1
|
Zou Z, Tang H, Xiao E, Zhou Y, Yin X, Hu Z, Cai Y, Han Q, Wang L. Ensuring Clinical Excellence: The Mindray SAL9000 Biochemical Immunoassay System. Cell Biochem Biophys 2024:10.1007/s12013-024-01568-3. [PMID: 39419930 DOI: 10.1007/s12013-024-01568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
This study aimed to evaluate the performance and clinical laboratory adaptability of the Mindray SAL9000 biochemical immunoassay automation system, ensuring compliance with ISO 15189 standards and relevant national requirements. We conducted comprehensive performance verification tests on 21 biochemical analytes and 15 immunoassays, including precision, accuracy, linear bias, measurement range assessments, interference testing, reference range validation, inter-instrument comparison, and carryover verification. The Mindray SAL9000 demonstrated high performance across various parameters, with all analytes showing good linearity and minimal bias. While specific interfering substances affected some analytes, the system showed excellent resistance to common interferences such as hemolysis, ascorbic acid, and jaundice. The inter-instrument comparison with the BS2000M and Roche 702 indicated a good correlation, with most parameters showing biases of less than 10%, although exceptions were noted for ALT and AST. In conclusion, the Mindray SAL9000 meets clinical requirements through its high precision, excellent accuracy, and broad measurement range, making it a reliable and adaptable choice for clinical outpatient and emergency laboratories.
Collapse
Affiliation(s)
- Zhenzhen Zou
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Honghui Tang
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Erya Xiao
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yu Zhou
- Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, 215000, China
| | - Xuebei Yin
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Zhen Hu
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yang Cai
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Qingzhen Han
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Lin Wang
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China.
| |
Collapse
|
2
|
Wang Y, Chen J, Yang Z, Wang X, Zhang Y, Chen M, Ming Z, Zhang K, Zhang D, Zheng L. Advances in Nucleic Acid Assays for Infectious Disease: The Role of Microfluidic Technology. Molecules 2024; 29:2417. [PMID: 38893293 PMCID: PMC11173870 DOI: 10.3390/molecules29112417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Within the fields of infectious disease diagnostics, microfluidic-based integrated technology systems have become a vital technology in enhancing the rapidity, accuracy, and portability of pathogen detection. These systems synergize microfluidic techniques with advanced molecular biology methods, including reverse transcription polymerase chain reaction (RT-PCR), loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR), have been successfully used to identify a diverse array of pathogens, including COVID-19, Ebola, Zika, and dengue fever. This review outlines the advances in pathogen detection, attributing them to the integration of microfluidic technology with traditional molecular biology methods and smartphone- and paper-based diagnostic assays. The cutting-edge diagnostic technologies are of critical importance for disease prevention and epidemic surveillance. Looking ahead, research is expected to focus on increasing detection sensitivity, streamlining testing processes, reducing costs, and enhancing the capability for remote data sharing. These improvements aim to achieve broader coverage and quicker response mechanisms, thereby constructing a more robust defense for global public health security.
Collapse
Affiliation(s)
- Yiran Wang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingwei Chen
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhijin Yang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xuanyu Wang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yule Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mengya Chen
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zizhen Ming
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kaihuan Zhang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
3
|
Huang J, Zu Y, Zhang L, Cui W. Progress in Procalcitonin Detection Based on Immunoassay. RESEARCH (WASHINGTON, D.C.) 2024; 7:0345. [PMID: 38711476 PMCID: PMC11070848 DOI: 10.34133/research.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 05/08/2024]
Abstract
Procalcitonin (PCT) serves as a crucial biomarker utilized in diverse clinical contexts, including sepsis diagnosis and emergency departments. Its applications extend to identifying pathogens, assessing infection severity, guiding drug administration, and implementing theranostic strategies. However, current clinical deployed methods cannot meet the needs for accurate or real-time quantitative monitoring of PCT. This review aims to introduce these emerging PCT immunoassay technologies, focusing on analyzing their advantages in improving detection performances, such as easy operation and high precision. The fundamental principles and characteristics of state-of-the-art methods are first introduced, including chemiluminescence, immunofluorescence, latex-enhanced turbidity, enzyme-linked immunosorbent, colloidal gold immunochromatography, and radioimmunoassay. Then, improved methods using new materials and new technologies are briefly described, for instance, the combination with responsive nanomaterials, Raman spectroscopy, and digital microfluidics. Finally, the detection performance parameters of these methods and the clinical importance of PCT detection are also discussed.
