several orders of magnitude higher, protein-metabolite interactions are omnipresent. In vitro analyses are one of the main pillars on the way to establish a solid understanding of how these interactions contribute to maintaining cellular homeostasis. A repertoire of biophysical techniques is available by which protein-metabolite interactions can be quantitatively characterized in terms of affinity, specificity, and kinetics in a broad variety of solution environments. Several of those provide information on local or global conformational changes of the protein partner in response to ligand binding. This review chapter gives an overview of the state-of-the-art biophysical toolbox for the study of protein-metabolite interactions. It briefly introduces basic principles, highlights recent examples from the literature, and pinpoints promising future directions.
Collapse
Affiliation(s)
- Anja Thalhammer
- Physical Biochemistry, University of Potsdam, Potsdam, Germany.
| | - Nina K Bröker
- Physical Biochemistry, University of Potsdam, Potsdam, Germany
- Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
10
|
Mlčochová H, Ratih R, Michalcová L, Wätzig H, Glatz Z, Stein M. Comparison of mobility shift affinity capillary electrophoresis and capillary electrophoresis frontal analysis for binding constant determination between human serum albumin and small drugs. Electrophoresis 2022; 43:1724-1734. [DOI: 10.1002/elps.202100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Hana Mlčochová
- Institute of Medicinal and Pharmaceutical Chemistry TU Braunschweig Braunschweig Lower Saxony Germany
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| | - Ratih Ratih
- Institute of Medicinal and Pharmaceutical Chemistry TU Braunschweig Braunschweig Lower Saxony Germany
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Surabaya Surabaya East Java Indonesia
| | - Lenka Michalcová
- Institute of Medicinal and Pharmaceutical Chemistry TU Braunschweig Braunschweig Lower Saxony Germany
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry TU Braunschweig Braunschweig Lower Saxony Germany
| | - Zdeněk Glatz
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| | - Matthias Stein
- Institute of Medicinal and Pharmaceutical Chemistry TU Braunschweig Braunschweig Lower Saxony Germany
| |
Collapse
|
11
|
Wang L, Zhang W, Shao Y, Zhang D, Guo G, Wang X. Analytical methods for obtaining binding parameters of drug–protein interactions: A review. Anal Chim Acta 2022; 1219:340012. [DOI: 10.1016/j.aca.2022.340012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
|
12
|
Mlčochová H, Michalcová L, Glatz Z. Extending the application potential of capillary electrophoresis/frontal analysis for drug‐plasma protein studies by combining it with mass spectrometry detection. Electrophoresis 2022; 43:955-963. [DOI: 10.1002/elps.202100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hana Mlčochová
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| | - Lenka Michalcová
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| |
Collapse
|
13
|
Štěpánová S, Kašička V. Applications of capillary electromigration methods for separation and analysis of proteins (2017–mid 2021) – A review. Anal Chim Acta 2022; 1209:339447. [DOI: 10.1016/j.aca.2022.339447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
|
14
|
Sursyakova VV, Levdansky VA, Rubaylo AI. Electrophoretic mobility of ester betulin derivatives and their complexation with γ-cyclodextrin studied by capillary electrophoresis in aqueous solutions at different pH values. Electrophoresis 2021; 43:535-542. [PMID: 34761422 DOI: 10.1002/elps.202100173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 11/05/2022]
Abstract
In this article, capillary electrophoresis was used to measure the effective electrophoretic mobility of ester betulin derivatives as a pH function and to study their complexation with γ-cyclodextrin (γ-CD). The electrophoretic mobility of betulin 3,28-diphthalate (DPhB) and 3,28-disuccinate (DScB) changed unusually with decreasing pH: instead of decreasing, it first increased and then decreased. This fact as well as the turbidity of sample solutions at pH from 2.5 to 6, broadening of electrophoretic peaks and a decrease in the surface tension of the solutions indicates that these betulin derivatives, being amphiphilic compounds and weak acids, exist as micelles in aqueous solutions at pH 6 and below. The inclusion complexation of betulin derivatives with γ-CD at pH 9.18 and 4.5 was studied by mobility shift affinity capillary electrophoresis. At pH 9.18, the apparent binding (stability) constant logarithms for 1:1 γ-CD complexes of DPhB, betulin 3,28-disulfate (DSB) and DScB with 95% confidence interval limits were equal to 7.44 ± 0.02, 7.09 (7.01-7.19), and 6.97 (6.87-7.08) at 25°C, respectively. At pH 4.5, the binding constant for the DSB complex was slightly lower, while the micelle formation did not allow determining the exact values of the constants for the DPhB and DScB complexes.
