1
|
Dutto A, Kan A, Saraw Z, Maillard A, Zindel D, Studart AR. Living Porous Ceramics for Bacteria-Regulated Gas Sensing and Carbon Capture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412555. [PMID: 39659127 DOI: 10.1002/adma.202412555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Microorganisms hosted in abiotic structures have led to engineered living materials that can grow, sense, and adapt in ways that mimic biological systems. Although porous structures should favor colonization by microorganisms, they have not yet been exploited as abiotic scaffolds for the development of living materials. Here, porous ceramics are reported that are colonized by bacteria to form an engineered living material with self-regulated and genetically programmable carbon capture and gas-sensing functionalities. The carbon capture capability is achieved using wild-type photosynthetic cyanobacteria, whereas the gas-sensing function is generated utilizing genetically engineered E. coli. Hierarchical porous clay is used as a ceramic scaffold and evaluated in terms of bacterial growth, water uptake, and mechanical properties. Using state-of-the-art chemical analysis techniques, the ability of the living porous ceramics are demonstrated to capture CO2 directly from the air and to metabolically turn minute amounts of toxic gas into a benign scent detectable by humans.
Collapse
Affiliation(s)
- Alessandro Dutto
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Anton Kan
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Zoubeir Saraw
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Aline Maillard
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Daniel Zindel
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, 8093, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| |
Collapse
|
2
|
Kang J, Liang Y, Liu J, Hu M, Lin S, Zhong J, Wang C, Zeng Q, Zhang C. Dual roles of photosynthetic hydrogel with sustained oxygen generation in promoting cell survival and eradicating anaerobic infection. Mater Today Bio 2024; 28:101197. [PMID: 39221211 PMCID: PMC11364899 DOI: 10.1016/j.mtbio.2024.101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Tissue engineering offers a promising alternative for oral and maxillofacial tissue defect rehabilitation; however, cells within a sizeable engineered tissue construct after transplantation inevitably face prolonged and severe hypoxic conditions, which may compromise the survivability of the transplanted cells and arouse the concern of anaerobic infection. Microalgae, which can convert carbon dioxide and water into oxygen and glucose through photosynthesis, have been studied as a source of oxygen supply for several biomedical applications, but their promise in orofacial tissue regeneration remains unexplored. Here, we demonstrated that through photosynthetic oxygenation, Chlamydomonas reinhardtii (C. reinhardtii) supported dental pulp stem cell (DPSC) energy production and survival under hypoxia. We developed a multifunctional photosynthetic hydrogel by embedding DPSCs and C. reinhardtii encapsulated alginate microspheres (CAMs) within gelatin methacryloyl hydrogel (GelMA) (CAMs@GelMA). This CAMs@GelMA hydrogel can generate a sustainable and sufficient oxygen supply, reverse intracellular hypoxic status, and enhance the metabolic activity and viability of DPSCs. Furthermore, the CAMs@GelMA hydrogel exhibited selective antibacterial activity against oral anaerobes and remarkable antibiofilm effects on multispecies biofilms by disrupting the hypoxic microenvironment and increasing reactive oxygen species generation. Our work presents an innovative photosynthetic strategy for oral tissue engineering and opens new avenues for addressing other hypoxia-related challenges.
Collapse
Affiliation(s)
- Jun Kang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ye Liang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Junqing Liu
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Mingxin Hu
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Shulan Lin
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Jialin Zhong
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Chaogang Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Lu C, Huang Y, Cui J, Wu J, Jiang C, Gu X, Cao Y, Yin S. Toward Practical Applications of Engineered Living Materials with Advanced Fabrication Techniques. ACS Synth Biol 2024; 13:2295-2312. [PMID: 39002162 DOI: 10.1021/acssynbio.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Engineered Living Materials (ELMs) are materials composed of or incorporating living cells as essential functional units. These materials can be created using bottom-up approaches, where engineered cells spontaneously form well-defined aggregates. Alternatively, top-down methods employ advanced materials science techniques to integrate cells with various kinds of materials, creating hybrids where cells and materials are intricately combined. ELMs blend synthetic biology with materials science, allowing for dynamic responses to environmental stimuli such as stress, pH, humidity, temperature, and light. These materials exhibit unique "living" properties, including self-healing, self-replication, and environmental adaptability, making them highly suitable for a wide range of applications in medicine, environmental conservation, and manufacturing. Their inherent biocompatibility and ability to undergo genetic modifications allow for customized functionalities and prolonged sustainability. This review highlights the transformative impact of ELMs over recent decades, particularly in healthcare and environmental protection. We discuss current preparation methods, including the use of endogenous and exogenous scaffolds, living assembly, 3D bioprinting, and electrospinning. Emphasis is placed on ongoing research and technological advancements necessary to enhance the safety, functionality, and practical applicability of ELMs in real-world contexts.
