1
|
Meng F, Duan M, Wu W, Shao S, Qin Y, Zhang M. Enzymatic construction Au NPs-rGO based MIP electrochemical sensor for adulteration detection of bovine-derived allergen in camel milk. Food Chem 2024; 436:137638. [PMID: 37832419 DOI: 10.1016/j.foodchem.2023.137638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/07/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
In this work, a high-performance molecularly imprinted polymer (MIP) sensor for the determination of β-lactoglobulin (β-LG) was fabricated by using trypsin as a template removal reagent. Gold nanoparticles (Au NPs) and reduced graphene oxide (rGO) designed for electrode modification accelerate the heterogeneous electron transfer rate to enhance the sensitivity of the prepared sensor. With enzymatic hydrolysis, β-LG templates were effectively digested into short peptides without damage to the MIP so that the imprinted cavities of the MIP were preserved with a complete spatial structure exhibiting high selectivity. Based on the optimization of the protein removal time and pH, the prepared MIP electrochemical sensor could recognize β-LG in the range of 4-100 ng/mL with a low detection limit (3.58 ng/mL). The sensor also expressed excellent selectivity and was successfully applied to real sample detection. The results demonstrate that the proposed MIP electrochemical sensor may be a promising candidate for camel milk adulteration detection.
Collapse
Affiliation(s)
- Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China
| | - Mengjiao Duan
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China
| | - Wanfeng Wu
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China
| | - Shuxuan Shao
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China; Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan 410082, China
| | - Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China.
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China.
| |
Collapse
|
2
|
Shafaghi M, Bahadori Z, Barzi SM, Afshari E, Madanchi H, Mousavi SF, Shabani AA. A new candidate epitope-based vaccine against PspA PhtD of Streptococcus pneumoniae: a computational experimental approach. Front Cell Infect Microbiol 2023; 13:1271143. [PMID: 38035337 PMCID: PMC10684780 DOI: 10.3389/fcimb.2023.1271143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Pneumococcus is an important respiratory pathogen that is associated with high rates of death in newborn children and the elderly. Given the disadvantages of current polysaccharide-based vaccines, the most promising alternative for developing improved vaccines may be to use protein antigens with different roles in pneumococcus virulence. PspA and PhtD, highly immunogenic surface proteins expressed by almost all pneumococcal strains, are capable of eliciting protective immunity against lethal infections. Methods In this study using immunoinformatics approaches, we constructed one fusion construct (called PAD) by fusing the immunodominant regions of PspA from families 1 & 2 (PA) to the immunodominant regions of PhtD (PD). The objective of this project was to test the immunogenicity of the fusion protein PAD and to compare its protective activity against S. pneumoniae infection with PA or PD alone and a combination of PA and PD. The prediction of physicochemical properties, antigenicity, allergenicity, toxicity, and 3D-structure of the constructs, as well as molecular docking with HLA receptor and immune simulation were performed using computational tools. Finally, mice were immunized and the serum levels of antibodies/cytokines and functionality of antibodies in vitro were evaluated after immunization. The mice survival rates and decrease of bacterial loads in the blood/spleen were examined following the challenge. Results The computational analyses indicated the proposed constructs could be antigenic, non-allergenic, non-toxic, soluble and able to elicit robust immune responses. The results of actual animal experiments revealed the candidate vaccines could induce the mice to produce high levels of antibodies and cytokines. The complement-mediated bactericidal activity of antibodies was confirmed and the antibodies provided favorable survival in immunized mice after bacterial challenge. In general, the experimental results verified the immunoinformatics studies. Conclusion For the first time this report presents novel peptide-based vaccine candidates consisting of immunodominant regions of PspA and PhtD antigens. The obtained findings confirmed that the fusion formulation could be relatively more efficient than the individual and combination formulations. The results propose that the fusion protein alone could be used as a serotype-independent pneumococcal vaccine or as an effective partner protein for a conjugate polysaccharide vaccine.
