1
|
Schairer J, Plathe F, Hudelmaier S, Belau E, Pengelley S, Kruse L, Neusüß C. Ion mobility in gas and liquid phases: How much orthogonality is obtained in capillary electrophoresis-ion mobility-mass spectrometry? Electrophoresis 2024; 45:735-742. [PMID: 38085142 DOI: 10.1002/elps.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 04/28/2024]
Abstract
Ion mobility-mass spectrometry (IM-MS) is an ever-evolving tool to separate ions in the gas phase according to electrophoretic mobility with subsequent mass determination. CE is rarely coupled to IM-MS, possibly due to similar separation mechanisms based on electrophoretic mobility. Here, we investigate the orthogonality of CE and ion mobility (IM) by analyzing a complex peptide mixture (tryptic digest of HeLa proteins) with trapped ion mobility mass spectrometry (TIMS-MS). Using the nanoCEasy interface, excellent sensitivity was achieved by identifying thousands of peptides and achieving a peak capacity of 7500 (CE: 203-323 in a 150 cm long capillary, IM: 27-31). Plotting CE versus mass and CE versus (inverse) mobility, a clear grouping in curved striped patterns is observed according to the charge-to-size and mass-to-charge ratios. The peptide charge in the acidic background electrolyte can be estimated from the number of basic amino acids, with a few exceptions where neighboring effects reduce the positive charge. A surprisingly high orthogonality of CE and IM is observed, which is obviously caused by solvation effects leading to different charges and sizes in the liquid phase compared to the gas phase. A high orthogonality of CE and ion mobility is expected to be observed for other peptide samples as well as other substance classes, making CE-IM-MS a promising tool for various applications.
Collapse
Affiliation(s)
- Jasmin Schairer
- Faculty of Chemistry, Aalen University, Aalen, Germany
- Faculty of Science, University of Tübingen, Tübingen, Germany
| | | | | | | | | | - Lena Kruse
- Faculty of Chemistry, Aalen University, Aalen, Germany
| | | |
Collapse
|
2
|
Schwenzer AK, Kruse L, Jooß K, Neusüß C. Capillary electrophoresis-mass spectrometry for protein analyses under native conditions: Current progress and perspectives. Proteomics 2024; 24:e2300135. [PMID: 37312401 DOI: 10.1002/pmic.202300135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
Native mass spectrometry is a rapidly emerging technique for fast and sensitive structural analysis of protein constructs, maintaining the protein higher order structure. The coupling with electromigration separation techniques under native conditions enables the characterization of proteoforms and highly complex protein mixtures. In this review, we present an overview of current native CE-MS technology. First, the status of native separation conditions is described for capillary zone electrophoresis (CZE), affinity capillary electrophoresis (ACE), and capillary isoelectric focusing (CIEF), as well as their chip-based formats, including essential parameters such as electrolyte composition and capillary coatings. Further, conditions required for native ESI-MS of (large) protein constructs, including instrumental parameters of QTOF and Orbitrap systems, as well as requirements for native CE-MS interfacing are presented. On this basis, methods and applications of the different modes of native CE-MS are summarized and discussed in the context of biological, medical, and biopharmaceutical questions. Finally, key achievements are highlighted and concluded, while remaining challenges are pointed out.