Collapse
Affiliation(s)
- Viktoria V Sursyakova
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Vladimir A Levdansky
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Anatoly I Rubaylo
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,Siberian Federal University, Krasnoyarsk, Russia
| |
Collapse
|
15
|
Zhao Y, Lou J, Zhang H, Sun H, Zhang M, Wang S, Sha X, Zhan Z, Wang Y, Ma C, Li WJ. Measurement methods of single cell drug response. Talanta 2021; 239:123035. [PMID: 34839926 DOI: 10.1016/j.talanta.2021.123035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
In the last decades, a wide multitude of research activity has been focused on the development of new drugs, and devoted to overcome the challenges of high cost and low efficiency in drug evaluation. The measurement of drug response at the single cell level is a quicker, more direct and more accurate way to reflect drug efficacy, which can shorten the drug development period and reduce research costs. Therefore, the single cell drug response (SCDR) measurement technology has aroused extensive attention from researchers, and has become a hot topic in the fields of drug research and cell biology. Recent years have seen the emergence of various SCDR measurement technologies that feature different working principles and different levels of measurement performance. To better examine, compare and summarize the characteristics and functions of these technologies, we select signal-to-noise ratio, throughput, content, invasion, and device complexity as the criteria to evaluate them from the drug efficacy perspective. This review aims to highlight sixteen kinds of SCDR measurement technologies, including patch-clamp technique, live-cell interferometry, capillary electrophoresis, secondary ion mass spectrometry, and more, and report widespread representative examples of SCDR measurement the recent approaches for over the past forty years. Based on their reaction principles, these technologies are classified into four categories: electrical, optical, electrochemical, and mass spectrometry, and a detailed comparison is made between them. After in-depth understanding of these technologies, it is expected to improve or integrate these technologies to propose better SCDR measurement strategies, and explore methods in new drug development and screening, as well as disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yuliang Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Jiazhi Lou
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Hongyu Zhang
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Hui Sun
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Menglin Zhang
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Shuyu Wang
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Xiaopeng Sha
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Zhikun Zhan
- School of Electrical Engineering, Yanshan University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Ying Wang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Cuihua Ma
- Department of Clinical Laboratory, First Hospital of Qinhuangdao, Qinhuangdao, 066004, China.
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China.
| |
Collapse
|
16
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis 2021; 43:82-108. [PMID: 34632606 DOI: 10.1002/elps.202100243] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The review provides a comprehensive overview of developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical characterization of peptides from 2019 up to approximately the middle of 2021. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis, such as sample preparation, sorption suppression, EOF control, and detection, are presented. New developments in the individual CE and CEC methods are demonstrated and several types of their applications are shown. They include qualitative and quantitative analysis, determination in complex biomatrices, monitoring of chemical and enzymatic reactions and physicochemical changes, amino acid, sequence, and chiral analyses, and peptide mapping of proteins. In addition, micropreparative separations and determination of significant physicochemical parameters of peptides by CE and CEC methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
17
|
Guzman NA, Guzman DE. Immunoaffinity Capillary Electrophoresis in the Era of Proteoforms, Liquid Biopsy and Preventive Medicine: A Potential Impact in the Diagnosis and Monitoring of Disease Progression. Biomolecules 2021; 11:1443. [PMID: 34680076 PMCID: PMC8533156 DOI: 10.3390/biom11101443] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/08/2023] Open
Abstract
Over the years, multiple biomarkers have been used to aid in disease screening, diagnosis, prognosis, and response to therapy. As of late, protein biomarkers are gaining strength in their role for early disease diagnosis and prognosis in part due to the advancements in identification and characterization of a distinct functional pool of proteins known as proteoforms. Proteoforms are defined as all of the different molecular forms of a protein derived from a single gene caused by genetic variations, alternative spliced RNA transcripts and post-translational modifications. Monitoring the structural changes of each proteoform of a particular protein is essential to elucidate the complex molecular mechanisms that guide the course of disease. Clinical proteomics therefore holds the potential to offer further insight into disease pathology, progression, and prevention. Nevertheless, more technologically advanced diagnostic methods are needed to improve the reliability and clinical applicability of proteomics in preventive medicine. In this manuscript, we review the use of immunoaffinity capillary electrophoresis (IACE) as an emerging powerful diagnostic tool to isolate, separate, detect and characterize proteoform biomarkers obtained from liquid biopsy. IACE is an affinity capture-separation technology capable of isolating, concentrating and analyzing a wide range of biomarkers present in biological fluids. Isolation and concentration of target analytes is accomplished through binding to one or more biorecognition affinity ligands immobilized to a solid support, while separation and analysis are achieved by high-resolution capillary electrophoresis (CE) coupled to one or more detectors. IACE has the potential to generate rapid results with significant accuracy, leading to reliability and reproducibility in diagnosing and monitoring disease. Additionally, IACE has the capability of monitoring the efficacy of therapeutic agents by quantifying companion and complementary protein biomarkers. With advancements in telemedicine and artificial intelligence, the implementation of proteoform biomarker detection and analysis may significantly improve our capacity to identify medical conditions early and intervene in ways that improve health outcomes for individuals and populations.