Collapse
Affiliation(s)
- Mona Shafaghi
- Department of Medical Biotechnology, faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Zohreh Bahadori
- Department of Medical Biotechnology, faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Elnaz Afshari
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Madanchi
- Department of Medical Biotechnology, faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ali Akbar Shabani
- Department of Medical Biotechnology, faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
3
|
Lao T, Farnos O, Bueno A, Alvarez A, Rodríguez E, Palacios J, de la Luz KR, Kamen A, Carpio Y, Estrada MP. Transient Expression in HEK-293 Cells in Suspension Culture as a Rapid and Powerful Tool: SARS-CoV-2 N and Chimeric SARS-CoV-2N-CD154 Proteins as a Case Study. Biomedicines 2023; 11:3050. [PMID: 38002050 PMCID: PMC10669214 DOI: 10.3390/biomedicines11113050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
In a previous work, we proposed a vaccine chimeric antigen based on the fusion of the SARS-CoV-2 N protein to the extracellular domain of the human CD40 ligand (CD154). This vaccine antigen was named N-CD protein and its expression was carried out in HEK-293 stably transfected cells, grown in adherent conditions and serum-supplemented medium. The chimeric protein obtained in these conditions presented a consistent pattern of degradation. The immunization of mice and monkeys with this chimeric protein was able to induce a high N-specific IgG response with only two doses in pre-clinical experiments. In order to explore ways to diminish protein degradation, in the present work, the N and N-CD proteins were produced in suspension cultures and serum-free media following transient transfection of the HEK-293 clone 3F6, at different scales, including stirred-tank controlled bioreactors. The results showed negligible or no degradation of the target proteins. Further, clones stably expressing N-CD were obtained and adapted to suspension culture, obtaining similar results to those observed in the transient expression experiments in HEK-293-3F6. The evidence supports transient protein expression in suspension cultures and serum-free media as a powerful tool to produce in a short period of time high levels of complex proteins susceptible to degradation, such as the SARS-CoV-2 N protein.
Collapse
Affiliation(s)
- Thailin Lao
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Omar Farnos
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (O.F.); (A.K.)
| | - Alexi Bueno
- Process Development Department, Center of Molecular Immunology, Havana 11600, Cuba (J.P.); (K.R.d.l.L.)
| | - Anays Alvarez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Elsa Rodríguez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Julio Palacios
- Process Development Department, Center of Molecular Immunology, Havana 11600, Cuba (J.P.); (K.R.d.l.L.)
| | - Kathya Rashida de la Luz
- Process Development Department, Center of Molecular Immunology, Havana 11600, Cuba (J.P.); (K.R.d.l.L.)
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (O.F.); (A.K.)
| | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Mario Pablo Estrada
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| |
Collapse
|
4
|
Rojas L, Cabrera-Muñoz A, Espinosa LA, Montané S, Alvarez-Lajonchere L, Mojarena JD, Moya G, Lorenzo J, González LJ, Betzel C, Alonso-Del-Rivero Antigua M. CogiTx1: A novel subtilisin A inhibitor isolated from the sea anemone Condylactis gigantea belonging to the defensin 4 protein family. Biochimie 2023; 213:41-53. [PMID: 37105301 DOI: 10.1016/j.biochi.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/13/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Subtilisin-like enzymes are recognized as key players in many infectious agents. In this context, its inhibitors are very valuable molecular lead compounds for structure based drug discovery and design. Marine invertebrates offer a great source of bioactive molecules, including protease inhibitors. In this work, we describe a new subtilisin inhibitor, from the sea anemone Condylactis gigantea (CogiTx1). CogiTx1 was purified using a combination of cation exchange chromatography, size exclusion chromatography and RP-HPLC chromatography. CogiTx1 it is a protein with 46 amino acid residues, with 4970.44 Da and three disulfide bridges. Is also able to inhibit subtilisin-like enzymes and pancreatic elastase. According to the amino acid sequence, it belongs to the defensin 4 family of proteins. The sequencing showed that CogiTx1 has an amidated C-terminal end, which was confirmed by the presence of the typical -XGR signal for amidation in the protein sequence deduced from the cDNA. This modification was described at protein level for the first time in this family of proteins. CogiTx1 is the first subtilisin inhibitor from the defensin 4 family and accordingly it has a folding consisting primarily in beta-strands in agreement with the analysis by CD and 3D modelling. Therefore, future in-depth functional studies may allow a more detailed characterization and will shed light on structure-function properties.
