1
|
Tabarhoseini SM, Kale AS, Koniers PM, Boone AC, Bentor J, Boies A, Zhao H, Xuan X. Charge-Based Separation of Microparticles Using AC Insulator-Based Dielectrophoresis. Anal Chem 2024; 96:13672-13678. [PMID: 39126704 DOI: 10.1021/acs.analchem.4c02646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Surface charge is an important property of particles. It has been utilized to separate particles in microfluidic devices, where dielectrophoresis (DEP) is often the driving force. However, current DEP-based particle separations based on the charge differences work only for particles of similar sizes. They become less effective and may even fail for a mixture of particles differing in both charge and size. We demonstrate that our recently developed AC insulator-based dielectrophoresis (AC iDEP) technique can direct microparticles toward charge-dependent equilibrium positions in a ratchet microchannel. Such charge-based particle separation is controlled by the imposed AC voltage frequency and amplitude but is nearly unaffected by the size of either type of particle in the mixture except for the time required to achieve an effective separation. This AC iDEP technique may potentially be used to focus and separate submicron or even nanoparticles because of its virtually "infinite" channel length.
Collapse
Affiliation(s)
| | - Akshay Shridhar Kale
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom
| | - Peter Michael Koniers
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Anna Claire Boone
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Joseph Bentor
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Adam Boies
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom
| | - Hui Zhao
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
2
|
de Los Santos-Ramirez JM, Mendiola-Escobedo CA, Cotera-Sarabia JM, Gallo-Villanueva RC, Martinez-Duarte R, Perez-Gonzalez VH. Enabling the characterization of the nonlinear electrokinetic properties of particles using low voltage. Analyst 2024; 149:3839-3849. [PMID: 38855835 DOI: 10.1039/d4an00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Insulator-based electrokinetically driven microfluidic devices stimulated with direct current (DC) voltages are an attractive solution for particle separation, concentration, or isolation. However, to design successful particle manipulation protocols, it is mandatory to know the mobilities of electroosmosis, and linear and nonlinear electrophoresis of the microchannel/liquid/particle system. Several techniques exist to characterize the mobilities of electroosmosis and linear electrophoresis. However, only one method to characterize the mobility of nonlinear electrophoresis has been thoroughly assessed, which generally requires DC voltages larger than 1000 V and measuring particle velocity in a straight microchannel. Under such conditions, Joule heating, electrolysis, and the DC power source cost become a concern. Also, measuring particle velocity at high voltages is noisy, limiting characterization quality. Here we present a protocol-tested on 2 μm polystyrene particles-for characterizing the mobility of nonlinear electrophoresis of the liquid/particle system using a DC voltage of only 30 V and visual inspection of particle dynamics in a microchannel featuring insulating obstacles. Multiphysics numerical modelling was used to guide microchannel design and to correlate particle location during an experiment with electric field intensity. The method was validated against the conventional characterization protocol, exhibiting excellent agreement while significantly reducing measurement noise and experimental complexity.
Collapse
Affiliation(s)
- J Martin de Los Santos-Ramirez
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL, 64700, Mexico.
| | - Carlos A Mendiola-Escobedo
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL, 64700, Mexico.
| | - Jose M Cotera-Sarabia
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL, 64700, Mexico.
| | - Roberto C Gallo-Villanueva
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL, 64700, Mexico.
| | - Rodrigo Martinez-Duarte
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA.
| | - Victor H Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL, 64700, Mexico.
| |
Collapse
|
3
|
de Los Santos-Ramirez JM, Boyas-Chavez PG, Cerrillos-Ordoñez A, Mata-Gomez M, Gallo-Villanueva RC, Perez-Gonzalez VH. Trends and challenges in microfluidic methods for protein manipulation-A review. Electrophoresis 2024; 45:69-100. [PMID: 37259641 DOI: 10.1002/elps.202300056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
Proteins are important molecules involved in an immensely large number of biological processes. Being capable of manipulating proteins is critical for developing reliable and affordable techniques to analyze and/or detect them. Such techniques would enable the production of therapeutic agents for the treatment of diseases or other biotechnological applications (e.g., bioreactors or biocatalysis). Microfluidic technology represents a potential solution to protein manipulation challenges because of the diverse phenomena that can be exploited to achieve micro- and nanoparticle manipulation. In this review, we discuss recent contributions made in the field of protein manipulation in microfluidic systems using different physicochemical principles and techniques, some of which are miniaturized versions of already established macro-scale techniques.
