1
|
Zeng L, Liu C, Yang Y, Hu S, Li R, Tan X, Shen J, Zhang Y, Huang S, Yang H. Power-free plasma separation based on negative magnetophoresis for rapid biochemical analysis. MICROSYSTEMS & NANOENGINEERING 2024; 10:207. [PMID: 39741142 DOI: 10.1038/s41378-024-00837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 01/02/2025]
Abstract
We present a versatile platform for label-free magnetic separation of plasma, tailored to accommodate diverse environments. This innovative device utilizes an advanced long-short alternating double Halbach magnetic array, specifically engineered for optimal magnetic separation. The array's adaptability allows for seamless integration with separation channels of varying sizes, enabling static separation of whole blood. The platform has a highly flexible processing throughput, spanning from 100 μL to 3 mL per separation cycle without sacrificing separation efficiency. A key aspect of this device is its power-free operation throughout the separation process, obviating the complexity of conventional separation devices. Its effectiveness is demonstrated by the extraction of 40 μL of plasma from 100 μL of rat whole blood within 8 min. The separated plasma proved effective for subsequent analysis of antibody concentration and size in the separated plasma for pharmacokinetic investigations, yielding results on par with those obtained via centrifugation. Furthermore, the device's high-throughput capability was validated using human whole blood, achieving 3 mL of plasma separation in just 1 min. In a follow-up study on COVID-19 IgG antibody detection, the results matched those from centrifugation. The device demonstrates a separation efficiency of 99.9% for cells larger than 1 μm in both rat and human blood samples, with a plasma recovery rate of 72.7%. In summary, our magnetic separation device facilitates rapid plasma extraction from whole blood, with a capacity of up to 3 mL per minute in human blood, without compromising subsequent plasma-based analyses, thereby highlighting its broad applicability across diverse settings.
Collapse
Affiliation(s)
- Lin Zeng
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Chao Liu
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Marine Engineering College, Dalian Maritime University, 116026, Dalian, China
| | - Yi Yang
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Marine Engineering College, Dalian Maritime University, 116026, Dalian, China
| | - Shi Hu
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Ruihan Li
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Xiaotian Tan
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Jienan Shen
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Yi Zhang
- Research Center for Medical AI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Shaohui Huang
- School of Biosciences, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Hui Yang
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
| |
Collapse
|
2
|
Khashan S, Odhah AA, Taha M, Alazzam A, Al-Fandi M. Enhanced microfluidic multi-target separation by positive and negative magnetophoresis. Sci Rep 2024; 14:13293. [PMID: 38858424 PMCID: PMC11164922 DOI: 10.1038/s41598-024-64330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
We introduce magnetophoresis-based microfluidics for sorting biological targets using positive Magnetophoresis (pM) for magnetically labeled particles and negative Magnetophoresis (nM) for label-free particles. A single, externally magnetized ferromagnetic wire induces repulsive forces and is positioned across the focused sample flow near the main channel's closed end. We analyze magnetic attributes and separation performance under two transverse dual-mode magnetic configurations, examining magnetic fields, hydrodynamics, and forces on microparticles of varying sizes and properties. In pM, the dual-magnet arrangement (DMA) for sorting three distinct particles shows higher magnetic gradient generation and throughput than the single-magnet arrangement (SMA). In nM, the numerical results for SMA sorting of red blood cells (RBCs), white blood cells (WBCs), and prostate cancer cells (PC3-9) demonstrate superior magnetic properties and throughput compared to DMA. Magnetized wire linear movement is a key design parameter, allowing device customization. An automated device for handling more targets can be created by manipulating magnetophoretic repulsion forces. The transverse wire and magnet arrangement accommodate increased channel depth without sacrificing efficiency, yielding higher throughput than other devices. Experimental validation using soft lithography and 3D printing confirms successful sorting and separation, aligning well with numerical results. This demonstrates the successful sorting and separating of injected particles within a hydrodynamically focused sample in all systems. Both numerical and experimental findings indicate a separation accuracy of 100% across various Reynolds numbers. The primary channel dimensions measure 100 µm in height and 200 µm in width. N52 permanent magnets were employed in both numerical simulations and experiments. For numerical simulations, a remanent flux density of 1.48 T was utilized. In the experimental setup, magnets measuring 0.5 × 0.5 × 0.125 inches and 0.5 × 0.5 × 1 inch were employed. The experimental data confirm the device's capability to achieve 100% separation accuracy at a Reynolds number of 3. However, this study did not explore the potential impact of increased flow rates on separation accuracy.