Collapse
Affiliation(s)
| | - Daniel E. Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, USA;
- Division of Hospital Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
18
|
|
19
|
Michalcová L, Nevídalová H, Glatz Z. Toward an automated workflow for the study of plasma protein-drug interactions based on capillary electrophoresis-frontal analysis combined with in-capillary mixing of interacting partners. J Chromatogr A 2020; 1635:461734. [PMID: 33264700 DOI: 10.1016/j.chroma.2020.461734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022]
Abstract
Capillary electrophoresis-frontal analysis (CE-FA) together with mobility shift affinity CE is the most frequently used mode of affinity CE for a study of plasma protein-drug interactions, which is a substantial part of the early stage of drug discovery. Whereas in the classic CE-FA setup the sample is prepared by off-line mixing of the interaction partners in the sample vial outside the CE instrument and after a short incubation period loaded into the capillary and analysed, in this work a new methodological approach has been developed that combines CE-FA with the mixing of interacting partners directly inside the capillary. This combination gives rise to a fully automated and versatile methodology for the characterization of these binding interactions besides a substantial reduction in the amounts of sample compounds used. The minimization of possible experimental errors due to the full involving of sophisticated CE instrument in the injection procedure, mixing and separation instead of manual manipulation is another fundamental benefit. The in-capillary mixing is based on the transverse diffusion of laminar flow profile methodology introduced by Krylov et al. using its multi-zone injection modification presented by Řemínek at al.. Actually, after the method optimization, the alternate introduction of six plugs of drug and six plugs of bovine serum protein in BGE, each injected for 3 s at a pressure of -10 mbar (-1 kPa) into the capillary filled by BGE, was found to be the best injection procedure. The method repeatability calculated as RSDs of plateau highs of bovine serum albumin and propranolol as model sample compounds were better than 3.44 %. Its applicability was finally demonstrated on the determination of apparent binding parameters of bovine serum albumin for basic drugs propranolol and lidocaine and acid drug phenylbutazone. The values obtained by a new on-line CE-FA methodology are in agreement with values estimated by classic off-line CE-FA, as well as with literature data obtained using different techniques.
Collapse
Affiliation(s)
- Lenka Michalcová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Hana Nevídalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
20
|
Wang Y, Adeoye DI, Ogunkunle EO, Wei IA, Filla RT, Roper MG. Affinity Capillary Electrophoresis: A Critical Review of the Literature from 2018 to 2020. Anal Chem 2020; 93:295-310. [DOI: 10.1021/acs.analchem.0c04526] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Damilola I. Adeoye
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Emmanuel O. Ogunkunle
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - I-An Wei
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Robert T. Filla
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Michael G. Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
21
|
Nalini CN, Mathivanan N. A Review on Analytical Methods of Irbesartan and its Combinations in Pharmaceutical Dosage Forms. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190802164428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pharmaceutical analysis plays an indispensable role in various stages of drug pipeline including
drug development, fabrication of formulation, stability studies and quality control. It is also used for
characterizing the composition of different dosage forms in quantitative and qualitative ways. Comprehensive
literature survey forms the foundation stone for the focused analysis of research activity.
Irbesartan is a hypertension antagonist chiefly employed in the treatment of high blood pressure which
is an Angiotensin II Receptor blocker. The multiple mixtures of various antihypertensive medicaments
raise challenges in the method development and validation. A genuine venture is undertaken to compile
the literatures related to the antihypertensive drug Irbesartan published in various peer reviewed journals.
HPLC and UV spectrophotometry are the most preferred analytical techniques when compared to
other methods. This present review provides an in-depth assortment of various analytical techniques
published for Irbesartan and its combinations, which will help the researchers in their future endeavors.
