1
|
Cao D, Martinez JG, Anada R, Hara ES, Kamioka H, Jager EWH. Electrochemical control of bone microstructure on electroactive surfaces for modulation of stem cells and bone tissue engineering. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2183710. [PMID: 36926200 PMCID: PMC10013253 DOI: 10.1080/14686996.2023.2183710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Controlling stem cell behavior at the material interface is crucial for the development of novel technologies in stem cell biology and regenerative medicine. The composition and presentation of bio-factors on a surface strongly influence the activity of stem cells. Herein, we designed an electroactive surface that mimics the initial process of trabecular bone formation, by immobilizing chondrocyte-derived plasma membrane nanofragments (PMNFs) on its surface for rapid mineralization within 2 days. Moreover, the electroactive surface was based on the conducting polymer polypyrrole (PPy), which enabled dynamic control of the presentation of PMNFs on the surface via electrochemical redox switching, further resulting in the formation of bone minerals with different morphologies. Furthermore, bone minerals with contrasting surface morphologies had differential effects on the differentiation of human bone marrow-derived stem cells (hBMSCs) cultured on the surface. Together, this electroactive surface showed multifunctional characteristics, not only allowing dynamic control of PMNF presentation but also promoting the formation of bone minerals with different morphologies within 2 days. This electroactive substrate could be valuable for more precise control of stem cell growth and differentiation, and further development of more suitable microenvironments containing bone apatite for housing a bone marrow stem cell niche, such as biochips/bone-on-chips.
Collapse
Affiliation(s)
- Danfeng Cao
- Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Jose G. Martinez
- Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Risa Anada
- Advanced Research Center for Oral and Craniofacial Sciences Dental School, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Emilio Satoshi Hara
- Advanced Research Center for Oral and Craniofacial Sciences Dental School, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Edwin W. H. Jager
- Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Nemati M, Farajzadeh MA, Afshar Mogaddam MR, Pourali A. Recent Advances in Impedimetric Biosensors Focusing on Myocardial Infarction Diagnosis. Crit Rev Anal Chem 2022; 54:2134-2147. [PMID: 36576219 DOI: 10.1080/10408347.2022.2156771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acute myocardial infarction is the most common cardiovascular disease and 85% of cardiovascular disease-related deaths are associated with it. The variation in the cardiac troponin concentration is considered as the most significant judge index for acute myocardial infarction diagnosis. Here, a comprehensive insights is given about the impedimetric methods as powerful electrochemical biosensing platforms for cardiac troponin evaluation. Focusing on nano materials, various impedimetric techniques including faradaic and non-faradaic techniques and different transducer modification techniques are addressed. The steps taken by each of the studied platforms to solve the existing problems are discussed and their advantages and drawbacks are highlighted. A glance at the provided table is given a mind into the features of each impedimetric sensors and their comparison are provided.
Collapse
Affiliation(s)
- Mahboob Nemati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, Nicosia, North Cyprus, Turkey
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Pourali
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Jemai R, Djebbi MA, Hussain N, Yang B, Hirtz M, Trouillet V, Ben Rhaiem H, Ben Haj Amara A. Activated Porous Carbon Supported Pd and ZnO Nanocatalysts for Trace Sensing of Carbaryl Pesticide in Water and Food Products. NEW J CHEM 2022. [DOI: 10.1039/d2nj01844f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomaterials-based sensors are a dire need for credible and accurate determination of pesticides in water and food samples as a monitoring tool. Herein, electrocatalysts of Pd and ZnO NPs supported...
Collapse
|