Collapse
Affiliation(s)
- Jiayue Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy,
Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yan Zu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
| | - Lexiang Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
- Joint Centre of Translational Medicine,
the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Wenguo Cui
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy,
Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Shanghai Institute of Traumatology and Orthopedics,Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China
| |
Collapse
|
4
|
Alavi SE, Alharthi S, Alavi SF, Alavi SZ, Zahra GE, Raza A, Ebrahimi Shahmabadi H. Microfluidics for personalized drug delivery. Drug Discov Today 2024; 29:103936. [PMID: 38428803 DOI: 10.1016/j.drudis.2024.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
This review highlights the transformative impact of microfluidic technology on personalized drug delivery. Microfluidics addresses issues in traditional drug synthesis, providing precise control and scalability in nanoparticle fabrication, and microfluidic platforms show high potential for versatility, offering patient-specific dosing and real-time monitoring capabilities, all integrated into wearable technology. Covalent conjugation of antibodies to nanoparticles improves bioactivity, driving innovations in drug targeting. The integration of microfluidics with sensor technologies and artificial intelligence facilitates real-time feedback and autonomous adaptation in drug delivery systems. Key challenges, such as droplet polydispersity and fluidic handling, along with future directions focusing on scalability and reliability, are essential considerations in advancing microfluidics for personalized drug delivery.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia.
| | - Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Seyedeh Fatemeh Alavi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, PR China
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Gull E Zahra
- Government College University Faisalabad, Faisalabad, Pakistan
| | - Aun Raza
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran.
| |
Collapse
|
5
|
Amador-Hernandez JU, Guevara-Pantoja PE, Cedillo-Alcantar DF, Caballero-Robledo GA, Garcia-Cordero JL. Millifluidic valves and pumps made of tape and plastic. LAB ON A CHIP 2023; 23:4579-4591. [PMID: 37772361 DOI: 10.1039/d3lc00559c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
There is growing interest in producing micro- and milli-fluidic technologies made of thermoplastic with integrated fluidic control elements that are easy to assemble and suitable for mass production. Here, we developed millifluidic valves and pumps made of acrylic layers bonded with double-sided tape that are simple and fast to assemble. We demonstrate that a layer of pressure-sensitive adhesive (PSA) is flexible enough to be deformed at relatively low pressures. A chemical treatment deposited on specific regions of the PSA prevents it from sticking to the thermoplastic, which enabled us to create three different types of valves in normally open or closed configurations. We characterized different aspects of their performance, their operating pressures, the cut-off pressure values to open or close the valves (for different configurations and sizes), and the flow rate and volume pumped by seven different micropumps. As an application, we implemented a glucose assay with integrated pumps and valves, automatically generating glucose dilutions and reagent mixing. The ability to create polymeric microfluidic control units made with tape paves the way for their mass manufacturing.
Collapse
Affiliation(s)
- Josue U Amador-Hernandez
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Pablo E Guevara-Pantoja
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Diana F Cedillo-Alcantar
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Gabriel A Caballero-Robledo
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Jose L Garcia-Cordero
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland.
| |
Collapse
|
6
|
Mumtaz Z, Rashid Z, Ali A, Arif A, Ameen F, AlTami MS, Yousaf MZ. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches. BIOSENSORS 2023; 13:584. [PMID: 37366949 DOI: 10.3390/bios13060584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 06/28/2023]
Abstract
Conventional diagnostic techniques are based on the utilization of analyte sampling, sensing and signaling on separate platforms for detection purposes, which must be integrated to a single step procedure in point of care (POC) testing devices. Due to the expeditious nature of microfluidic platforms, the trend has been shifted toward the implementation of these systems for the detection of analytes in biochemical, clinical and food technology. Microfluidic systems molded with substances such as polymers or glass offer the specific and sensitive detection of infectious and noninfectious diseases by providing innumerable benefits, including less cost, good biological affinity, strong capillary action and simple process of fabrication. In the case of nanosensors for nucleic acid detection, some challenges need to be addressed, such as cellular lysis, isolation and amplification of nucleic acid before its detection. To avoid the utilization of laborious steps for executing these processes, advances have been deployed in this perspective for on-chip sample preparation, amplification and detection by the introduction of an emerging field of modular microfluidics that has multiple advantages over integrated microfluidics. This review emphasizes the significance of microfluidic technology for the nucleic acid detection of infectious and non-infectious diseases. The implementation of isothermal amplification in conjunction with the lateral flow assay greatly increases the binding efficiency of nanoparticles and biomolecules and improves the limit of detection and sensitivity. Most importantly, the deployment of paper-based material made of cellulose reduces the overall cost. Microfluidic technology in nucleic acid testing has been discussed by explicating its applications in different fields. Next-generation diagnostic methods can be improved by using CRISPR/Cas technology in microfluidic systems. This review concludes with the comparison and future prospects of various microfluidic systems, detection methods and plasma separation techniques used in microfluidic devices.