Collapse
Affiliation(s)
- Chenjing Lu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yaying Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jian Cui
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Medical School, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Medical School, Nanjing University, Nanjing 210093, China
| | - Xiaosong Gu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine innovation center, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine innovation center, MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sheng Yin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
4
|
Zhang J, Yang H, Sun Y, Yan B, Chen W, Fan D. The potential use of microalgae for nutrient supply and health enhancement in isolated and confined environments. Compr Rev Food Sci Food Saf 2024; 23:e13418. [PMID: 39073089 DOI: 10.1111/1541-4337.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Exploring isolated and confined environments (IACEs), such as deep-sea ecosystems, polar regions, and outer space, presents multiple challenges. Among these challenges, ensuring sustainable food supply over long timescales and maintaining the health of personnel are fundamental issues that must be addressed. Microalgae, as a novel food resource, possess favorable physiological and nutritional characteristics, demonstrating potential as nutritional support in IACEs. In this review, we discuss the potential of microalgae as a nutritional supplement in IACEs from four perspectives. The first section provides a theoretical foundation by reviewing the environmental adaptability and previous studies in IACEs. Subsequently, the typical nutritional components of microalgae and their bioavailability are comprehensively elucidated. And then focus on the impact of these ingredients on health enhancement and elucidate its mechanisms in IACEs. Combining the outstanding stress resistance, rich active ingredients, the potential to alleviate osteoporosis, regulate metabolism, and promote mental well-being, microalgae demonstrate significant value for food applications. Furthermore, the development of novel microalgae biomatrices enhances health safeguards. Nevertheless, the widespread application of microalgae in IACEs still requires extensive studies and more fundamental data, necessitating further exploration into improving bioavailability, high biomass cultivation methods, and enhancing palatability.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Huayu Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yuying Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Tian S, Tan S, Fan M, Gong W, Yang T, Jiao F, Qiao H. Hypoxic environment of wounds and photosynthesis-based oxygen therapy. BURNS & TRAUMA 2024; 12:tkae012. [PMID: 38860010 PMCID: PMC11163460 DOI: 10.1093/burnst/tkae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 06/12/2024]
Abstract
The hypoxic environment is among the most important factors that complicates the healing of chronic wounds, such as venous leg ulcers, pressure injuries and diabetic foot ulcers, which seriously affects the quality of life of patients. Various oxygen supply treatments are used in clinical practice to improve the hypoxic environment at the wound site. However, problems still occur, such as insufficient oxygen supply, short oxygen infusion time and potential biosafety risks. In recent years, artificial photosynthetic systems have become a research hotspot in the fields of materials and energy. Photosynthesis is expected to improve the oxygen level at wound sites and promote wound healing because the method provides a continuous oxygen supply and has good biosafety. In this paper, oxygen treatment methods for wounds are reviewed, and the oxygen supply principle and construction of artificial photosynthesis systems are described. Finally, research progress on the photosynthetic oxygen production system to promote wound healing is summarized.