Collapse
Affiliation(s)
- Laritza Rojas
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, PC: 10400, Cuba
| | - Aymara Cabrera-Muñoz
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, PC: 10400, Cuba
| | - Luis A Espinosa
- Center for Genetic Engineering and Biotechnology, Havana, PC:60 200, Cuba
| | - Sergi Montané
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Cerdanyola del Valles, Barcelona, PC:08193, Spain
| | - Luis Alvarez-Lajonchere
- Felipe Poey Natural History Museum, Faculty of Biology, University of Havana, Havana, PC: 10400, Cuba
| | - Jesús D Mojarena
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, PC: 10400, Cuba
| | - Galina Moya
- Center for Genetic Engineering and Biotechnology, Havana, PC:60 200, Cuba
| | - Julia Lorenzo
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Cerdanyola del Valles, Barcelona, PC:08193, Spain
| | - Luis J González
- Center for Genetic Engineering and Biotechnology, Havana, PC:60 200, Cuba
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Department of Chemistry, Universität Hamburg, Hamburg, PC: 20146, Germany
| | | |
Collapse
|
5
|
Lao T, Avalos I, Rodríguez EM, Zamora Y, Rodriguez A, Ramón A, Alvarez Y, Cabrales A, Andújar I, González LJ, Puente P, García C, Gómez L, Valdés R, Estrada MP, Carpio Y. Production and characterization of a chimeric antigen, based on nucleocapsid of SARS-CoV-2 fused to the extracellular domain of human CD154 in HEK-293 cells as a vaccine candidate against COVID-19. PLoS One 2023; 18:e0288006. [PMID: 37751460 PMCID: PMC10522030 DOI: 10.1371/journal.pone.0288006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/16/2023] [Indexed: 09/28/2023] Open
Abstract
Despite that more than one hundred vaccines against SARS-CoV-2 have been developed and that some of them were evaluated in clinical trials, the latest results revealed that these vaccines still face great challenges. Among the components of the virus, the N-protein constitutes an attractive target for a subunit vaccine because it is the most abundant, highly conserved and immunogenic protein. In the present work, a chimeric protein (N-CD protein) was constructed by the fusion of the N-protein to the extracellular domain of human CD154 as the molecular adjuvant. HEK-293 cells were transduced with lentiviral vector bearing the N-CD gene and polyclonal cell populations were obtained. The N-CD protein was purified from cell culture supernatant and further characterized by several techniques. Immunogenicity studies in mice and non-human primates showed the N-CD protein induced high IgG titers in both models after two doses. Moreover, overall health monitoring of non-human primates demonstrated that animals were healthy during 228 days after first immunization. Data obtained support further investigation in order to develop this chimeric protein as vaccine candidate against COVID-19 and other coronavirus diseases.
Collapse
Affiliation(s)
- Thailin Lao
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Ileanet Avalos
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Elsa María Rodríguez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Yasser Zamora
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Alianet Rodriguez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Ailyn Ramón
- Center for Genetic Engineering and Biotechnology, Laboratory of Molecular Oncology, Havana, Cuba
| | - Yanitza Alvarez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Ania Cabrales
- Center for Genetic Engineering and Biotechnology, Systems Biology, Havana, Cuba
| | - Ivan Andújar
- Center for Genetic Engineering and Biotechnology, Systems Biology, Havana, Cuba
| | | | - Pedro Puente
- Center for Genetic Engineering and Biotechnology, Animal housing, Havana, Cuba
| | - Cristina García
- Center for Genetic Engineering and Biotechnology, Production Division, Havana, Cuba
| | - Leonardo Gómez
- Center for Genetic Engineering and Biotechnology, Production Division, Havana, Cuba
| | - Rodolfo Valdés
- Center for Genetic Engineering and Biotechnology, Production Division, Havana, Cuba
| | - Mario Pablo Estrada
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| |
Collapse
|
6
|
Yu S, Zhang G, Liu Q, Zhuang Y, Dai Z, Xia J. Construction and testing of Yarrowia lipolytica recombinant protein expression chassis cells based on the high-throughput screening and secretome. Microb Cell Fact 2023; 22:185. [PMID: 37715289 PMCID: PMC10503192 DOI: 10.1186/s12934-023-02196-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND In the recombinant protein market with broad economic value, the rapid development of synthetic biology has made it necessary to construct an efficient exocrine expression system for the different heterologous proteins. Yarrowia lipolytica possesses unique advantages in nascent protein transport and glycosylation modification, so it can serve as a potential protein expression platform. Although the Po1 series derived from W29 is often used for the expression of the various heterologous proteins, the ability of W29 to secrete proteins has not been verified and the Po1 series has been found to be not convenient for further gene editing. RESULTS A total of 246 Y. lipolytica strains were evaluated for their secretory capacity through performing high-throughput screening in 48-well plate. Thereafter, following two rounds of shake flask re-screening, a high-secreting protein starting strain DBVPG 5851 was obtained. Subsequently, combined with the extracellular protein types and relative abundance information provided by the secretome of the starting strain, available chassis cell for heterologous protein expression were preliminarily constructed, and it was observed that the most potential signal peptide was derived from YALI0D20680g. CONCLUSIONS This study offers a novel perspective on the diversification of Y. lipolytica host cells for the heterologous protein expression and provides significant basis for expanding the selection space of signal peptide tools in the future research.