Collapse
Affiliation(s)
- Zilwa Mumtaz
- KAM School of Life Sciences, Forman Christian College University, Ferozpur Road, Lahore 54600, Pakistan
| | - Zubia Rashid
- Pure Health Laboratory, Mafraq Hospital, Abu Dhabi 1227788, United Arab Emirates
| | - Ashaq Ali
- State Key Laboratory of Virology, Center for Biosafety MegaScience, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Afsheen Arif
- Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Suad University, Riyadh 11451, Saudi Arabia
| | - Mona S AlTami
- Biology Department, College of Science, Qassim University, Burydah 52571, Saudi Arabia
| | - Muhammad Zubair Yousaf
- KAM School of Life Sciences, Forman Christian College University, Ferozpur Road, Lahore 54600, Pakistan
| |
Collapse
|
7
|
Karar ME, El-Fishawy N, Radad M. Automated classification of urine biomarkers to diagnose pancreatic cancer using 1-D convolutional neural networks. J Biol Eng 2023; 17:28. [PMID: 37069681 PMCID: PMC10111836 DOI: 10.1186/s13036-023-00340-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/13/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Early diagnosis of Pancreatic Ductal Adenocarcinoma (PDAC) is the main key to surviving cancer patients. Urine proteomic biomarkers which are creatinine, LYVE1, REG1B, and TFF1 present a promising non-invasive and inexpensive diagnostic method of the PDAC. Recent utilization of both microfluidics technology and artificial intelligence techniques enables accurate detection and analysis of these biomarkers. This paper proposes a new deep-learning model to identify urine biomarkers for the automated diagnosis of pancreatic cancers. The proposed model is composed of one-dimensional convolutional neural networks (1D-CNNs) and long short-term memory (LSTM). It can categorize patients into healthy pancreas, benign hepatobiliary disease, and PDAC cases automatically. RESULTS Experiments and evaluations have been successfully done on a public dataset of 590 urine samples of three classes, which are 183 healthy pancreas samples, 208 benign hepatobiliary disease samples, and 199 PDAC samples. The results demonstrated that our proposed 1-D CNN + LSTM model achieved the best accuracy score of 97% and the area under curve (AUC) of 98% versus the state-of-the-art models to diagnose pancreatic cancers using urine biomarkers. CONCLUSION A new efficient 1D CNN-LSTM model has been successfully developed for early PDAC diagnosis using four proteomic urine biomarkers of creatinine, LYVE1, REG1B, and TFF1. This developed model showed superior performance on other machine learning classifiers in previous studies. The main prospect of this study is the laboratory realization of our proposed deep classifier on urinary biomarker panels for assisting diagnostic procedures of pancreatic cancer patients.
Collapse
Affiliation(s)
- Mohamed Esmail Karar
- Department of Industrial Electronics and Control Engineering, Faculty of Electronic Engineering, Menoufia University, Al Minufiyah, Egypt
| | - Nawal El-Fishawy
- Department of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University, Al Minufiyah, Egypt
| | - Marwa Radad
- Department of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University, Al Minufiyah, Egypt.
| |
Collapse
|
8
|
Rey Gomez LM, Hirani R, Care A, Inglis DW, Wang Y. Emerging Microfluidic Devices for Sample Preparation of Undiluted Whole Blood to Enable the Detection of Biomarkers. ACS Sens 2023; 8:1404-1421. [PMID: 37011238 DOI: 10.1021/acssensors.2c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Blood testing allows for diagnosis and monitoring of numerous conditions and illnesses; it forms an essential pillar of the health industry that continues to grow in market value. Due to the complex physical and biological nature of blood, samples must be carefully collected and prepared to obtain accurate and reliable analysis results with minimal background signal. Examples of common sample preparation steps include dilutions, plasma separation, cell lysis, and nucleic acid extraction and isolation, which are time-consuming and can introduce risks of sample cross-contamination or pathogen exposure to laboratory staff. Moreover, the reagents and equipment needed can be costly and difficult to obtain in point-of-care or resource-limited settings. Microfluidic devices can perform sample preparation steps in a simpler, faster, and more affordable manner. Devices can be carried to areas that are difficult to access or that do not have the resources necessary. Although many microfluidic devices have been developed in the last 5 years, few were designed for the use of undiluted whole blood as a starting point, which eliminates the need for blood dilution and minimizes blood sample preparation. This review will first provide a short summary on blood properties and blood samples typically used for analysis, before delving into innovative advances in microfluidic devices over the last 5 years that address the hurdles of blood sample preparation. The devices will be categorized by application and the type of blood sample used. The final section focuses on devices for the detection of intracellular nucleic acids, because these require more extensive sample preparation steps, and the challenges involved in adapting this technology and potential improvements are discussed.