Collapse
Affiliation(s)
- Shuning Tian
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Shenyu Tan
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Mingjie Fan
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Wenlin Gong
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Tianchang Yang
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Fangwen Jiao
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Hongzhi Qiao
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| |
Collapse
|
6
|
Dani S, Schütz K, Dikici E, Bernhardt A, Lode A. The effect of continuous long-term illumination with visible light in different spectral ranges on mammalian cells. Sci Rep 2024; 14:9444. [PMID: 38658667 PMCID: PMC11043379 DOI: 10.1038/s41598-024-60014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
One of the biggest challenges in tissue engineering and regenerative medicine is to ensure oxygen supply of cells in the (temporary) absence of vasculature. With the vision to exploit photosynthetic oxygen production by microalgae, co-cultivated in close vicinity to oxygen-consuming mammalian cells, we are searching for culture conditions that are compatible for both sides. Herein, we investigated the impact of long-term illumination on mammalian cells which is essential to enable photosynthesis by microalgae: four different cell types-primary human fibroblasts, dental pulp stem cells, and osteoblasts as well as the murine beta-cell line INS-1-were continuously exposed to warm white light, red or blue light over seven days. We observed that illumination with red light has no adverse effects on viability, metabolic activity and growth of the cells whereas exposure to white light has deleterious effects that can be attributed to its blue light portion. Quantification of intracellular glutathione did not reveal a clear correlation of this effect with an enhanced production of reactive oxygen species. Finally, our data indicate that the cytotoxic effect of short-wavelength light is predominantly a direct effect of cell illumination; photo-induced changes in the cell culture media play only a minor role.
Collapse
Affiliation(s)
- Sophie Dani
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Ezgi Dikici
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Oh JJ, Ammu S, Vriend VD, Kieffer R, Kleiner FH, Balasubramanian S, Karana E, Masania K, Aubin-Tam ME. Growth, Distribution, and Photosynthesis of Chlamydomonas Reinhardtii in 3D Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305505. [PMID: 37851509 DOI: 10.1002/adma.202305505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/16/2023] [Indexed: 10/20/2023]
Abstract
Engineered living materials (ELMs) are a novel class of functional materials that typically feature spatial confinement of living components within an inert polymer matrix to recreate biological functions. Understanding the growth and spatial configuration of cellular populations within a matrix is crucial to predicting and improving their responsive potential and functionality. Here, this work investigates the growth, spatial distribution, and photosynthetic productivity of eukaryotic microalga Chlamydomonas reinhardtii (C. reinhardtii) in three-dimensionally shaped hydrogels in dependence of geometry and size. The embedded C. reinhardtii cells photosynthesize and form confined cell clusters, which grow faster when located close to the ELM periphery due to favorable gas exchange and light conditions. Taking advantage of location-specific growth patterns, this work successfully designs and prints photosynthetic ELMs with increased CO2 capturing rate, featuring high surface to volume ratio. This strategy to control cell growth for higher productivity of ELMs resembles the already established adaptations found in multicellular plant leaves.
Collapse
Affiliation(s)
- Jeong-Joo Oh
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Satya Ammu
- Shaping Matter Lab, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, The Netherlands
| | - Vivian Dorine Vriend
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Roland Kieffer
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Friedrich Hans Kleiner
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Srikkanth Balasubramanian
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Elvin Karana
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Kunal Masania
- Shaping Matter Lab, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| |
Collapse
|
8
|
Boons R, Siqueira G, Grieder F, Kim SJ, Giovanoli D, Zimmermann T, Nyström G, Coulter FB, Studart AR. 3D Bioprinting of Diatom-Laden Living Materials for Water Quality Assessment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300771. [PMID: 37691091 DOI: 10.1002/smll.202300771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/17/2023] [Indexed: 09/12/2023]
Abstract
Diatoms have long been used as living biological indicators for the assessment of water quality in lakes and rivers worldwide. While this approach benefits from the great diversity of these unicellular algae, established protocols are time-consuming and require specialized equipment. Here, this work 3D prints diatom-laden hydrogels that can be used as a simple multiplex bio-indicator for water assessment. The hydrogel-based living materials are created with the help of a desktop extrusion-based printer using a suspension of diatoms, cellulose nanocrystals (CNC) and alginate as bio-ink constituents. Rheology and mechanical tests are employed to establish optimum bio-ink formulations, whereas cell culture experiments are utilized to evaluate the proliferation of the entrapped diatoms in the presence of selected water contaminants. Bioprinting of diatom-laden hydrogels is shown to be an enticing approach to generate living materials that can serve as low-cost bio-indicators for water quality assessment.