Collapse
Affiliation(s)
| | - Lena Kruse
- Department of Chemistry, Aalen University, Aalen, Germany
| | - Kevin Jooß
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | | |
Collapse
|
3
|
Narduzzi L, Delgado-Povedano MDM, Lara FJ, Le Bizec B, García-Campaña AM, Dervilly G, Hernández-Mesa M. A comparison of hydrophilic interaction liquid chromatography and capillary electrophoresis for the metabolomics analysis of human serum. J Chromatogr A 2023; 1706:464239. [PMID: 37541059 DOI: 10.1016/j.chroma.2023.464239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023]
Abstract
Cationic, anionic, zwitterionic and, partially polar metabolites are very important constituents of blood serum. Several of these metabolites underpin the core metabolism of cells (e.g., Krebs cycle, urea cycle, proteins synthesis, etc.), while others might be considered ancillary but still important to grasp the status of any organism through blood serum analysis. Due to its wide chemical diversity, modern metabolomics analysis of serum is still struggling to provide a complete and comprehensive picture of the polar metabolome, due to the limitations of each specific analytical method. In this study, two metabolomics-based analytical methods using the most successful techniques for polar compounds separation in human serum samples, namely hydrophilic interaction liquid chromatography (HILIC) and capillary electrophoresis (CE), are evaluated, both coupled to a high-resolution time-of-flight mass spectrometer via electrospray ionization (ESI-Q-TOF-MS). The performance of the two methods have been compared using five terms of comparison, three of which are specific to metabolomics, such as (1) compounds' detectability (2) Pezzatti score (Pezzatti et al. 2018), (3) intra-day precision (repeatability), (4) ease of automatic analysis of the data (through a common deconvolution alignment and extrapolation software, MS-DIAL, and (5) time & cost analysis. From this study, HILIC-MS proved to be a better tool for polar metabolome analysis, while CE-MS helped identify some interesting variables that gave it interest in completing metabolome coverage in metabolomics studies. Finally, in this framework, MS-DIAL demonstrates for the first time its ability to process CE data for metabolomics, although it is not designed for it.
Collapse
Affiliation(s)
- Luca Narduzzi
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada E-18071, Spain.
| | - María Del Mar Delgado-Povedano
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada E-18071, Spain
| | - Francisco J Lara
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada E-18071, Spain
| | | | - Ana María García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada E-18071, Spain
| | | | - Maykel Hernández-Mesa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada E-18071, Spain.
| |
Collapse
|
4
|
Moses T, Burgess K. Right in two: capabilities of ion mobility spectrometry for untargeted metabolomics. Front Mol Biosci 2023; 10:1230282. [PMID: 37602325 PMCID: PMC10436490 DOI: 10.3389/fmolb.2023.1230282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
This mini review focuses on the opportunities provided by current and emerging separation techniques for mass spectrometry metabolomics. The purpose of separation technologies in metabolomics is primarily to reduce complexity of the heterogeneous systems studied, and to provide concentration enrichment by increasing sensitivity towards the quantification of low abundance metabolites. For this reason, a wide variety of separation systems, from column chemistries to solvent compositions and multidimensional separations, have been applied in the field. Multidimensional separations are a common method in both proteomics applications and gas chromatography mass spectrometry, allowing orthogonal separations to further reduce analytical complexity and expand peak capacity. These applications contribute to exponential increases in run times concomitant with first dimension fractionation followed by second dimension separations. Multidimensional liquid chromatography to increase peak capacity in metabolomics, when compared to the potential of running additional samples or replicates and increasing statistical confidence, mean that uptake of these methods has been minimal. In contrast, in the last 15 years there have been significant advances in the resolution and sensitivity of ion mobility spectrometry, to the point where high-resolution separation of analytes based on their collision cross section approaches chromatographic separation, with minimal loss in sensitivity. Additionally, ion mobility separations can be performed on a chromatographic timescale with little reduction in instrument duty cycle. In this review, we compare ion mobility separation to liquid chromatographic separation, highlight the history of the use of ion mobility separations in metabolomics, outline the current state-of-the-art in the field, and discuss the future outlook of the technology. "Where there is one, you're bound to divide it. Right in two", James Maynard Keenan.