Collapse
Affiliation(s)
- Siqian Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ge Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Qi Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zongjie Dai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
7
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
8
|
Liu D, Wu H, Cui S, Zhao Q. Comprehensive Optimization of Western Blotting. Gels 2023; 9:652. [PMID: 37623107 PMCID: PMC10453944 DOI: 10.3390/gels9080652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Western blotting is one of the most extensively used techniques in the biomedical field. However, it is criticized by many researchers due to its considerable time consumption, multiple steps, and low method results. Therefore, we modified the steps of gel preparation, electrophoresis, electrotransfer, blocking, and gel cutting. First, we simplified the gel preparation step by premixing various reagents and varying the amounts of catalysts or radical generators, which shortened the entire process to 10 min. Second, we shortened the electrophoresis process to 35 min by modifying the formula of the electrophoresis running buffer. Then, we removed the hazard of methanol vapor by replacing methanol with ethanol in the electrotransfer buffer. Finally, the use of polyvinylpyrrolidone-40 shortened the blocking procedure to 10 min. Our modifications shortened the time, improved the experimental productivity, and minimized the experimental cost without hindering compatibility with most existing equipment. The entire experiment up to primary antibody incubation can be completed within 80 min.
Collapse
Affiliation(s)
- Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (D.L.); (H.W.); (S.C.)
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Haoliang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (D.L.); (H.W.); (S.C.)
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (D.L.); (H.W.); (S.C.)
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (D.L.); (H.W.); (S.C.)
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| |
Collapse
|
9
|
Holland LA, Casto-Boggess LD. Gels in Microscale Electrophoresis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:161-179. [PMID: 37314879 DOI: 10.1146/annurev-anchem-091522-080207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gel matrices are fundamental to electrophoresis analyses of biopolymers in microscale channels. Both capillary gel and microchannel gel electrophoresis systems have produced fundamental advances in the scientific community. These analytical techniques remain as foundational tools in bioanalytical chemistry and are indispensable in the field of biotherapeutics. This review summarizes the current state of gels in microscale channels and provides a brief description of electrophoretic transport in gels. In addition to the discussion of traditional polymers, several nontraditional gels are introduced. Advances in gel matrices highlighted include selective polymers modified to contain added functionality as well as thermally responsive gels formed through self-assembly. This review discusses cutting-edge applications to challenging areas of discovery in DNA, RNA, protein, and glycan analyses. Finally, emerging techniques that result in multifunctional assays for real-time biochemical processing in capillary and three-dimensional channels are identified.
Collapse
Affiliation(s)
- Lisa A Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA;
| | - Laura D Casto-Boggess
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA;
| |
Collapse
|
10
|
Mazur P, Dumnicka P, Tisończyk J, Ząbek-Adamska A, Drożdż R. SDS Electrophoresis on Gradient Polyacrylamide Gels as a Semiquantitative Tool for the Evaluation of Proteinuria. Diagnostics (Basel) 2023; 13:diagnostics13091513. [PMID: 37174905 PMCID: PMC10177418 DOI: 10.3390/diagnostics13091513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Proteinuria is an important sign of kidney diseases. Different protein patterns in urine associated with glomerular, tubular and overload proteinuria may be differentiated using the immunochemical detection of indicator proteins or via urinary proteins electrophoresis. Our aim was to characterize sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) using commercially available 4-20% gradient gels as a method to detect and differentiate proteinuria. Our laboratory-based study used excess urine samples collected for routine diagnostic purposes from adult patients of a tertiary-care hospital, including patients with albumin/creatinine < 30 mg/g and patients with dipstick proteinuria. The limit of albumin detection was estimated to be 3 mg/L. In 93 samples with albumin/creatinine < 30 mg/g, an albumin fraction was detected in 87% of samples with a minimum albumin concentration of 2.11 mg/L. The separation of 300 urine samples of patients with proteinuria revealed distinct protein patterns differentiated using the molecular weights of the detected proteins: glomerular (albumin and higher molecular weights) and two types of tubular proteinuria ("upper" ≥20 kDa and "lower" with lower molecular weights). These patterns were associated with different values of the glomerular filtration rate (median 66, 71 and 31 mL/min/1.72 m2, respectively, p = 0.004) and different proportions of multiple myeloma and nephrological diagnoses. As confirmed using tandem mass spectrometry and western blot, the SDS-PAGE protein fractions contained indicator proteins including immunoglobulin G, transferrin (glomerular proteinuria), α1-microglobulin, retinol-binding protein, neutrophil gelatinase-associated lipocalin, cystatin C, and β2-microglobulin (tubular), immunoglobulin light chain, myoglobin, and lysozyme (overflow). SDS-PAGE separation of urine proteins on commercially available 4-20% gradient gels is a reliable technique to diagnose proteinuria and differentiate between its main clinically relevant types.