Collapse
Affiliation(s)
| | - Nivedhitha Mathivanan
- Department of Pharmaceutical Analysis, C.L. Baid Metha College of Pharmacy, Chennai 97, India
| |
Collapse
|
22
|
Ratih R, Wätzig H, Stein M, El Deeb S. Investigation of the enantioselective interaction between selected drug enantiomers and human serum albumin by mobility shift-affinity capillary electrophoresis. J Sep Sci 2020; 43:3960-3968. [PMID: 32823373 DOI: 10.1002/jssc.202000372] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/26/2022]
Abstract
Mobility shift-affinity capillary electrophoresis was employed for enantioseparation and simultaneous binding constant determination. Human serum albumin was used as a chiral selector in the background electrolyte composed of 20 mM phosphate buffer, pH 7.4. The applied setup supports a high mobility shift since albumin and the drug-albumin complex hold negative net charges, while model compounds of amlodipine and verapamil are positively charged. In order to have an accurate effective mobility determination, the Haarhoff-van der Linde function was utilized. Subsequently, the association constant was determined by nonlinear regression analysis of the dependence of effective mobilities on the total protein concentration. Differences in the apparent binding status between the enantiomers lead to mobility shifts of different extends (α). This resulted in enantioresolutions of Rs = 1.05-3.63 for both drug models. R-(+)-Verapamil (KA 1844 M-1 ) proved to bind stronger to human serum albumin compared to S-(-)-verapamil (KA 6.6 M-1 ). The association constant of S-(-)-amlodipine (KA 25 073 M-1 ) was found to be slightly higher compared to its antipode (KA 22 620 M-1 ) when applying the racemic mixture. The low measurement uncertainty of this approach was demonstrated by the close agreement of the association constant of the enantiopure S-(-)-form (KA 25 101 M-1 ).
Collapse
Affiliation(s)
- Ratih Ratih
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, Indonesia
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Matthias Stein
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
23
|
Krait S, Salgado A, Villani C, Naumann L, Neusüß C, Chankvetadze B, Scriba GK. Unusual complexation behavior between daclatasvir and γ-Cyclodextrin. A multiplatform study. J Chromatogr A 2020; 1628:461448. [DOI: 10.1016/j.chroma.2020.461448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022]
|
24
|
Guzman NA, Guzman DE. A Two-Dimensional Affinity Capture and Separation Mini-Platform for the Isolation, Enrichment, and Quantification of Biomarkers and Its Potential Use for Liquid Biopsy. Biomedicines 2020; 8:biomedicines8080255. [PMID: 32751506 PMCID: PMC7459796 DOI: 10.3390/biomedicines8080255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Biomarker detection for disease diagnosis, prognosis, and therapeutic response is becoming increasingly reliable and accessible. Particularly, the identification of circulating cell-free chemical and biochemical substances, cellular and subcellular entities, and extracellular vesicles has demonstrated promising applications in understanding the physiologic and pathologic conditions of an individual. Traditionally, tissue biopsy has been the gold standard for the diagnosis of many diseases, especially cancer. More recently, liquid biopsy for biomarker detection has emerged as a non-invasive or minimally invasive and less costly method for diagnosis of both cancerous and non-cancerous diseases, while also offering information on the progression or improvement of disease. Unfortunately, the standardization of analytical methods to isolate and quantify circulating cells and extracellular vesicles, as well as their extracted biochemical constituents, is still cumbersome, time-consuming, and expensive. To address these limitations, we have developed a prototype of a portable, miniaturized instrument that uses immunoaffinity capillary electrophoresis (IACE) to isolate, concentrate, and analyze cell-free biomarkers and/or tissue or cell extracts present in biological fluids. Isolation and concentration of analytes is accomplished through binding to one or more biorecognition affinity ligands immobilized to a solid support, while separation and analysis are achieved by high-resolution capillary electrophoresis (CE) coupled to one or more detectors. When compared to other existing methods, the process of this affinity capture, enrichment, release, and separation of one or a panel of biomarkers can be carried out on-line with the advantages of being rapid, automated, and cost-effective. Additionally, it has the potential to demonstrate high analytical sensitivity, specificity, and selectivity. As the potential of liquid biopsy grows, so too does the demand for technical advances. In this review, we therefore discuss applications and limitations of liquid biopsy and hope to introduce the idea that our affinity capture-separation device could be used as a form of point-of-care (POC) diagnostic technology to isolate, concentrate, and analyze circulating cells, extracellular vesicles, and viruses.