Collapse
Affiliation(s)
- Saud Khashan
- Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Abdulkarem A Odhah
- Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Marwan Taha
- System on Chip Lab, Department of Mechanical and Nuclear Engineering, Khalifa University of Science & Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Anas Alazzam
- System on Chip Lab, Department of Mechanical and Nuclear Engineering, Khalifa University of Science & Technology, 127788, Abu Dhabi, United Arab Emirates.
| | - Mohamed Al-Fandi
- Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
3
|
Torres-Castro K, Acuña-Umaña K, Lesser-Rojas L, Reyes DR. Microfluidic Blood Separation: Key Technologies and Critical Figures of Merit. MICROMACHINES 2023; 14:2117. [PMID: 38004974 PMCID: PMC10672873 DOI: 10.3390/mi14112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Blood is a complex sample comprised mostly of plasma, red blood cells (RBCs), and other cells whose concentrations correlate to physiological or pathological health conditions. There are also many blood-circulating biomarkers, such as circulating tumor cells (CTCs) and various pathogens, that can be used as measurands to diagnose certain diseases. Microfluidic devices are attractive analytical tools for separating blood components in point-of-care (POC) applications. These platforms have the potential advantage of, among other features, being compact and portable. These features can eventually be exploited in clinics and rapid tests performed in households and low-income scenarios. Microfluidic systems have the added benefit of only needing small volumes of blood drawn from patients (from nanoliters to milliliters) while integrating (within the devices) the steps required before detecting analytes. Hence, these systems will reduce the associated costs of purifying blood components of interest (e.g., specific groups of cells or blood biomarkers) for studying and quantifying collected blood fractions. The microfluidic blood separation field has grown since the 2000s, and important advances have been reported in the last few years. Nonetheless, real POC microfluidic blood separation platforms are still elusive. A widespread consensus on what key figures of merit should be reported to assess the quality and yield of these platforms has not been achieved. Knowing what parameters should be reported for microfluidic blood separations will help achieve that consensus and establish a clear road map to promote further commercialization of these devices and attain real POC applications. This review provides an overview of the separation techniques currently used to separate blood components for higher throughput separations (number of cells or particles per minute). We present a summary of the critical parameters that should be considered when designing such devices and the figures of merit that should be explicitly reported when presenting a device's separation capabilities. Ultimately, reporting the relevant figures of merit will benefit this growing community and help pave the road toward commercialization of these microfluidic systems.
Collapse
Affiliation(s)
- Karina Torres-Castro
- Biophysical and Biomedical Measurements Group, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA;
- Theiss Research, La Jolla, CA 92037, USA
| | - Katherine Acuña-Umaña
- Medical Devices Master’s Program, Instituto Tecnológico de Costa Rica (ITCR), Cartago 30101, Costa Rica
| | - Leonardo Lesser-Rojas
- Research Center in Atomic, Nuclear and Molecular Sciences (CICANUM), San José 11501, Costa Rica;
- School of Physics, Universidad de Costa Rica (UCR), San José 11501, Costa Rica
| | - Darwin R. Reyes
- Biophysical and Biomedical Measurements Group, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| |
Collapse
|
4
|
Zhao K, Wei Y, Zhao P, Kong D, Gao T, Pan X, Wang J. Tunable magnetophoretic method for distinguishing and separating wear debris particles in an Fe-PDMS-based microfluidic chip. Electrophoresis 2023; 44:1210-1219. [PMID: 37075199 DOI: 10.1002/elps.202300026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Wear debris analysis provides an early warning of mechanical transmission system aging and wear fault diagnosis, which has been widely used in machine health monitoring. The ability to detect and distinguish the ferromagnetic and nonmagnetic debris in oil is becoming an effective way to assess the health status of machinery. In this work, an Fe-poly(dimethylsiloxane) (PDMS)-based magnetophoretic method for the continuous separation of ferromagnetic iron particles by diameter and the isolation of ferromagnetic particles and nonmagnetic particles with similar diameter by type is developed. The particles experience magnetophoretic effects when passing through the vicinity of the Fe-PDMS where the strongest gradient of the magnetic fields exists. By choosing a relatively short distance between the magnet and the sidewall of the horizontal main channel and the length of Fe-PDMS with controlled particles flow rate, the diameter-dependent separation of ferromagnetic iron particles, that is, smaller than 7 µm, in the range of 8-12 µm, and larger than 14 µm, and the isolation of ferromagnetic iron particles and nonmagnetic aluminum particles based on opposite magnetophoretic behaviors by types are demonstrated, providing a potential method for the detection of wear debris particles with a high sensitivity and resolution and the diagnostic of mechanical system.