Collapse
Affiliation(s)
| | - Pablo G Boyas-Chavez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | - Marco Mata-Gomez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | | |
Collapse
|
4
|
Wu M, Gao Y, Luan Q, Papautsky I, Chen X, Xu J. Three-dimensional lab-on-a-foil device for dielectrophoretic separation of cancer cells. Electrophoresis 2023; 44:1802-1809. [PMID: 37026613 DOI: 10.1002/elps.202200287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023]
Abstract
A simple, low-cost, three-dimensional (3D) lab-on-a-foil microfluidic device for dielectrophoretic separation of circulating tumor cells (CTCs) is designed and constructed. Disposable thin films are cut by xurography and microelectrode array are made with rapid inkjet printing. The multilayer device design allows the studying of spatial movements of CTCs and red blood cells (RBCs) under dielectrophoresis (DEP). A numerical simulation was performed to find the optimum driving frequency of RBCs and the crossover frequency for CTCs. At the optimum frequency, RBCs were lifted 120 µm in z-axis direction by DEP force, and CTCs were not affected due to negligible DEP force. By utilizing the displacement difference, the separation of CTCs (modeled with A549 lung carcinoma cells) from RBCs in z-axis direction was achieved. With the nonuniform electric field at optimized driving frequency, the RBCs were trapped in the cavities above the microchannel, whereas the A549 cells were separated with a high capture rate of 86.3% ± 0.2%. The device opens not only the possibility for 3D high-throughput cell separation but also for future developments in 3D cell manipulation through rapid and low-cost fabrication.
Collapse
Affiliation(s)
- Mengren Wu
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yuan Gao
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Mechanical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Qiyue Luan
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Xiaolin Chen
- School of Engineering and Computer Science, Washington State University, Vancouver, Washington, USA
| | - Jie Xu
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Raj M K, Priyadarshani J, Karan P, Bandyopadhyay S, Bhattacharya S, Chakraborty S. Bio-inspired microfluidics: A review. BIOMICROFLUIDICS 2023; 17:051503. [PMID: 37781135 PMCID: PMC10539033 DOI: 10.1063/5.0161809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Biomicrofluidics, a subdomain of microfluidics, has been inspired by several ideas from nature. However, while the basic inspiration for the same may be drawn from the living world, the translation of all relevant essential functionalities to an artificially engineered framework does not remain trivial. Here, we review the recent progress in bio-inspired microfluidic systems via harnessing the integration of experimental and simulation tools delving into the interface of engineering and biology. Development of "on-chip" technologies as well as their multifarious applications is subsequently discussed, accompanying the relevant advancements in materials and fabrication technology. Pointers toward new directions in research, including an amalgamated fusion of data-driven modeling (such as artificial intelligence and machine learning) and physics-based paradigm, to come up with a human physiological replica on a synthetic bio-chip with due accounting of personalized features, are suggested. These are likely to facilitate physiologically replicating disease modeling on an artificially engineered biochip as well as advance drug development and screening in an expedited route with the minimization of animal and human trials.