Collapse
Affiliation(s)
- Paulina Mazur
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Paulina Dumnicka
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Joanna Tisończyk
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Anna Ząbek-Adamska
- Department of Diagnostics, University Hospital in Kraków, 30-688 Kraków, Poland
| | - Ryszard Drożdż
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| |
Collapse
|
11
|
Lambiase G, Klottrup-Rees K, Lovelady C, Ali S, Shepherd S, Muroni M, Lindo V, James DC, Dickman MJ. An automated, low volume, and high-throughput analytical platform for aggregate quantitation from cell culture media. J Chromatogr A 2023; 1691:463809. [PMID: 36731329 DOI: 10.1016/j.chroma.2023.463809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
High throughput screening methods have driven a paradigm shift in biopharmaceutical development by reducing the costs of good manufactured (COGM) and accelerate the launch to market of novel drug products. Scale-down cell culture systems such as shaken 24- and 96-deep-well plates (DWPs) are used for initial screening of hundreds of recombinant mammalian clonal cell lines to quickly and efficiently select the best producing strains expressing product quality attributes that fit to industry platform. A common modification monitored from early-stage product development is protein aggregation due to its impact on safety and efficacy. This study aims to integrate high-throughput analysis of aggregation-prone therapeutic proteins with 96-deep well plate screening to rank clones based on the aggregation levels of the expressed proteins. Here we present an automated, small-scale analytical platform workflow combining the purification and subsequent aggregation analysis of protein biopharmaceuticals expressed in 96-DWP cell cultures. Product purification was achieved by small-scale solid-phase extraction using dual flow chromatography (DFC) automated on a robotic liquid handler for the parallel processing of up to 96 samples at a time. At-line coupling of size-exclusion chromatography (SEC) using a 2.1 mm ID column enabled the detection of aggregates with sub-2 µg sensitivity and a 3.5 min run time. The entire workflow was designed as an application to aggregation-prone mAbs and "mAb-like" next generation biopharmaceuticals, such as bispecific antibodies (BsAbs). Application of the high-throughput analytical workflow to a shake plate overgrow (SPOG) screen, enabled the screening of 384 different clonal cell lines in 32 h, requiring < 2 μg of protein per sample. Aggregation levels expressed by the clones varied between 9 and 76%. This high-throughput analytical workflow allowed for the early elimination of clonal cell lines with high aggregation, demonstrating the advantage of integrating analytical testing for critical quality attributes (CQAs) earlier in product development to drive better decision making.
Collapse
Affiliation(s)
- Giulia Lambiase
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, UK; Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Kerensa Klottrup-Rees
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, AstraZeneca, Cambridge, UK
| | - Clare Lovelady
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, AstraZeneca, Cambridge, UK
| | - Salma Ali
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, AstraZeneca, Cambridge, UK
| | - Samuel Shepherd
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Maurizio Muroni
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Vivian Lindo
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK.
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, UK.
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, UK.
| |
Collapse
|
12
|
Desire CT, Arrua RD, Strudwick XL, Kopecki Z, Cowin AJ, Hilder EF. The development of microfluidic-based western blotting: Technical advances and future perspectives. J Chromatogr A 2023; 1691:463813. [PMID: 36709548 DOI: 10.1016/j.chroma.2023.463813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Over the past two decades significant technical advancement in the field of western blotting has been made possible through the utilization of microfluidic technologies. In this review we provide a critical overview of these advancements, highlighting the advantages and disadvantages of each approach. Particular attention is paid to the development of now commercially available systems, including those for single cell analysis. This review also discusses more recent developments, including algorithms for automation and/or improved quantitation, the utilization of different materials/chemistries, use of projection electrophoresis, and the development of triBlots. Finally, the review includes commentary on future advances in the field based on current developments, and the potential of these systems for use as point-of-care devices in healthcare.
