1
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2021-mid-2023). Electrophoresis 2024; 45:165-198. [PMID: 37670208 DOI: 10.1002/elps.202300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
This review article brings a comprehensive survey of developments and applications of high-performance capillary and microchip electromigration methods (zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, micropreparation, and physicochemical characterization of peptides in the period from 2021 up to ca. the middle of 2023. Progress in the study of electromigration properties of peptides and various aspects of their analysis, such as sample preparation, adsorption suppression, electroosmotic flow regulation, and detection, are presented. New developments in the particular capillary electromigration methods are demonstrated, and several types of their applications are reported. They cover qualitative and quantitative analysis of synthetic or isolated peptides and determination of peptides in complex biomatrices, peptide profiling of biofluids and tissues, and monitoring of chemical and enzymatic reactions and physicochemical changes of peptides. They include also amino acid and sequence analysis of peptides, peptide mapping of proteins, separation of stereoisomers of peptides, and their chiral analyses. In addition, micropreparative separations and physicochemical characterization of peptides and their interactions with other (bio)molecules by the above CE methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Domínguez-Rodríguez G, Montero L, Herrero M, Cifuentes A, Castro-Puyana M. Capillary electromigration methods for food analysis and Foodomics: Advances and applications in the period March 2021 to March 2023. Electrophoresis 2024; 45:8-34. [PMID: 37603373 DOI: 10.1002/elps.202300126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
This work presents a revision of the main applications of capillary electromigration (CE) methods in food analysis and Foodomics. Papers that were published during the period March 2021 to March 2023 are included. The work shows the multiple CE methods that have been developed and applied to analyze different types of molecules in foods and beverages. Namely, CE methods have been applied to analyze amino acids, biogenic amines, heterocyclic amines, peptides, proteins, phenols, polyphenols, pigments, lipids, carbohydrates, vitamins, DNAs, contaminants, toxins, pesticides, additives, residues, small organic and inorganic compounds, and other minor compounds. In addition, new CE procedures to perform chiral separation and for evaluating the effects of food processing as well as the last developments of microchip CE and new applications in Foodomics will be also discussed. The new procedures of CE to investigate food quality and safety, nutritional value, storage, and bioactivity are also included in the present review work.
Collapse
Affiliation(s)
- Gloria Domínguez-Rodríguez
- Laboratory of Foodomics, CIAL, CSIC, Madrid, Spain
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Madrid, Spain
| | | | | | | | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Madrid, Spain
| |
Collapse
|
3
|
Tůma P. Progress in on-line, at-line, and in-line coupling of sample treatment with capillary and microchip electrophoresis over the past 10 years: A review. Anal Chim Acta 2023; 1261:341249. [PMID: 37147053 DOI: 10.1016/j.aca.2023.341249] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
The review presents an evaluation of the development of on-line, at-line and in-line sample treatment coupled with capillary and microchip electrophoresis over the last 10 years. In the first part, it describes different types of flow-gating interfaces (FGI) such as cross-FGI, coaxial-FGI, sheet-flow-FGI, and air-assisted-FGI and their fabrication using molding into polydimethylsiloxane and commercially available fittings. The second part deals with the coupling of capillary and microchip electrophoresis with microdialysis, solid-phase, liquid-phase, and membrane based extraction techniques. It mainly focuses on modern techniques such as extraction across supported liquid membrane, electroextraction, single drop microextraction, head space microextraction, and microdialysis with high spatial and temporal resolution. Finally, the design of sequential electrophoretic analysers and fabrication of SPE microcartridges with monolithic and molecularly imprinted polymeric sorbents are discussed. Applications include the monitoring of metabolites, neurotransmitters, peptides and proteins in body fluids and tissues to study processes in living organisms, as well as the monitoring of nutrients, minerals and waste compounds in food, natural and wastewater.
Collapse
Affiliation(s)
- Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic.
| |
Collapse
|
4
|
Pohanka M. Immunosensors for Assay of Toxic Biological Warfare Agents. BIOSENSORS 2023; 13:402. [PMID: 36979614 PMCID: PMC10046508 DOI: 10.3390/bios13030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
An immunosensor for the assay of toxic biological warfare agents is a biosensor suitable for detecting hazardous substances such as aflatoxin, botulinum toxin, ricin, Shiga toxin, and others. The application of immunosensors is used in outdoor assays, point-of-care tests, as a spare method for more expensive devices, and even in the laboratory as a standard analytical method. Some immunosensors, such as automated flow-through analyzers or lateral flow tests, have been successfully commercialized as tools for toxins assay, but the research is ongoing. New devices are being developed, and the use of advanced materials and assay techniques make immunosensors highly competitive analytical devices in the field of toxic biological warfare agents assay. This review summarizes facts about current applications and new trends of immunosensors regarding recent papers in this area.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, CZ-50001 Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Zeid AM, Abdussalam A, Hanif S, Anjum S, Lou B, Xu G. Recent advances in microchip electrophoresis for analysis of pathogenic bacteria and viruses. Electrophoresis 2023; 44:15-34. [PMID: 35689426 DOI: 10.1002/elps.202200082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023]
Abstract
Life-threatening diseases, such as hepatitis B, pneumonia, tuberculosis, and COVID-19, are widespread due to pathogenic bacteria and viruses. Therefore, the development of highly sensitive, rapid, portable, cost-effective, and selective methods for the analysis of such microorganisms is a great challenge. Microchip electrophoresis (ME) has been widely used in recent years for the analysis of bacterial and viral pathogens in biological and environmental samples owing to its portability, simplicity, cost-effectiveness, and rapid analysis. However, microbial enrichment and purification are critical steps for accurate and sensitive analysis of pathogenic bacteria and viruses in complex matrices. Therefore, we first discussed the advances in the sample preparation technologies associated with the accurate analysis of such microorganisms, especially the on-chip microfluidic-based sample preparations such as dielectrophoresis and microfluidic membrane filtration. Thereafter, we focused on the recent advances in the lab-on-a-chip electrophoretic analysis of pathogenic bacteria and viruses in different complex matrices. As the microbial analysis is mainly based on the analysis of nucleic acid of the microorganism, the integration of nucleic acid-based amplification techniques such as polymerase chain reaction (PCR), quantitative PCR, and multiplex PCR with ME will result in an accurate and sensitive analysis of microbial pathogens. Such analyses are very important for the point-of-care diagnosis of various infectious diseases.