Collapse
Affiliation(s)
- Kiran Raj M
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Jyotsana Priyadarshani
- Department of Mechanical Engineering, Biomechanics Section (BMe), KU Leuven, Celestijnenlaan 300, 3001 Louvain, Belgium
| | - Pratyaksh Karan
- Géosciences Rennes Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Saumyadwip Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Soumya Bhattacharya
- Achira Labs Private Limited, 66b, 13th Cross Rd., Dollar Layout, 3–Phase, JP Nagar, Bangalore, Karnataka 560078, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
6
|
Gong L, Cretella A, Lin Y. Microfluidic systems for particle capture and release: A review. Biosens Bioelectron 2023; 236:115426. [PMID: 37276636 DOI: 10.1016/j.bios.2023.115426] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Microfluidic technology has emerged as a promising tool in various applications, including biosensing, disease diagnosis, and environmental monitoring. One of the notable features of microfluidic devices is their ability to selectively capture and release specific cells, biomolecules, bacteria, and particles. Compared to traditional bulk analysis instruments, microfluidic capture-and-release platforms offer several advantages, such as contactless operation, label-free detection, high accuracy, good sensitivity, and minimal reagent requirements. However, despite significant efforts dedicated to developing innovative capture mechanisms in the past, the release and recovery efficiency of trapped particles have often been overlooked. Many previous studies have focused primarily on particle capture techniques and their efficiency, disregarding the crucial role of successful particle release for subsequent analysis. In reality, the ability to effectively release trapped particles is particularly essential to ensure ongoing, high-throughput analysis. To address this gap, this review aims to highlight the importance of both capture and release mechanisms in microfluidic systems and assess their effectiveness. The methods are classified into two categories: those based on physical principles and those using biochemical approaches. Furthermore, the review offers a comprehensive summary of recent applications of microfluidic platforms specifically designed for particle capture and release. It outlines the designs and performance of these devices, highlighting their advantages and limitations in various target applications and purposes. Finally, the review concludes with discussions on the current challenges faced in the field and presents potential future directions.
Collapse
Affiliation(s)
- Liyuan Gong
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Andrew Cretella
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Yang Lin
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
7
|
Chen M, Lin S, Zhou C, Cui D, Haick H, Tang N. From Conventional to Microfluidic: Progress in Extracellular Vesicle Separation and Individual Characterization. Adv Healthc Mater 2023; 12:e2202437. [PMID: 36541411 DOI: 10.1002/adhm.202202437] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles, which contain a wide variety of cargo such as proteins, miRNAs, and lipids. A growing body of evidence suggests that EVs are promising biomarkers for disease diagnosis and therapeutic strategies. Although the excellent clinical value, their use in personalized healthcare practice is not yet feasible due to their highly heterogeneous nature. Taking the difficulty of isolation and the small size of EVs into account, the characterization of EVs at a single-particle level is both imperative and challenging. In a bid to address this critical point, more research has been directed into a microfluidic platform because of its inherent advantages in sensitivity, specificity, and throughput. This review discusses the biogenesis and heterogeneity of EVs and takes a broad view of state-of-the-art advances in microfluidics-based EV research, including not only EV separation, but also the single EV characterization of biophysical detection and biochemical analysis. To highlight the advantages of microfluidic techniques, conventional technologies are included for comparison. The current status of artificial intelligence (AI) for single EV characterization is then presented. Furthermore, the challenges and prospects of microfluidics and its combination with AI applications in single EV characterization are also discussed. In the foreseeable future, recent breakthroughs in microfluidic platforms are expected to pave the way for single EV analysis and improve applications for precision medicine.
Collapse
Affiliation(s)
- Mingrui Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Cheng Zhou
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ning Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
8
|
Recent advances in non-optical microfluidic platforms for bioparticle detection. Biosens Bioelectron 2023; 222:114944. [PMID: 36470061 DOI: 10.1016/j.bios.2022.114944] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
The effective analysis of the basic structure and functional information of bioparticles are of great significance for the early diagnosis of diseases. The synergism between microfluidics and particle manipulation/detection technologies offers enhanced system integration capability and test accuracy for the detection of various bioparticles. Most microfluidic detection platforms are based on optical strategies such as fluorescence, absorbance, and image recognition. Although optical microfluidic platforms have proven their capabilities in the practical clinical detection of bioparticles, shortcomings such as expensive components and whole bulky devices have limited their practicality in the development of point-of-care testing (POCT) systems to be used in remote and underdeveloped areas. Therefore, there is an urgent need to develop cost-effective non-optical microfluidic platforms for bioparticle detection that can act as alternatives to optical counterparts. In this review, we first briefly summarise passive and active methods for bioparticle manipulation in microfluidics. Then, we survey the latest progress in non-optical microfluidic strategies based on electrical, magnetic, and acoustic techniques for bioparticle detection. Finally, a perspective is offered, clarifying challenges faced by current non-optical platforms in developing practical POCT devices and clinical applications.