Collapse
Affiliation(s)
- Rani Boons
- Cellulose & Wood Materials Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Gilberto Siqueira
- Cellulose & Wood Materials Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Florian Grieder
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Soo-Jeong Kim
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Diego Giovanoli
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Tanja Zimmermann
- Cellulose & Wood Materials Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - Gustav Nyström
- Cellulose & Wood Materials Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Fergal B Coulter
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
9
|
Windisch J, Reinhardt O, Duin S, Schütz K, Rodriguez NJN, Liu S, Lode A, Gelinsky M. Bioinks for Space Missions: The Influence of Long-Term Storage of Alginate-Methylcellulose-Based Bioinks on Printability as well as Cell Viability and Function. Adv Healthc Mater 2023; 12:e2300436. [PMID: 37125819 PMCID: PMC11468998 DOI: 10.1002/adhm.202300436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/14/2023] [Indexed: 05/02/2023]
Abstract
Bioprinting is considered a key technology for future space missions and is currently being established on the International Space Station (ISS). With the aim to perform bioink production as a critical and resource-consuming preparatory step already on Earth and transport a bioink cartridge "ready to use" to the ISS, the storability of bioinks is investigated. Hydrogel blends based on alginate and methylcellulose are laden with either green microalgae of the species Chlorella vulgaris or with different human cell lines including immortilized human mesenchymal stem cells, SaOS-2 and HepG2, as well as with primary human dental pulp stem cells. The bioinks are filled into printing cartridges and stored at 4°C for up to four weeks. Printability of the bioinks is maintained after storage. Viability and function of the cells embedded in constructs bioprinted from the stored bioinks are investigated during subsequent cultivation: The microalgae survive the storage period very well and show no loss of growth and functionality, however a significant decrease is visible for human cells, varying between the different cell types. The study demonstrates that storage of bioinks is in principle possible and is a promising starting point for future research, making complex printing processes more effective and reproducible.
Collapse
Affiliation(s)
- Johannes Windisch
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Olena Reinhardt
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Sarah Duin
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Nuria Juliana Novoa Rodriguez
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Suihong Liu
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| |
Collapse
|
10
|
Li Y, Goulbourne NC. Methods for numerical simulation of soft actively contractile materials. Sci Rep 2023; 13:10369. [PMID: 37365212 DOI: 10.1038/s41598-023-36465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023] Open
Abstract
Soft materials that can demonstrate on demand reconfigurability and changing compliance are highly sought after as actuator materials in many fields such as soft robotics and biotechnology. Whilst there are numerous proof of concept materials and devices, rigorous predictive models of deformation have not been well-established or widely adopted. In this paper, we discuss programming complex three-dimensional deformations of a soft intrinsically anisotropic material by controlling the orientation of the contractile units and/or direction of the applied electric field. Programming is achieved by patterning contractile units and/or selectively activating spatial regions. A new constitutive model is derived to describe the soft intrinsic anisotropy of soft materials. The model is developed within a continuum mechanics framework using an invariant-based formulation. Computational implementation allows us to simulate the complex three-dimensional shape response when activated by electric field. Several examples of the achievable Gauss-curved surfaces are demonstrated. Our computational analysis introduces a mechanics-based framework for design when considering soft morphing materials with intrinsic anisotropy, and is meant to inspire the development of new soft active materials.
Collapse
Affiliation(s)
- Yali Li
- University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
11
|
Reinhardt O, Ihmann S, Ahlhelm M, Gelinsky M. 3D bioprinting of mineralizing cyanobacteria as novel approach for the fabrication of living building materials. Front Bioeng Biotechnol 2023; 11:1145177. [PMID: 37077229 PMCID: PMC10106584 DOI: 10.3389/fbioe.2023.1145177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Living building materials (LBM) are gaining interest in the field of sustainable alternative construction materials to reduce the significant impact of the construction industry on global CO2 emissions. This study investigated the process of three-dimensional bioprinting to create LBM incorporating the cyanobacterium Synechococcus sp. strain PCC 7002, which is capable of producing calcium carbonate (CaCO3) as a biocement. Rheology and printability of biomaterial inks based on alginate-methylcellulose hydrogels containing up to 50 wt% sea sand were examined. PCC 7002 was incorporated into the bioinks and cell viability and growth was characterized by fluorescence microscopy and chlorophyll extraction after the printing process. Biomineralization was induced in liquid culture and in the bioprinted LBM and observed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and through mechanical characterization. Cell viability in the bioprinted scaffolds was confirmed over 14 days of cultivation, demonstrating that the cells were able to withstand shear stress and pressure during the extrusion process and remain viable in the immobilized state. CaCO3 mineralization of PCC 7002 was observed in both liquid culture and bioprinted LBM. In comparison to cell-free scaffolds, LBM containing live cyanobacteria had a higher compressive strength. Therefore, bioprinted LBM containing photosynthetically active, mineralizing microorganisms could be proved to be beneficial for designing environmentally friendly construction materials.