Collapse
Affiliation(s)
- Abdallah M Zeid
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abubakar Abdussalam
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,College of Natural and Pharmaceutical Sciences, Department of Chemistry, Bayero University, Kano, Nigeria.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Saima Hanif
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Punjab, Pakistan
| | - Saima Anjum
- Department of Chemistry, Govt. Sadiq College Women University, Bahawalpur, Pakistan
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|
6
|
Hassoun A, Jagtap S, Garcia-Garcia G, Trollman H, Pateiro M, Lorenzo JM, Trif M, Rusu AV, Aadil RM, Šimat V, Cropotova J, Câmara JS. Food quality 4.0: From traditional approaches to digitalized automated analysis. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Malá Z, Gebauer P. Analytical isotachophoresis 1967–2022: From standard analytical technique to universal on-line concentration tool. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Bai XW, Bai XF. Determination of sulfonamide residues in cultured sea cucumber by pre-column derivatization capillary electrophoresis with fluorescence detection. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Konjaria ML, Kakava R, Volonterio A, Chankvetadze B, Scriba GK. Enantioseparation of chiral (benzylsulfinyl)benzamide sulfoxides by capillary electrophoresis using cyclodextrins as chiral selectors. J Chromatogr A 2022; 1672:463027. [DOI: 10.1016/j.chroma.2022.463027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022]
|
10
|
Liu Y, Xia L, Xiao X, Li G. An integrated plastic microchip for enhancing electrophoretic separation using tunable pressure-driven backflows. Electrophoresis 2022; 43:892-900. [PMID: 35020208 DOI: 10.1002/elps.202100315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/12/2022]
Abstract
Microfluidic CE (MCE) is an effective solution for rapid and sensitive determination of multiple analytes. Herein, a dynamic coated cyclic olefin copolymer microchip was developed having an on-chip micropump for fluid velocity adjusting in electrophoretic separations. This micropump was fabricated by constructing a polyacrylamide gel membrane at one channel terminal. Once applying electric field across the membrane, a pressure-driven flow generated automatically to balance the electroosmotic flow (EOF) mismatch at the channel-membrane interface. The influence of gel precursor concentration and operating voltages on the fluid velocity was carefully evaluated. Moreover, the highly integration of injection, separation, and pumping units of the MCE system minimized the dead volume and provides satisfied column efficiency. Experiments showed that by adjusting of pumping voltage reduced the fluid velocity by a factor of 6, resulting six- and threefold resolving power enhancements of rhodamine dye mixture and amino acid mixture, respectively. Furthermore, the developed MCE method was applied for rhodamines and amino acids quantitation in food and cosmetics, with standard addition recoveries of 87.3-106.9% and 89.9-117.4%, respectively. These results were also confirmed by standard HPLC method, revealing the application potential in fast and onsite analysis of complex samples.
Collapse
Affiliation(s)
- Yulan Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
11
|
Wang M, Gong Q, Liu W, Tan S, Xiao J, Chen C. Applications of capillary electrophoresis in the fields of environmental, pharmaceutical, clinical and food analysis (2019-2021). J Sep Sci 2022; 45:1918-1941. [PMID: 35325510 DOI: 10.1002/jssc.202100727] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
So far, the potential of capillary electrophoresis (CE) in the application fields has been increasingly excavated due to the advantages of simple operation, short analysis time, high-resolution, less sample consumption and low cost. This review examines the implementations and advancements of CE in different application fields (environmental, pharmaceutical, clinical and food analysis) covering the literature from 2019 to 2021. In addition, ultrasmall sample injection volume (nanoliter range) and short optical path lead to relatively low concentration sensitivity of the most frequently used UV-absorption spectrophotometric detection, so the pretreatment technology being developed has been gradually utilized to overcome this problem. Despite the review is focused on the development of CE in the fields of environmental, pharmaceutical, clinical and food analysis, the new sample pretreatment techniques of microextraction and enrichment which fit excellently to CE in recent three years are also described briefly. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengyao Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Qian Gong
- Department of Pharmacy, Hunan Cancer Hospital/ The Affiliated Cancer Hospital of School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|