Collapse
Affiliation(s)
- Tessa Moses
- EdinOmics, RRID:SCR_021838, University of Edinburgh, Max Born Crescent, Edinburgh, United Kingdom
| | - Karl Burgess
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Salzer L, Schmitt-Kopplin P, Witting M. Capillary electrophoresis-mass spectrometry as a tool for Caenorhabditis elegans metabolomics research. Metabolomics 2023; 19:61. [PMID: 37351740 DOI: 10.1007/s11306-023-02025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION Polar metabolites in Caenorhabditis elegans (C. elegans) have predominantly been analyzed using hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS). Capillary electrophoresis coupled to mass spectrometry (CE-MS) represents another complementary analytical platform suitable for polar and charged analytes. OBJECTIVE We compared CE-MS and HILIC-MS for the analysis of a set of 60 reference standards relevant for C. elegans and specifically investigated the strengths of CE separation. Furthermore, we employed CE-MS as a complementary analytical approach to study polar metabolites in C. elegans samples, particularly in the context of longevity, in order to address a different part of its metabolome. METHOD We analyzed 60 reference standards as well as metabolite extracts from C. elegans daf-2 loss-of-function mutants and wild-type (WT) samples using HILIC-MS and CE-MS employing a Q-ToF-MS instrument. RESULTS CE separations showed narrower peak widths and a better linearity of the estimated response function across different concentrations which is linked to less saturation of the MS signals. Additionally, CE exhibited a distinct selectivity in the separation of compounds compared to HILIC-MS, providing complementary information for the analysis of the target compounds. Analysis of C. elegans metabolites of daf-2 mutants and WT samples revealed significant alterations in shared metabolites identified through HILIC-MS, as well as the presence of distinct metabolites. CONCLUSION CE-MS was successfully applied in C. elegans metabolomics, being able to recover known as well as identify novel putative biomarkers of longevity.
Collapse
Affiliation(s)
- Liesa Salzer
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Michael Witting
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany.
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
6
|
Recent advances in the hyphenation of electromigration techniques with mass spectrometry. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
High-end ion mobility mass spectrometry: A current review of analytical capacity in omics applications and structural investigations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Gou MJ, Kose MC, Crommen J, Nix C, Cobraiville G, Caers J, Fillet M. Contribution of Capillary Zone Electrophoresis Hyphenated with Drift Tube Ion Mobility Mass Spectrometry as a Complementary Tool to Microfluidic Reversed Phase Liquid Chromatography for Antigen Discovery. Int J Mol Sci 2022; 23:13350. [PMID: 36362139 PMCID: PMC9659090 DOI: 10.3390/ijms232113350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 10/14/2023] Open
Abstract
The discovery of new antigens specific to multiple myeloma that could be targeted by novel immunotherapeutic approaches is currently of great interest. To this end, it is important to increase the number of proteins identified in the sample by combining different separation strategies. A capillary zone electrophoresis (CZE) method, coupled with drift tube ion mobility (DTIMS) and quadrupole time-of-flight mass spectrometry (QTOF), was developed for antigen discovery using the human myeloma cell line LP-1. This method was first optimized to obtain a maximum number of identifications. Then, its performance in terms of uniqueness of identifications was compared to data acquired by a microfluidic reverse phase liquid chromatography (RPLC) method. The orthogonality of these two approaches and the physicochemical properties of the entities identified by CZE and RPLC were evaluated. In addition, the contribution of DTIMS to CZE was investigated in terms of orthogonality as well as the ability to provide unique information. In conclusion, we believe that the combination of CZE-DTIMS-QTOF and microfluidic RPLC provides unique information in the context of antigen discovery.