Collapse
Affiliation(s)
| | - Rena Hirani
- Australian Red Cross Lifeblood, Sydney, New South Wales 2015, Australia
| | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - David W Inglis
- School of Engineering, Faculty of Science and Engineering and △School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | | |
Collapse
|
9
|
Avaro AS, Santiago JG. A critical review of microfluidic systems for CRISPR assays. LAB ON A CHIP 2023; 23:938-963. [PMID: 36601854 DOI: 10.1039/d2lc00852a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Reviewed are nucleic acid detection assays that incorporate clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics and microfluidic devices and techniques. The review serves as a reference for researchers who wish to use CRISPR-Cas systems for diagnostics in microfluidic devices. The review is organized in sections reflecting a basic five-step workflow common to most CRISPR-based assays. These steps are analyte extraction, pre-amplification, target recognition, transduction, and detection. The systems described include custom microfluidic chips and custom (benchtop) chip control devices for automated assays steps. Also included are partition formats for digital assays and lateral flow biosensors as a readout modality. CRISPR-based, microfluidics-driven assays offer highly specific detection and are compatible with parallel, combinatorial implementation. They are highly reconfigurable, and assays are compatible with isothermal and even room temperature operation. A major drawback of these assays is the fact that reports of kinetic rates of these enzymes have been highly inconsistent (many demonstrably erroneous), and the low kinetic rate activity of these enzymes limits achievable sensitivity without pre-amplification. Further, the current state-of-the-art of CRISPR assays is such that nearly all systems rely on off-chip assays steps, particularly off-chip sample preparation.
Collapse
Affiliation(s)
- Alexandre S Avaro
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Microfluidic-based blood immunoassays. J Pharm Biomed Anal 2023; 228:115313. [PMID: 36868029 DOI: 10.1016/j.jpba.2023.115313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023]
Abstract
Microfluidics enables the integration of whole protocols performed in a laboratory, including sample loading, reaction, extraction, and measurement steps on a single system, which offers significant advantages thanks to small-scale operation combined with precise fluid control. These include providing efficient transportation mechanisms and immobilization, reduced sample and reagent volumes, fast analysis and response times, lower power requirements, lower cost and disposability, improved portability and sensitivity, and greater integration and automation capability. Immunoassay is a specific bioanalytical method based on the interaction of antigens and antibodies, which is utilized to detect bacteria, viruses, proteins, and small molecules in several areas such as biopharmaceutical analysis, environmental analysis, food safety, and clinical diagnostics. Because of the advantages of both techniques, the combination of immunoassays and microfluidic technology is considered one of the most potential biosensor systems for blood samples. This review presents the current progress and important developments in microfluidic-based blood immunoassays. After providing several basic information about blood analysis, immunoassays, and microfluidics, the review points out in-depth information about microfluidic platforms, detection techniques, and commercial microfluidic blood immunoassay platforms. In conclusion, some thoughts and future perspectives are provided.
Collapse
|
11
|
Tavari T, Meamardoost S, Sepehry N, Akbarzadeh P, Nazari M, Hashemi NN, Nazari M. Effects of 3D electrodes arrangement in a novel AC electroosmotic micropump: Numerical modeling and experimental validation. Electrophoresis 2023; 44:450-461. [PMID: 36448415 DOI: 10.1002/elps.202200215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
To date, a comprehensive systematic optimization framework, capable of accurately predicting an efficient electrode geometry, is not available. Here, different geometries, including 3D step electrodes, have been designed in order to fabricate AC electroosmosis micropumps. It is essential to optimize both geometrical parameters of electrode, such as width and height of steps on each base electrode and their location in one pair, the size of each base electrode (symmetric or asymmetric), the gap of electrode pairs, and nongeometrical parameters such as fluid flow in a channel and electrical characteristics (e.g., frequency and voltage). The governing equations comprising of electric domain and fluid domain have been coupled using finite element method. The developed model was employed to investigate the effect of electrode geometric parameters on electroosmotic slip velocity and its subsequent effect on pressure and flow rate. Numerical simulation indicates that the optimal performance can be achieved using a design with varying step height and displacement, at a given voltage (2.5 V) and frequency (1 kHz). Finally, in order to validate the numerical simulation, the optimal microchip was fabricated using a combination of photolithography, electroplating, and a polydimethylsiloxane microchannel. Our results indicate that our micropump is capable of generating a pressure, velocity, and flow rate of 74.2 Pa, 1.76 mm/s, and 14.8 µl/min, respectively. This result reveals that our proposed geometry outperforms the state-of-the-art micropumps previously reported in the literature by improving the fluid velocity by 32%, with 80% less electrodes per unit length, and whereas the channel length is ∼80% shorter.