Collapse
Affiliation(s)
- Olena Reinhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stephanie Ihmann
- Biologized Materials and Structures, Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany
| | - Matthias Ahlhelm
- Biologized Materials and Structures, Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Michael Gelinsky,
| |
Collapse
|
12
|
Development of a photosynthetic hydrogel as potential wound dressing for the local delivery of oxygen and bioactive molecules. Acta Biomater 2023; 155:154-166. [PMID: 36435443 DOI: 10.1016/j.actbio.2022.11.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
The development of biomaterials to improve wound healing is a critical clinical challenge and an active field of research. As it is well described that oxygen plays a critical role in almost each step of the wound healing process, in this work, an oxygen producing photosynthetic biomaterial was generated, characterized, and further modified to additionally release other bioactive molecules. Here, alginate hydrogels were loaded with the photosynthetic microalgae Chlamydomonas reinhardtii, showing high integration as well as immediate oxygen release upon illumination. Moreover, the photosynthetic hydrogel showed high biocompatibility in vitro and in vivo, and the capacity to sustain the metabolic oxygen requirements of zebrafish larvae and skin explants. In addition, the photosynthetic dressings were evaluated in 20 healthy human volunteers following the ISO-10993-10-2010 showing no skin irritation, mechanical stability of the dressings, and survival of the photosynthetic microalgae. Finally, hydrogels were also loaded with genetically engineered microalgae to release human VEGF, or pre-loaded with antibiotics, showing sustained release of both bioactive molecules. Overall, this work shows that photosynthetic hydrogels represent a feasible approach for the local delivery of oxygen and other bioactive molecules to promote wound healing. STATEMENT OF SIGNIFICANCE: As oxygen plays a key role in almost every step of the tissue regeneration process, the development of oxygen delivering therapies represents an active field of research, where photosynthetic biomaterials have risen as a promising approach for wound healing. Therefore, in this work a photosynthetic alginate hydrogel-based wound dressing containing C. reinhardtii microalgae was developed and validated in healthy skin of human volunteers. Moreover, hydrogels were modified to additionally release other bioactive molecules such as recombinant VEGF or antibiotics. The present study provides key scientific data to support the use of photosynthetic hydrogels as customizable dressings to promote wound healing.
Collapse
|
13
|
High-resolution 3D printing for healthcare. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
14
|
Holmes C, Varas J, San Martín S, Egaña JT. Towards an In Vitro 3D Model for Photosynthetic Cancer Treatment: A Study of Microalgae and Tumor Cell Interactions. Int J Mol Sci 2022; 23:13550. [PMID: 36362338 PMCID: PMC9657947 DOI: 10.3390/ijms232113550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
As hypoxic tumors show resistance to several clinical treatments, photosynthetic microorganisms have been recently suggested as a promising safe alternative for oxygenating the tumor microenvironment. The relationship between organisms and the effect microalgae have on tumors is still largely unknown, evidencing the need for a simple yet representative model for studying photosynthetic tumor oxygenation in a reproducible manner. Here, we present a 3D photosynthetic tumor model composed of human melanoma cells and the microalgae Chlamydomonas reinhardtii, both seeded into a collagen scaffold, which allows for the simultaneous study of both cell types. This work focuses on the biocompatibility and cellular interactions of the two cell types, as well as the study of photosynthetic oxygenation of the tumor cells. It is shown that both cell types are biocompatible with one another at cell culture conditions and that a 10:1 ratio of microalgae to cells meets the metabolic requirement of the tumor cells, producing over twice the required amount of oxygen. This 3D tumor model provides an easy-to-use in vitro resource for analyzing the effects of photosynthetically produced oxygen on a tumor microenvironment, thus opening various potential research avenues.