Collapse
|
9
|
Gao T, Zhao K, Zhang J, Zhang K. DC-Dielectrophoretic Manipulation and Isolation of Microplastic Particle-Treated Microalgae Cells in Asymmetric-Orifice-Based Microfluidic Chip. MICROMACHINES 2023; 14:229. [PMID: 36677290 PMCID: PMC9865771 DOI: 10.3390/mi14010229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
A novel direct-current dielectrophoretic (DC-DEP) method is proposed for the manipulation and isolation of microplastic particle (MP)-treated microalgae cells according to their dielectric properties in a microfluidic chip. The lateral migration and trajectory of the microalgae cells were investigated. To induce stronger DC-DEP effects, a non-homogeneous electric-field gradient was generated by applying the DC electric voltages through triple pairs of asymmetric orifices with three small orifices and one large orifice located on the opposite microchannel wall across the whole channel, leading to the enhanced magnitude of the non-uniform electric-field gradient and effective dielectrophoretic area. The effects of the applied voltage, the polystyrene (PS) adsorption coverage, and thickness on the DC-DEP behaviors and migration were numerically investigated, and it was found that the effect of the PS adsorption thickness of the Chlorella cells on the DC-DEP behaviors can be neglected, but the effect on their trajectory shifts cannot. In this way, the separation of 3 µm and 6 µm Chlorella coated with 100% PS particles and the isolation of the Chlorella cells from those coated with various coverages and thicknesses of PS particles was successfully achieved, providing a promising method for the isolation of microalgae cells and the removal of undesired cells from a target suspension.
Collapse
Affiliation(s)
- Tianbo Gao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Kai Zhao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Jiaqi Zhang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Kaihuan Zhang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
10
|
Kim H, Zhbanov A, Yang S. Microfluidic Systems for Blood and Blood Cell Characterization. BIOSENSORS 2022; 13:13. [PMID: 36671848 PMCID: PMC9856090 DOI: 10.3390/bios13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A laboratory blood test is vital for assessing a patient's health and disease status. Advances in microfluidic technology have opened the door for on-chip blood analysis. Currently, microfluidic devices can reproduce myriad routine laboratory blood tests. Considerable progress has been made in microfluidic cytometry, blood cell separation, and characterization. Along with the usual clinical parameters, microfluidics makes it possible to determine the physical properties of blood and blood cells. We review recent advances in microfluidic systems for measuring the physical properties and biophysical characteristics of blood and blood cells. Added emphasis is placed on multifunctional platforms that combine several microfluidic technologies for effective cell characterization. The combination of hydrodynamic, optical, electromagnetic, and/or acoustic methods in a microfluidic device facilitates the precise determination of various physical properties of blood and blood cells. We analyzed the physical quantities that are measured by microfluidic devices and the parameters that are determined through these measurements. We discuss unexplored problems and present our perspectives on the long-term challenges and trends associated with the application of microfluidics in clinical laboratories. We expect the characterization of the physical properties of blood and blood cells in a microfluidic environment to be considered a standard blood test in the future.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Mechatronics Engineering, Dongseo University, Busan 47011, Republic of Korea
| | - Alexander Zhbanov
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sung Yang
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
11
|
Li D, Yu W, Zhou T, Li M, Song Y, Li D. Conductivity-difference-enhanced DC dielectrophoretic particle separation in a microfluidic chip. Analyst 2022; 147:1106-1116. [DOI: 10.1039/d1an02196f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conductivity-difference-enhanced DC dielectrophoretic particle separation in a microfluidic chip. Two immiscible electrolyte solutions with different conductivities in microchannels.