Collapse
Affiliation(s)
- Kai Zhao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian, P. R. China
- Department of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| | - Yunman Wei
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian, P. R. China
- Department of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| | - Penglu Zhao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian, P. R. China
- Department of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| | - Dejian Kong
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian, P. R. China
- Department of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| | - Tianbo Gao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian, P. R. China
- Department of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| | - Xinxiang Pan
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian, P. R. China
- Department of Maritime, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Junsheng Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian, P. R. China
- Department of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| |
Collapse
|
5
|
Zeng L, Hu S, Chen X, Zhang P, Gu G, Wang Y, Zhang H, Zhang Y, Yang H. Extraction of small extracellular vesicles by label-free and biocompatible on-chip magnetic separation. LAB ON A CHIP 2022; 22:2476-2488. [PMID: 35521650 DOI: 10.1039/d2lc00217e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Small vesicles (sEVs) are closely related to many diseases as they carry various bio-markers. Efficient separation of sEVs from complex biological samples is essential and prerequisite for the following treatment and further disease diagnosis. Here we propose a label-free and biocompatible on-chip magnetic separation system for efficient extraction of sEVs from cell culture supernatant. Through an on-chip ultra-high gradient magnetic field module, a magnetic field gradient close to 100 000 T m-1 is generated inside the separation microchannel. By using fluorescent particles of 200 nm and 1000 nm to simulate sEVs and other bioparticles in a complex sample, the system design and the experimental parameters are optimized. Flow cytometry and a proposed fluorescence intensity analysis method both verify that the recovery rate and purity of 200 nm particles can reach 84.91% and 98.02%, respectively. Then, a biocompatible ferrofluid is utilized in the separation system to separate sEVs from the cell culture supernatant. The results tested by nanoparticle tracking analysis show that the recovery rate and purity of sEVs are 85.80% and 80.45%, superiorly exceeding the performance that the ultracentrifugation method can provide.
Collapse
Affiliation(s)
- Lin Zeng
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Shi Hu
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Xi Chen
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Pengcheng Zhang
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Guoqiang Gu
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Yuye Wang
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Hongpeng Zhang
- Marine Engineering College, Dalian Maritime University, 116026 Dalian, China
| | - Yi Zhang
- Center for Medical AI, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Hui Yang
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| |
Collapse
|
6
|
Chong WH, Leong SS, Lim J. Design and operation of magnetophoretic systems at microscale: Device and particle approaches. Electrophoresis 2021; 42:2303-2328. [PMID: 34213767 DOI: 10.1002/elps.202100081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022]
Abstract
Combining both device and particle designs are the essential concepts to be considered in magnetophoretic system development. Researcher efforts are often dedicated to only one of these design aspects and neglecting the interplay between them. Herein, to bring out importance of the idea of integration between device and particle, we reviewed the working principle of magnetophoretic system (includes both device and particle design concepts). Since, the magnetophoretic force is influenced by both field gradient and magnetization volume, hence, accurate prediction of the magnetophoretic force is relying on the availability of information on both parameters. In device design, we focus on the different strategies used to create localized high-field gradient. For particle design, we emphasize on the scaling between hydrodynamic size and magnetization volume. Moreover, we also briefly discussed the importance of magnetoshape anisotropy related to particle design aspect of magnetophoretic systems. Next, we illustrated the need for integration between device and particle design using microscale applications of magnetophoretic systems, include magnetic tweezers and microfluidic systems, as our working example. On the basis of our discussion, we highlighted several promising examples of microscale magnetophoretic systems which greatly utilized the interplay between device and particle design. Further, we concluded the review with several factors that possibly resulted in the lack of research efforts related to device and particle design integration.
Collapse
Affiliation(s)
- Wai Hong Chong
- School of Chemical Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Sim Siong Leong
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - JitKang Lim
- School of Chemical Engineering, Universiti Sains Malaysia, Penang, Malaysia.,Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Zeng L, Chen X, Du J, Yu Z, Zhang R, Zhang Y, Yang H. Label-free separation of nanoscale particles by an ultrahigh gradient magnetic field in a microfluidic device. NANOSCALE 2021; 13:4029-4037. [PMID: 33533377 DOI: 10.1039/d0nr08383f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The need for fast and accurate analysis of low-concentration species is ubiquitous nowadays. The separation and purification techniques restrict the highly sensitive detection of low-abundance nanoparticles. On the other hand, the commonly used separation techniques of labeling procedures limit their implementation in various applications. We report a microfluidic system with ultrahigh magnetic field for the label-free separation of nanoscale particles. Using high-permeability alloys and on-chip integrated magnetic micro-pole arrays, the external strong magnetic field can be conducted into the microfluidic device to form a magnetic field of high intensity and gradient, therefore separating particles of nanometer size with high efficiency. An ultrahigh gradient magnetic field greater than 105 T m-1 can be generated in the separation channel. Moreover, a negative magnetophoretic technique to separate nanoparticles is established in this device. Then, the label-free separation of nanoparticles is achieved in this microfluidic system perfused by a ferrofluid with an extremely low concentration (0.01%). A mixture of 0.2 μm and 1 μm particles is used to verify the performance of the device, where the recovery rate of 0.2 μm particles is 88.79%, and the purity reaches 94.72%. Experimental results show that the device can efficiently separate nanoscale particles with ultrahigh resolution, and in future, it may develop into a versatile and robust tool for the separation and purification of the biological samples of nanometer size.
Collapse
Affiliation(s)
- Lin Zeng
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Xi Chen
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Jing Du
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Zitong Yu
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Rongrong Zhang
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Yi Zhang
- Center for Medical AI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Hui Yang
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China. and CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, 518055 Shenzhen, China
| |
Collapse
|