Collapse
Affiliation(s)
- Tannaz Tavari
- Department of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Saber Meamardoost
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York, USA
| | - Naserodin Sepehry
- Department of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Pooria Akbarzadeh
- Department of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Mostafa Nazari
- Department of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, USA
| | - Mohsen Nazari
- Department of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
12
|
Marcos Santos L, da Silveira NJF. Current Fragment-to-lead Approaches Starting from the 7-azaindole: The Pharmacological Versatility of a Privileged Molecular Fragment. Curr Top Med Chem 2023; 23:2116-2130. [PMID: 37461366 DOI: 10.2174/1568026623666230718100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/03/2023] [Accepted: 06/15/2023] [Indexed: 09/09/2023]
Abstract
Fragment-based drug discovery is one of the most powerful paradigms in the recent context of medicinal chemistry and is being widely practiced by academic and industrial researchers. Currently, azaindoles are among the most exploited molecular fragments in pharmaceutical innovation projects inspired by fragment-to-lead strategies. The 7-azaindole is the most prominent representative within this remarkable family of pyrrolopyridine fragments, as it is present in the chemical structure of several approved antitumor drugs and also of numerous therapeutic candidates. In this paper, a brief overview on existing proofs of concept in the literature will be presented, as well as some recent works that corroborate 7-azaindole as a privileged and pharmacologically versatile molecular fragment.
Collapse
Affiliation(s)
- Leandro Marcos Santos
- Laboratory of Molecular Modeling and Computer Simulation / MolMod-CS (D311-F), Institute of Chemistry, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
- Pharmaceutical Chemistry Research Laboratory / LQFar (D202A), Department of Food and Medicines, Faculty of Pharmaceutical Sciences, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
| | - Nelson José Freitas da Silveira
- Laboratory of Molecular Modeling and Computer Simulation / MolMod-CS (D311-F), Institute of Chemistry, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
| |
Collapse
|
13
|
Wei Y, Ren Z, Liu C, Jiang T, Wang R, Shi C, Liu C. All-fiber biological detection microfluidic chip based on space division and wavelength division multiplexing technologies. LAB ON A CHIP 2022; 22:4501-4510. [PMID: 36305279 DOI: 10.1039/d2lc00681b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To further reduce the size of a microfluidic detection chip and the sample consumption and to shorten the chip manufacturing cycle, an all-fiber SPR detection multichannel microfluidic chip was proposed and demonstrated in this paper. The microfluidic channel of the proposed chip was provided by the air channel of a double side-hole fiber, the detection unit was fabricated using a dumbbell fiber with a fiber core exposed to air, and the sensing probe was composed and packaged by fiber micro-processing technology. The internal double channels of the fiber constructed from double side-hole and dumbbell fibers can realize dual channel detection based on space division multiplexing. 30 nm silver and 50 nm gold films were respectively coated on the left and right sides of the dumbbell fiber, which can realize the dual channel simultaneous detection based on wavelength division multiplexing. We employed the proposed microfluidic chip to detect immunoglobulin G and dopamine molecules, where the average sensitivity is 0.252 nm (mg mL-1)-1 and 0.061 nm (μg mL-1)-1, and the LOD is 0.397 mg mL-1 and 1.639 μg mL-1, respectively. The microfluidic channel and detection unit of all-fiber multi-channel SPR detection microfluidic chip are provided by a soft and flexible fiber, which is compact in structure, flexible in fabrication and short in manufacturing cycle, making it possible for the microfluidic chip to enter the human body for detection and enabling a new approach for the fabrication of wearable detection microfluidic devices. This provides a new idea for the development of microfluidic chips.
Collapse
Affiliation(s)
- Yong Wei
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
| | - Zhuo Ren
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
| | - Chunlan Liu
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
| | - Tianci Jiang
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
| | - Rui Wang
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
| | - Chen Shi
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
| | - Chunbiao Liu
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
| |
Collapse
|