Collapse
Affiliation(s)
- Deyu Li
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Weicheng Yu
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Teng Zhou
- Mechanical and Electrical Engineering College, Hainan University, Hai Kou, 570228, China
| | - Mengqi Li
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
12
|
Ruz-Cuen R, de Los Santos-Ramírez JM, Cardenas-Benitez B, Ramírez-Murillo CJ, Miller A, Hakim K, Lapizco-Encinas BH, Perez-Gonzalez VH. Amplification factor in DC insulator-based electrokinetic devices: a theoretical, numerical, and experimental approach to operation voltage reduction for particle trapping. LAB ON A CHIP 2021; 21:4596-4607. [PMID: 34739022 DOI: 10.1039/d1lc00614b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insulator-based microfluidic devices are attractive for handling biological samples due to their simple fabrication, low-cost, and efficiency in particle manipulation. However, their widespread application is limited by the high operation voltages required to achieve particle trapping. We present a theoretical, numerical, and experimental study that demonstrates these voltages can be significantly reduced (to sub-100 V) in direct-current insulator-based electrokinetic (DC-iEK) devices for micron-sized particles. To achieve this, we introduce the concept of the amplification factor-the fold-increase in electric field magnitude due to the presence of an insulator constriction-and use it to compare the performance of different microchannel designs and to direct our design optimization process. To illustrate the effect of using constrictions with smooth and sharp features on the amplification factor, geometries with circular posts and semi-triangular posts were used. These were theoretically approximated in two different systems of coordinates (bipolar and elliptic), allowing us to provide, for the first time, explicit electric field amplification scaling laws. Finite element simulations were performed to approximate the 3D insulator geometries and provide a parametric study of the effect of changing different geometrical features. These simulations were used to predict particle trapping voltages for four different single-layer microfluidic devices using two particle suspensions (2 and 6.8 μm in size). The general agreement between our models demonstrates the feasibility of using the amplification factor, in combination with nonlinear electrokinetic theory, to meet the prerequisites for the development of portable DC-iEK microfluidic systems.
Collapse
Affiliation(s)
- Rodrigo Ruz-Cuen
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico.
| | | | | | | | - Abbi Miller
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Kel Hakim
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Victor H Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico.
| |
Collapse
|
13
|
Lapizco-Encinas BH. The latest advances on nonlinear insulator-based electrokinetic microsystems under direct current and low-frequency alternating current fields: a review. Anal Bioanal Chem 2021; 414:885-905. [PMID: 34664103 DOI: 10.1007/s00216-021-03687-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
This review article presents an overview of the evolution of the field of insulator-based dielectrophoresis (iDEP); in particular, it focuses on insulator-based electrokinetic (iEK) systems stimulated with direct current and low-frequency(< 1 kHz) AC electric fields. The article covers the surge of iDEP as a research field where many different device designs were developed, from microchannels with arrays of insulating posts to devices with curved walls and nano- and micropipettes. All of these systems allowed for the manipulation and separation of a wide array of particles, ranging from macromolecules to microorganisms, including clinical and biomedical applications. Recent experimental reports, supported by important theoretical studies in the field of physics and colloids, brought attention to the effects of electrophoresis of the second kind in these systems. These recent findings suggest that DEP is not the main force behind particle trapping, as it was believed for the last two decades. This new research suggests that particle trapping, under DC and low-frequency AC potentials, mainly results from a balance between electroosmotic and electrophoretic effects (linear and nonlinear); although DEP is present in these systems, it is not a dominant force. Considering these recent studies, it is proposed to rename this field from DC-iDEP to DC-iEK (and low-frequency AC-iDEP to low-frequency AC-iEK). Whereas much research is still needed, this is an exciting time in the field of microscale EK systems, as these new findings seem to explain the challenges with modeling particle migration and trapping in iEK devices, and provide perhaps a better understanding of the mechanisms behind particle trapping.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Institute Hall (Bldg. 73), Room 3103, 160 Lomb Memorial Drive, Rochester, NY, 14623-5604, USA.
