1
|
Zhu ZS, Bu SH, Liu JX, Niu C, Wang L, Yuan H, Zhang L, Song Y. Label-free-based proteomics analysis reveals differential proteins of sheep, goat and cow milk. J Dairy Sci 2024:S0022-0302(24)01002-6. [PMID: 39004124 DOI: 10.3168/jds.2024-24998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
Regarding the limited information on species protein differences between sheep, goat, and cow milk, the differentially expressed proteins in sheep, goat, and cow milk and their functional differences are analyzed using label-free proteomics technology to identify potential biomarkers. 770 proteins and 2914 peptide segments were identified. The statistical analysis showed significant differences in the relative abundances of the 74 proteins among the sheep, goat, and cow milk. CSN3 and LALBA can be used as potential biomarkers for goat milk, XDH can be used as potential biomarkers for cow milk, and CTSB and BPIFB1 can be used as potential biomarkers for sheep milk. The functional analysis using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes showed that these significantly different proteins were enriched by different pathways including thyroid hormone synthesis and glycerol phospholipid metabolism. The data revealed differences in the amounts and physiological functions of the milk proteins of different species, which may provide an important basis for research on the nutritional composition of dairy products and adulteration identification technology.
Collapse
Affiliation(s)
- Z S Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - S H Bu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - J X Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - C Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - L Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - H Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Yoo M, Lee HJ, Lee KW, Seo D. Analysis of Vaccenic and Elaidic acid in foods using a silver ion cartridge applied to GC × GC-TOFMS. Front Nutr 2024; 10:1320550. [PMID: 38260061 PMCID: PMC10800423 DOI: 10.3389/fnut.2023.1320550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background Trans fatty acids (TFAs) are unsaturated fatty acids, with vaccenic acid (VA) and elaidic acid (EA) being the major constituents. While VA has been associated with beneficial effects on health and anti-cancer properties, EA is found in hardened vegetable oils and is linked to an increased risk of cardiovascular diseases. Therefore, this study aimed to develop a novel method for the quantitative measurement of VA and EA, aiming to accurately analyze individual TFA and apply it for the assessment of products containing TFAs. Methods The ratio of VA to EA (V/E ratio) was evaluated using a silver ion cartridge (SIC) solid phase extraction method removing cis-fatty acids (cis-FAs). Additionally, comparative analysis of the V/E ratio was conducted by the two methods (SIC treatment and untreated) using comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC-TOFMS). Results The removal efficiency of cis-FAs was greater than 97.8%. However, the total TFA contents were not so different from SIC treatment. Moreover, this approach not only allowed for a more precise determination of the V/E ratio but also revealed a significant distinction between natural trans fatty acids (N-TFAs) and hydrogenated trans fatty acids (H-TFAs). Conclusion Therefore, the SIC coupled to the GC × GC-TOFMS presented in this study could be applied to discriminate N-TFA and H-TFA contents in dairy and fatty foods.
Collapse
Affiliation(s)
- Miyoung Yoo
- Food Standard Research Center, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hyun Jeong Lee
- Food Standard Research Center, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Dongwon Seo
- Food Analysis Research Center, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
3
|
Domínguez-Rodríguez G, Montero L, Herrero M, Cifuentes A, Castro-Puyana M. Capillary electromigration methods for food analysis and Foodomics: Advances and applications in the period March 2021 to March 2023. Electrophoresis 2024; 45:8-34. [PMID: 37603373 DOI: 10.1002/elps.202300126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
This work presents a revision of the main applications of capillary electromigration (CE) methods in food analysis and Foodomics. Papers that were published during the period March 2021 to March 2023 are included. The work shows the multiple CE methods that have been developed and applied to analyze different types of molecules in foods and beverages. Namely, CE methods have been applied to analyze amino acids, biogenic amines, heterocyclic amines, peptides, proteins, phenols, polyphenols, pigments, lipids, carbohydrates, vitamins, DNAs, contaminants, toxins, pesticides, additives, residues, small organic and inorganic compounds, and other minor compounds. In addition, new CE procedures to perform chiral separation and for evaluating the effects of food processing as well as the last developments of microchip CE and new applications in Foodomics will be also discussed. The new procedures of CE to investigate food quality and safety, nutritional value, storage, and bioactivity are also included in the present review work.