Collapse
Affiliation(s)
- Norberto A. Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08816, USA
- Correspondence: ; Tel.: +1-908-510-5258
| | - Daniel E. Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08816, USA
- Department of Internal Medicine, University of California at San Francisco, San Francisco, CA 94143, USA; or
| |
Collapse
|
25
|
Sursyakova VV, Levdansky VA, Rubaylo AI. Determination of binding constants for strong complexation by affinity capillary electrophoresis: the example of complexes of ester betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin. Anal Bioanal Chem 2020; 412:5615-5625. [DOI: 10.1007/s00216-020-02777-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
|
26
|
Sázelová P, Koval D, Severa L, Teplý F, Vigh G, Kašička V. Determination of binding constants of multiple charged cyclodextrin complexes by ACE using uncorrected and ionic strength corrected actual mobilities of the species involved. Electrophoresis 2020; 41:523-535. [DOI: 10.1002/elps.201900352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/06/2019] [Accepted: 11/21/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Petra Sázelová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czechia
| | - Dušan Koval
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czechia
| | - Lukáš Severa
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czechia
| | - Filip Teplý
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czechia
| | - Gyula Vigh
- Texas A&M UniversityDepartment Chemistry College Station TX USA
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czechia
| |
Collapse
|
27
|
Orlet JD, Bailey RC. Silicon Photonic Microring Resonator Arrays as a Universal Detector for Capillary Electrophoresis. Anal Chem 2020; 92:2331-2338. [PMID: 31829562 DOI: 10.1021/acs.analchem.9b05271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Electrophoretic separations conventionally rely on chromogenic, fluorogenic, or redox properties for analyte detection that, in many instances, involve chemical modification of samples prior to analysis. For analytes natively lacking chemical signatures, refractive index-based measurements are appealing as a method to detect these molecules without pretreatment. Microring resonators are a type of whispering gallery mode sensor capable of detecting bulk changes in refractive index. Here, we demonstrate the use of silicon photonic microring resonator arrays as a postcolumn detector for capillary electrophoresis. In this approach, we establish the universal detection capabilities of microrings through calibration with analytes lacking unique spectral signatures. Separations of small molecule mixtures are demonstrated using capillary zone electrophoresis. For these separations, the microring resonators maintain a linear response over several orders of magnitude in concentration for three candidate small molecules. Successful separation of three sugars with direct detection is also demonstrated. We further present the successful separation and detection of three model proteins, exemplifying the promise of microring resonators arrays as a biocompatible detector for capillary electrophoresis. Additionally, the spatially offset, array-based nature of the sensing platform enables real-time analysis of analyte mobility and performance characterization-a combination that is not typically provided using single-point detectors.
Collapse
Affiliation(s)
- John D Orlet
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Ryan C Bailey
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
28
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019). Electrophoresis 2019; 41:10-35. [DOI: 10.1002/elps.201900269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Prague 6 Czechia
| |
Collapse
|
29
|
Zhang C, Woolfork AG, Suh K, Ovbude S, Bi C, Elzoeiry M, Hage DS. Clinical and pharmaceutical applications of affinity ligands in capillary electrophoresis: A review. J Pharm Biomed Anal 2019; 177:112882. [PMID: 31542417 DOI: 10.1016/j.jpba.2019.112882] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 01/14/2023]
Abstract
Affinity capillary electrophoresis (ACE) is a separation technique that combines a biologically-related binding agent with the separating power and efficiency of capillary electrophoresis. This review will examine several classes of binding agents that have been used in ACE and applications that have been described for the resulting methods in clinical or pharmaceutical analysis. Binding agents that will be considered are antibodies, aptamers, lectins, serum proteins, carbohydrates, and enzymes. This review will also describe the various formats in which each type of binding agent has been used in CE, including both homogeneous and heterogeneous methods. Specific areas of applications that will be considered are CE-based immunoassays, glycoprotein/glycan separations, chiral separations, and biointeraction studies. The general principles and formats of ACE for each of these applications will be examined, along with the potential advantages or limitations of these methods.
Collapse
Affiliation(s)
- Chenhua Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - Ashley G Woolfork
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - Kyungah Suh
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - Susan Ovbude
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - Cong Bi
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - Marawan Elzoeiry
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA.
| |
Collapse
|
30
|
Sensitive amperometric detection for capillary electrophoresis of phenol carbamates with in‐line thermal hydrolysis strategy. Electrophoresis 2019; 40:1648-1655. [DOI: 10.1002/elps.201800484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022]
|