Collapse
Affiliation(s)
- Christopher T Desire
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - R Dario Arrua
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Emily F Hilder
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
13
|
Gillespie PF, Wang Y, Hofmann C, Kuczynski LE, Winters MA, Teyral JL, Tubbs CM, Shiflett K, Patel N, Rustandi RR. Understanding the Spike Protein in COVID-19 Vaccine in Recombinant Vesicular Stomatitis Virus (rVSV) Using Automated Capillary Western Blots. ACS OMEGA 2023; 8:3319-3328. [PMID: 36685032 PMCID: PMC9843631 DOI: 10.1021/acsomega.2c06937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral agent that is responsible for the coronavirus disease-2019 (COVID-19) pandemic. One of the live virus vaccine candidates Merck and Co., Inc. was developing to help combat the pandemic was V590. V590 was a live-attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV) in which the envelope VSV glycoprotein (G protein) gene was replaced with the gene for the SARS-CoV-2 spike protein (S protein), the protein responsible for viral binding and fusion to the cell membrane. To assist with product and process development, a quantitative Simple Western (SW) assay was successfully developed and phase-appropriately qualified to quantitate the concentration of S protein expressed in V590 samples. A strong correlation was established between potency and S-protein concentration, which suggested that the S-protein SW assay could be used as a proxy for virus productivity optimization with faster data turnaround time (3 h vs 3 days). In addition, unlike potency, the SW assay was able to provide a qualitative profile assessment of the forms of S protein (S protein, S1 subunit, and S multimer) to ensure appropriate levels of S protein were maintained throughout process and product development. Finally, V590 stressed stability studies suggested that time and temperature contributed to the instability of S protein demonstrated by cleavage into its subunits, S1 and S2, and aggregation into S multimer. Both of which could potentially have a deleterious effect on the vaccine immunogenicity.
Collapse
Affiliation(s)
- Paul F. Gillespie
- Analytical
Research Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Yanjie Wang
- Analytical
Research Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Carl Hofmann
- Analytical
Research Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Laura E. Kuczynski
- Vaccine
Process Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Michael A. Winters
- Vaccine
Process Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Jennifer L. Teyral
- Research
CMC Statistics, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Christopher M. Tubbs
- Analytical
Research Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Kelsey Shiflett
- Analytical
Research Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Nisarg Patel
- Analytical
Research Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Richard R. Rustandi
- Analytical
Research Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| |
Collapse
|
14
|
Homma T, Terui S, Yokoyama F, Okino S, Ohta S, Kato C, Haraguchi N, Fujisawa I, Itsuno S, Ang LZP. Simple production of resilin-like protein hydrogels using the Brevibacillus secretory expression system and column-free purification. Biotechnol Bioeng 2023; 120:194-202. [PMID: 36253915 DOI: 10.1002/bit.28267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
Resilin, an insect structural protein, has excellent flexibility, photocrosslinking properties, and temperature responsiveness. Recombinant resilin-like proteins (RLPs) can be fabricated into three-dimensional (3D) structures for use as cell culture substrates and highly elastic materials. A simplified, high-yielding production process for RLPs is required for their widespread application. This study proposes a simple production process combining extracellular expression using Brevibacillus choshinensis (B. choshinensis) and rapid column-free purification. Extracellular production was tested using four representative signal peptides; B. choshinensis was found to efficiently secrete Rec1, an RLP derived from Drosophila melanogaster, regardless of the type of signal peptide. However, it was suggested that Rec1 is altered by an increase in the pH of the culture medium associated with prolonged incubation. Production in a jar fermentor with controllable pH yielded 530 mg Rec1 per liter of culture medium, which is superior to productivity using other hosts. The secreted Rec1 was purified from the culture supernatant via (NH4 )2 SO4 and ethanol precipitations, and the purified Rec1 was applied to ring-shaped 3D hydrogels. These results indicate that the combination of secretory production using B. choshinensis and column-free purification can accelerate the further application of RLPs.