| |
Collapse
|
14
|
Perez‐Gonzalez VH. Particle trapping in electrically driven insulator-based microfluidics: Dielectrophoresis and induced-charge electrokinetics. Electrophoresis 2021; 42:2445-2464. [PMID: 34081787 PMCID: PMC9291494 DOI: 10.1002/elps.202100123] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022]
Abstract
Electrokinetically driven insulator‐based microfluidic devices represent an attractive option to manipulate particle suspensions. These devices can filtrate, concentrate, separate, or characterize micro and nanoparticles of interest. Two decades ago, inspired by electrode‐based dielectrophoresis, the concept of insulator‐based dielectrophoresis (iDEP) was born. In these microfluidic devices, insulating structures (i.e., posts, membranes, obstacles, or constrictions) built within the channel are used to deform the spatial distribution of an externally generated electric field. As a result, particles suspended in solution experience dielectrophoresis (DEP). Since then, it has been assumed that DEP is responsible for particle trapping in these devices, regardless of the type of voltage being applied to generate the electric field—direct current (DC) or alternating current. Recent findings challenge this assumption by demonstrating particle trapping and even particle flow reversal in devices that prevent DEP from occurring (i.e., unobstructed long straight channels stimulated with a DC voltage and featuring a uniform electric field). The theory introduced to explain those unexpected observations was then applied to conventional “DC‐iDEP” devices, demonstrating better prediction accuracy than that achieved with the conventional DEP‐centered theory. This contribution summarizes contributions made during the last two decades, comparing both theories to explain particle trapping and highlighting challenges to address in the near future.
Collapse
|
15
|
Xuan X. Review of nonlinear electrokinetic flows in insulator-based dielectrophoresis: From induced charge to Joule heating effects. Electrophoresis 2021; 43:167-189. [PMID: 33991344 DOI: 10.1002/elps.202100090] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023]
Abstract
Insulator-based dielectrophoresis (iDEP) has been increasingly used for particle manipulation in various microfluidic applications. It exploits insulating structures to constrict and/or curve electric field lines to generate field gradients for particle dielectrophoresis. However, the presence of these insulators, especially those with sharp edges, causes two nonlinear electrokinetic flows, which, if sufficiently strong, may disturb the otherwise linear electrokinetic motion of particles and affect the iDEP performance. One is induced charge electroosmotic (ICEO) flow because of the polarization of the insulators, and the other is electrothermal flow because of the amplified Joule heating in the fluid around the insulators. Both flows vary nonlinearly with the applied electric field (either DC or AC) and exhibit in the form of fluid vortices, which have been utilized to promote some applications while being suppressed in others. The effectiveness of iDEP benefits from a comprehensive understanding of the nonlinear electrokinetic flows, which is complicated by the involvement of the entire iDEP device into electric polarization and thermal diffusion. This article is aimed to review the works on both the fundamentals and applications of ICEO and electrothermal flows in iDEP microdevices. A personal perspective of some future research directions in the field is also given.
Collapse
Affiliation(s)
- Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
16
|
Lapizco-Encinas BH. Microscale nonlinear electrokinetics for the analysis of cellular materials in clinical applications: a review. Mikrochim Acta 2021; 188:104. [PMID: 33651196 DOI: 10.1007/s00604-021-04748-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/06/2021] [Indexed: 12/16/2022]
Abstract
This review article presents a discussion of some of the latest advancements in the field of microscale electrokinetics for the analysis of cells and subcellular materials in clinical applications. The introduction presents an overview on the use of electric fields, i.e., electrokinetics, in microfluidics devices and discusses the potential of electrokinetic-based methods for the analysis of liquid biopsies in clinical and point-of-care applications. This is followed by four comprehensive sections that present some of the newest findings on the analysis of circulating tumor cells, blood (red blood cells, white blood cells, and platelets), stem cells, and subcellular particles (extracellular vesicles and mitochondria). The valuable contributions discussed here (with 131 references) were mainly published during the last 3 to 4 years, providing the reader with an overview of the state-of-the-art in the use of microscale electrokinetic methods in clinical analysis. Finally, the conclusions summarize the main advancements and discuss the future prospects.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Institute Hall (Bldg. 73), Room 3103, 160 Lomb Memorial Drive, Rochester, NY, 14623-5604, USA.
| |
Collapse
|