Collapse
Affiliation(s)
- Marie-Jia Gou
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| | - Murat Cem Kose
- Laboratory of Hematology, GIGA I3, University of Liège, Avenue de l’Hopital 11, B34, 4000 Liege, Belgium
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| | - Cindy Nix
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| | - Gael Cobraiville
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| | - Jo Caers
- Laboratory of Hematology, GIGA I3, University of Liège, Avenue de l’Hopital 11, B34, 4000 Liege, Belgium
- Department of Hematology, Centre Hospitalier Universitaire (CHU) de Liège, Avenue de l’Hopital 1, 4000 Liege, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| |
Collapse
|
9
|
Pičmanová M, Moses T, Cortada-Garcia J, Barrett G, Florance H, Pandor S, Burgess K. Rapid HILIC-Z ion mobility mass spectrometry (RHIMMS) method for untargeted metabolomics of complex biological samples. Metabolomics 2022; 18:16. [PMID: 35229219 PMCID: PMC8885480 DOI: 10.1007/s11306-022-01871-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/19/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Recent advances in high-throughput methodologies in the 'omics' and synthetic biology fields call for rapid and sensitive workflows in the metabolic phenotyping of complex biological samples. OBJECTIVE The objective of this research was to evaluate a straightforward to implement LC-MS metabolomics method using a commercially available chromatography column that provides increased throughput. Reducing run time can potentially impact chromatography and therefore the effects of ion mobility spectrometry to expand peak capacity were also evaluated. Additional confidence provided via collision cross section measurements for detected features was also explored. METHODS A rapid untargeted metabolomics workflow was developed with broad metabolome coverage, combining zwitterionic-phase hydrophilic interaction chromatography (HILIC-Z) with drift tube ion mobility-quadrupole time-of-flight (DTIM-qTOF) mass spectrometry. The analytical performance of our method was explored using extracts from complex biological samples, including a reproducibility study on chicken serum and a simple comparative study on a bacterial metabolome. RESULTS The method is acronymised RHIMMS for rapid HILIC-Z ion mobility mass spectrometry. We present the RHIMMS workflow starting with data acquisition, followed by data processing and analysis. RHIMMS demonstrates improved chromatographic separation for a selection of metabolites with wide physicochemical properties while maintaining reproducibility at better than 20% over 200 injections at 3.5 min per sample for the selected metabolites, and a mean of 13.9% for the top 50 metabolites by intensity. Additionally, the combination of rapid chromatographic separation with ion mobility allows improved annotation and the ability to distinguish isobaric compounds. CONCLUSION Our results demonstrate RHIMMS to be a rapid, reproducible, sensitive and high-resolution analytical platform that is highly applicable to the untargeted metabolomics analysis of complex samples.
Collapse
Affiliation(s)
- Martina Pičmanová
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Tessa Moses
- EdinOmics, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Joan Cortada-Garcia
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Georgina Barrett
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Hannah Florance
- Agilent Technologies UK Limited, Cheadle Royal Business Park Stockport, Cheshire, SK8 3GR, UK
| | - Sufyan Pandor
- Agilent Technologies UK Limited, Cheadle Royal Business Park Stockport, Cheshire, SK8 3GR, UK
| | - Karl Burgess
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK.
- EdinOmics, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
10
|
van Mever M, Willacey CCW, Zhang W, Drouin N, Christina AE, Lindenburg PW, van Veldhoven JPD, van der Es D, Harms AC, Hankemeier T, Ramautar R. Profiling acidic metabolites by capillary electrophoresis-mass spectrometry in low numbers of mammalian cells using a novel chemical derivatization approach. ANALYTICAL SCIENCE ADVANCES 2022; 3:3-13. [PMID: 38716053 PMCID: PMC10989665 DOI: 10.1002/ansa.202100054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2024]
Abstract
The simultaneous analysis of a broad range of polar ionogenic metabolites using capillary electrophoresis-mass spectrometry (CE-MS) can be challenging, as two different analytical methods are often required, that is, one for cations and one for anions. Even though CE-MS has shown to be an effective method for cationic metabolite profiling, the analysis of small anionic metabolites often results in relatively low sensitivity and poor repeatability. In this work, a novel derivatization strategy based on trimethylmethaneaminophenacetyl bromide was developed to enable CE-MS analysis of carboxylic acid metabolites using normal CE polarity (i.e., cathode in the outlet) and detection by mass spectrometry in positive ionization mode. Optimization of derivatization conditions was performed using a response surface methodology after which the optimized method (incubation time 50 min, temperature 90°C, and pH 10) was used for the analysis of carboxylic acid metabolites in extracts from HepG2 cells. For selected metabolites, detection limits were down to 8.2 nM, and intraday relative standard deviation values for replicates (n = 3) for peak areas were below 21.5%. Metabolites related to glycolysis, tricarboxylic acid cycle, and anaerobic respiration pathways were quantified in 250,000 cell lysates, and could still be detected in extracts from only 25,000 HepG2 cell lysates (∼70 cell lysates injected).