Collapse
Affiliation(s)
- Toshimasa Homma
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Shu Terui
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Fuki Yokoyama
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Saki Okino
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Sora Ohta
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Chihiro Kato
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Naoki Haraguchi
- Department of Applied Chemistry & Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Ikuhide Fujisawa
- Department of Applied Chemistry & Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Shinichi Itsuno
- Department of Applied Chemistry & Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan.,National Institute of Technology, Gifu College, Motosu, Gifu, Japan
| | - Lily Zuin Ping Ang
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| |
Collapse
|
15
|
Vágó J, Katona É, Takács R, Dócs K, Hajdú T, Kovács P, Zákány R, van der Veen DR, Matta C. Cyclic uniaxial mechanical load enhances chondrogenesis through entraining the molecular circadian clock. J Pineal Res 2022; 73:e12827. [PMID: 36030553 PMCID: PMC9786663 DOI: 10.1111/jpi.12827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/28/2022] [Accepted: 08/20/2022] [Indexed: 12/30/2022]
Abstract
The biomechanical environment plays a key role in regulating cartilage formation, but the current understanding of mechanotransduction pathways in chondrogenic cells is incomplete. Among the combination of external factors that control chondrogenesis are temporal cues that are governed by the cell-autonomous circadian clock. However, mechanical stimulation has not yet directly been proven to modulate chondrogenesis via entraining the circadian clock in chondroprogenitor cells. The purpose of this study was to establish whether mechanical stimuli entrain the core clock in chondrogenic cells, and whether augmented chondrogenesis caused by mechanical loading was at least partially mediated by the synchronised, rhythmic expression of the core circadian clock genes, chondrogenic transcription factors, and cartilage matrix constituents at both transcript and protein levels. We report here, for the first time, that cyclic uniaxial mechanical load applied for 1 h for a period of 6 days entrains the molecular clockwork in chondroprogenitor cells during chondrogenesis in limb bud-derived micromass cultures. In addition to the several core clock genes and proteins, the chondrogenic markers SOX9 and ACAN also followed a robust sinusoidal rhythmic expression pattern. These rhythmic conditions significantly enhanced cartilage matrix production and upregulated marker gene expression. The observed chondrogenesis-promoting effect of the mechanical environment was at least partially attributable to its entraining effect on the molecular clockwork, as co-application of the small molecule clock modulator longdaysin attenuated the stimulatory effects of mechanical load. This study suggests that an optimal biomechanical environment enhances tissue homoeostasis and histogenesis during chondrogenesis at least partially through entraining the molecular clockwork.
Collapse
Affiliation(s)
- Judit Vágó
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Éva Katona
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Klaudia Dócs
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Tibor Hajdú
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Daan R. van der Veen
- Chronobiology Section, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUnited Kingdom
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
16
|
Qiu H, Chang X, Luo Y, Shen F, Yin A, Miao T, Li Y, Xiao Y, Hai J, Xu B. Regulation of Nir gene in Lactobacillus plantarum WU14 mediated by GlnR. Front Microbiol 2022; 13:983485. [PMID: 36304950 PMCID: PMC9596149 DOI: 10.3389/fmicb.2022.983485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Nitrogen (N) is an essential element in the biosynthesis of key cellular components, such as proteins and nucleic acids, in all living organisms. Nitrite, as a form of nitrogen utilization, is the main nutrient for microbial growth. However, nitrite is a potential carcinogen that combines with secondary amines, which are breakdown products of proteins, to produce N-nitroso compounds that are strongly carcinogenic. Nitrite reductase (Nir) produced by microorganisms can reduce nitrite. Binding of GlnR to the promoter of nitrogen metabolism gene can regulate the expression of Nir operon. In this study, nitrite-resistant Lactobacillus plantarum WU14 was isolated from Pickles and its protease Nir was analyzed. GlnR-mediated regulation of L. plantarum WU14 Nir gene was investigated in this study. New GlnR and Nir genes were obtained from L. plantarum WU14. The regulation effect of GlnR on Nir gene was examined by gel block test, yeast two-hybrid system, bacterial single hybrid system and qRT-RCR. Detailed analysis showed that GlnR ound to the Nir promoter region and interacted with Nir at low nitrite concentrations, positively regulating the expression of NIR. However, the transcription levels of GlnR and Nir decreased gradually with increasing nitrite concentration. The results of this study improve our understanding of the function of the Nir operon regulatory system and serve as the ground for further study of the signal transduction pathway in lactic acid bacteria.