Collapse
Affiliation(s)
- Gloria Domínguez-Rodríguez
- Laboratory of Foodomics, CIAL, CSIC, Madrid, Spain
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Madrid, Spain
| | | | | | | | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Madrid, Spain
| |
Collapse
|
4
|
Stastna M. Advances in separation and identification of biologically important milk proteins and peptides. Electrophoresis 2024; 45:101-119. [PMID: 37289082 DOI: 10.1002/elps.202300084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Milk is a rich source of biologically important proteins and peptides. In addition, milk contains a variety of extracellular vesicles (EVs), including exosomes, that carry their own proteome cargo. EVs are essential for cell-cell communication and modulation of biological processes. They act as nature carriers of bioactive proteins/peptides in targeted delivery during various physiological and pathological conditions. Identification of the proteins and protein-derived peptides in milk and EVs and recognition of their biological activities and functions had a tremendous impact on food industry, medicine research, and clinical applications. Advanced separation methods, mass spectrometry (MS)-based proteomic approaches and innovative biostatistical procedures allowed for characterization of milk protein isoforms, genetic/splice variants, posttranslational modifications and their key roles, and contributed to novel discoveries. This review article discusses recently published developments in separation and identification of bioactive proteins/peptides from milk and milk EVs, including MS-based proteomic approaches.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
5
|
Abedini A, Salimi M, Mazaheri Y, Sadighara P, Alizadeh Sani M, Assadpour E, Jafari SM. Assessment of cheese frauds, and relevant detection methods: A systematic review. Food Chem X 2023; 19:100825. [PMID: 37780280 PMCID: PMC10534187 DOI: 10.1016/j.fochx.2023.100825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 10/03/2023] Open
Abstract
Dairy products are widely consumed in the world due to their nutritional and functional characteristics. This group of food products are consumed by all age groups due to their health-giving properties. One of these products is cheese which has a high price compared to other dairy products. Because of this, it can be prone to fraud all over the world. Fraud in food products threatens the world's food safety and can cause serious damage to human health. There are many concerns among food authorities in the world about the fraud of food products. FDA, WHO, and the European Commission provide different legislations and definitions for fraud. The purpose of this review is to identify the most susceptible cheese type for fraud and effective methods for evaluating fraud in all types of cheeses. For this, we examined the Web of Science, Scopus, PubMed, and ScienceDirect databases. Mozzarella cheese had the largest share among all cheeses in terms of adulteration due to its many uses. Also, the methods used to evaluate different types of cheese frauds were PCR, Spectrometry, stable isotope, image analysis, electrophoretic, ELISA, sensors, sensory analysis, near-infrared and NMR. The methods that were most used in detecting fraud were PCR and spectrometry methods. Also, the least used method was sensory evaluation.
Collapse
Affiliation(s)
- Amirhossein Abedini
- Students Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahla Salimi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yeganeh Mazaheri
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
6
|
Felicia WXL, Rovina K, ‘Aqilah NMN, Vonnie JM, Yin KW, Huda N. Assessing Meat Freshness via Nanotechnology Biosensors: Is the World Prepared for Lightning-Fast Pace Methods? BIOSENSORS 2023; 13:217. [PMID: 36831985 PMCID: PMC9954215 DOI: 10.3390/bios13020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
In the rapidly evolving field of food science, nanotechnology-based biosensors are one of the most intriguing techniques for tracking meat freshness. Purine derivatives, especially hypoxanthine and xanthine, are important signs of food going bad, especially in meat and meat products. This article compares the analytical performance parameters of traditional biosensor techniques and nanotechnology-based biosensor techniques that can be used to find purine derivatives in meat samples. In the introduction, we discussed the significance of purine metabolisms as analytes in the field of food science. Traditional methods of analysis and biosensors based on nanotechnology were also briefly explained. A comprehensive section of conventional and nanotechnology-based biosensing techniques is covered in detail, along with their analytical performance parameters (selectivity, sensitivity, linearity, and detection limit) in meat samples. Furthermore, the comparison of the methods above was thoroughly explained. In the last part, the pros and cons of the methods and the future of the nanotechnology-based biosensors that have been created are discussed.
Collapse
Affiliation(s)
- Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nasir Md Nur ‘Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Joseph Merillyn Vonnie
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Koh Wee Yin
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nurul Huda
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Locked Bag No. 3, Sandakan 90509, Sabah, Malaysia
| |
Collapse
|
7
|
von Oesen T, Treblin M, Staudacher A, Clawin-Rädecker I, Martin D, Hoffmann W, Schrader K, Bode K, Zink R, Rohn S, Fritsche J. Determination and evaluation of whey protein content in matured cheese via liquid chromatography. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Focus on the Protein Fraction of Sports Nutrition Supplements. Molecules 2022; 27:molecules27113487. [PMID: 35684425 PMCID: PMC9182466 DOI: 10.3390/molecules27113487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing awareness of balanced diet benefits is boosting the demand for high-protein food and beverages. Sports supplements are often preferred over traditional protein sources to meet the appropriate dietary intake since they are widely available on the market as stable ready-to-eat products. However, the protein components may vary depending on both sources and processing conditions. The protein fraction of five commercial sports supplements was characterized and compared with that of typical industrial ingredients, i.e., whey protein concentrates and isolates and whey powder. The capillary electrophoresis profiles and the amino acid patterns indicated that, in some cases, the protein was extensively glycosylated and the supplemented amino acids did not correspond to those declared on the label by manufacturers. The evaluation by confocal laser scanning microscopy evidenced the presence of large aggregates mainly enforced by covalent crosslinks. The obtained findings suggest that, beside composition figures, provisions regarding sports supplements should also consider quality aspects, and mandatory batch testing of these products would provide more reliable information to sport dieticians.
Collapse
|