Collapse
Affiliation(s)
- Marlien van Mever
- Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | | | - Wei Zhang
- Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Nicolas Drouin
- Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Alphert E. Christina
- Research Group MetabolomicsLeiden Centre for Applied BioscienceUniversity of Applied Sciences LeidenLeidenThe Netherlands
| | - Peter W. Lindenburg
- Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
- Research Group MetabolomicsLeiden Centre for Applied BioscienceUniversity of Applied Sciences LeidenLeidenThe Netherlands
| | | | - Daan van der Es
- Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Amy C. Harms
- Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Rawi Ramautar
- Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
11
|
Plachká K, Pezzatti J, Musenga A, Nicoli R, Kuuranne T, Rudaz S, Nováková L, Guillarme D. Ion mobility-high resolution mass spectrometry in anti-doping analysis. Part I: Implementation of a screening method with the assessment of a library of substances prohibited in sports. Anal Chim Acta 2021; 1152:338257. [DOI: 10.1016/j.aca.2021.338257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
|
12
|
Pezzatti J, González-Ruiz V, Boccard J, Guillarme D, Rudaz S. Evaluation of Different Tandem MS Acquisition Modes to Support Metabolite Annotation in Human Plasma Using Ultra High-Performance Liquid Chromatography High-Resolution Mass Spectrometry for Untargeted Metabolomics. Metabolites 2020; 10:metabo10110464. [PMID: 33203160 PMCID: PMC7697060 DOI: 10.3390/metabo10110464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) is a powerful and essential technique for metabolite annotation in untargeted metabolomic applications. The aim of this study was to evaluate the performance of diverse tandem MS (MS/MS) acquisition modes, i.e., all ion fragmentation (AIF) and data-dependent analysis (DDA), with and without ion mobility spectrometry (IM), to annotate metabolites in human plasma. The influence of the LC separation was also evaluated by comparing the performance of MS/MS acquisition in combination with three complementary chromatographic separation modes: reversed-phase chromatography (RPLC) and hydrophilic interaction chromatography (HILIC) with either an amide (aHILIC) or a zwitterionic (zHILIC) stationary phase. RPLC conditions were first chosen to investigate all the tandem MS modes, and we found out that DDA did not provide a significant additional amount of chemical coverage and that cleaner MS/MS spectra can be obtained by performing AIF acquisitions in combination with IM. Finally, we were able to annotate 338 unique metabolites and demonstrated that zHILIC was a powerful complementary approach to both the RPLC and aHILIC chromatographic modes. Moreover, a better analytical throughput was reached for an almost negligible loss of metabolite coverage when IM-AIF and AIF using ramped instead of fixed collision energies were used.
Collapse
Affiliation(s)
- Julian Pezzatti
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; (J.P.); (V.G.-R.); (J.B.); (D.G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
| | - Víctor González-Ruiz
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; (J.P.); (V.G.-R.); (J.B.); (D.G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- Swiss Centre for Applied Human Toxicology (SCATH), 4055 Basel, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; (J.P.); (V.G.-R.); (J.B.); (D.G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- Swiss Centre for Applied Human Toxicology (SCATH), 4055 Basel, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; (J.P.); (V.G.-R.); (J.B.); (D.G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; (J.P.); (V.G.-R.); (J.B.); (D.G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- Swiss Centre for Applied Human Toxicology (SCATH), 4055 Basel, Switzerland
- Correspondence: ; Tel.: +41-2‐2379-6572
| |
Collapse
|