Collapse
Affiliation(s)
- Hulin Qiu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
| | - Xiaoyu Chang
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yan Luo
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
| | - Fengfei Shen
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
| | - Aiguo Yin
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| | - Tingting Miao
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
| | - Ying Li
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
| | - Yunyi Xiao
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
| | - Jinping Hai
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
| | - Bo Xu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
- *Correspondence: Bo Xu,
| |
Collapse
|
17
|
Bhimwal R, Rustandi RR, Payne A, Dawod M. Recent advances in capillary gel electrophoresis for the analysis of proteins. J Chromatogr A 2022; 1682:463453. [DOI: 10.1016/j.chroma.2022.463453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
|
18
|
Puranik A, Saldanha M, Dandekar P, Jain R. A comparison between analytical approaches for molecular weight estimation of proteins with variable levels of glycosylation. Electrophoresis 2022; 43:1223-1232. [DOI: 10.1002/elps.202200027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Amita Puranik
- Department of Chemical Engineering Institute of Chemical Technology Mumbai Maharashtra India
| | - Marianne Saldanha
- Department of Chemical Engineering Institute of Chemical Technology Mumbai Maharashtra India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology Institute of Chemical Technology Mumbai Maharashtra India
| | - Ratnesh Jain
- Department of Chemical Engineering Institute of Chemical Technology Mumbai Maharashtra India
| |
Collapse
|
19
|
Congratulations on your 60
th
birthday, Hermann Wätzig! Electrophoresis 2022; 43:656-660. [DOI: 10.1002/elps.202270036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Huang J, Zhang Y, Tao C, Li S, You Q, Zhang D, Li Z, Yamaguchi Y. Separation of proteins by square-wave pulsed field and inversion field capillary electrophoresis. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Geurink L, van Tricht E, van der Burg D, Scheppink G, Pajic B, Dudink J, Sänger-van de Griend C. Sixteen capillary electrophoresis applications for viral vaccine analysis. Electrophoresis 2021; 43:1068-1090. [PMID: 34739151 DOI: 10.1002/elps.202100269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
A broad range of CE applications from our organization is reviewed to give a flavor of the use of CE within the field of vaccine analyses. Applicability of CE for viral vaccine characterization, and release and stability testing of seasonal influenza virosomal vaccines, universal subunit influenza vaccines, Sabin inactivated polio vaccines (sIPV), and adenovirus vector vaccines were demonstrated. Diverse CZE, CE-SDS, CGE, and cIEF methods were developed, validated, and applied for virus, protein, posttranslational modifications, DNA, and excipient concentration determinations, as well as for the integrity and composition verifications, and identity testing (e.g., CZE for intact virus particles, CE-SDS application for hemagglutinin quantification and influenza strain identification, chloride or bromide determination in process samples). Results were supported by other methods such as RP-HPLC, dynamic light scattering (DLS), and zeta potential measurements. Overall, 16 CE methods are presented that were developed and applied, comprising six adenovirus methods, five viral protein methods, and methods for antibodies determination of glycans, host cell-DNA, excipient chloride, and process impurity bromide. These methods were applied to support in-process control, release, stability, process- and product characterization and development, and critical reagent testing. Thirteen methods were validated. Intact virus particles were analyzed at concentrations as low as 0.8 pmol/L. Overall, CE took viral vaccine testing beyond what was previously possible, improved process and product understanding, and, in total, safety, efficacy, and quality.
Collapse
Affiliation(s)
- Lars Geurink
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands.,Department of Medicinal Chemistry, Faculty of Pharmacy, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Ewoud van Tricht
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands
| | | | - Gerard Scheppink
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands
| | - Bojana Pajic
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands
| | - Justin Dudink
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands
| | - Cari Sänger-van de Griend
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands.,Department of Medicinal Chemistry, Faculty of Pharmacy, Biomedical Centre, Uppsala University, Uppsala, Sweden.,Kantisto B.V., Baarn, The Netherlands
| |
Collapse
|
22
|
Wätzig H, Hoffstedt M, Krebs F, Minkner R, Scheller C, Zagst H. Protein analysis and stability: Overcoming trial-and-error by grouping according to physicochemical properties. J Chromatogr A 2021; 1649:462234. [PMID: 34038775 DOI: 10.1016/j.chroma.2021.462234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022]
Abstract
Today proteins are possibly the most important class of substances. Yet new tasks for proteins are still often solved by trial-and-error approaches. However, in some areas these euphemistically called "screening approaches" are not suitable. E.g. stability tests just take too long and therefore require a more strategic, target-orientated concept. This concept is available by grouping proteins according to their physicochemical properties and then pulling out the right drawer for new tasks. These properties include size, then charge and hydrophobicity as well as their patchinesses, and the degree of order. In addition, solubility, the content of (free) enthalpy, aromatic-amino-acid- and α/β-frequency as well as helix capping, and corresponding patchiness, the number of specific motifs and domains as well as the typical concentration range can be helpful to discriminate between different groups of proteins. Analyzing correlations will reduce the necessary amount of parameters and additional ones, which may be still undiscovered at the present time, can be identified looking at protein subgroups with similar physicochemical properties which still behave heterogeneously. Step-by-step the methodology will be improved. Possibly protein stability will be the driver of this process, but all other areas such as production, purification and analytics including sample pre-treatment and the choice of appropriate separation conditions for e.g. chromatography and electrophoresis will profit from a rational strategy.
Collapse
Affiliation(s)
- Hermann Wätzig
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany.
| | - Marc Hoffstedt
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Finja Krebs
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Robert Minkner
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Christin Scheller
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Holger Zagst
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| |
Collapse
|