Collapse
Affiliation(s)
- Christopher Holmes
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7821093, Chile
| | - Juan Varas
- Biomedical Research Center, School of Medicine, Universidad de Valparaiso, Viña del Mar 2520000, Chile
| | - Sebastián San Martín
- Biomedical Research Center, School of Medicine, Universidad de Valparaiso, Viña del Mar 2520000, Chile
| | - José Tomás Egaña
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7821093, Chile
| |
Collapse
|
15
|
Häder DP, Hemmersbach R. Euglena, a Gravitactic Flagellate of Multiple Usages. Life (Basel) 2022; 12:1522. [PMID: 36294957 PMCID: PMC9605500 DOI: 10.3390/life12101522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Human exploration of space and other celestial bodies bears a multitude of challenges. The Earth-bound supply of material and food is restricted, and in situ resource utilisation (ISRU) is a prerequisite. Excellent candidates for delivering several services are unicellular algae, such as the space-approved flagellate Euglena gracilis. This review summarizes the main characteristics of this unicellular organism. Euglena has been exposed on various platforms that alter the impact of gravity to analyse its corresponding gravity-dependent physiological and molecular genetic responses. The sensory transduction chain of gravitaxis in E. gracilis has been identified. The molecular gravi-(mechano-)receptors are mechanosensory calcium channels (TRP channels). The inward gated calcium binds specifically to one of several calmodulins (CaM.2), which, in turn, activates an adenylyl cyclase. This enzyme uses ATP to produce cAMP, which induces protein kinase A, followed by the phosphorylation of a motor protein in the flagellum, initiating a course correction, and, finally, resulting in gravitaxis. During long space missions, a considerable amount of food, oxygen, and water has to be carried, and the exhaled carbon dioxide has to be removed. In this context, E. gracilis is an excellent candidate for biological life support systems, since it produces oxygen by photosynthesis, takes up carbon dioxide, and is even edible. Various species and mutants of Euglena are utilized as a producer of commercial food items, as well as a source of medicines, as it produces a number of vitamins, contains numerous trace elements, and synthesizes dietary proteins, lipids, and the reserve molecule paramylon. Euglena has anti-inflammatory, -oxidant, and -obesity properties.
Collapse
Affiliation(s)
- Donat-P. Häder
- Department of Botany, Emeritus from Friedrich-Alexander University, 91096 Erlangen, Germany
| | - Ruth Hemmersbach
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Linder Hoehe, 51147 Cologne, Germany
| |
Collapse
|
16
|
Dani S, Windisch J, Valencia Guerrero XM, Bernhardt A, Gelinsky M, Krujatz F, Lode A. Selection of a suitable photosynthetically active microalgae strain for the co-cultivation with mammalian cells. Front Bioeng Biotechnol 2022; 10:994134. [PMID: 36199362 PMCID: PMC9528974 DOI: 10.3389/fbioe.2022.994134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Preventing hypoxic zones in 3D bioprinted mammalian cell-laden constructs using an internal oxygen supply could enable a more successful cultivation both in vitro and in vivo. In this study, the suitability of green microalgae as photosynthetic oxygen generators within bioprinted constructs was evaluated by defining and investigating important parameters for a successful co-culture. First, we assessed the impact of light–necessary for photosynthesis–on two non-light adapted mammalian cell types and defined red-light illumination and a temperature of 37°C as essential factors in a co-culture. The four thermotolerant microalgae strains Chlorella sorokiniana, Coelastrella oocystiformis, Coelastrella striolata, and Scenedesmus sp. were cultured both in suspension culture and 3D bioprinted constructs to assess viability and photosynthetic activity under these defined co-culture conditions. Scenedesmus sp. proved to be performing best under red light and 37°C as well as immobilized in a bioprinted hydrogel based on alginate. Moreover, the presence of the antibiotic ampicillin and the organic carbon-source glucose, both required for mammalian cell cultures, had no impact on bioprinted Scenedesmus sp. cultures regarding growth, viability, and photosynthetic activity. This study is the first to investigate the influence of mammalian cell requirements on the metabolism and photosynthetic ability of different microalgal strains. In a co-culture, the strain Scenedesmus sp. could provide a stable oxygenation that ensures the functionality of the mammalian cells.
Collapse
Affiliation(s)
- Sophie Dani
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Johannes Windisch
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute of Natural Materials Technology, Technische Universität Dresden, Dresden, Germany
| | - Xally Montserrat Valencia Guerrero
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute of Natural Materials Technology, Technische Universität Dresden, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Felix Krujatz
- Institute of Natural Materials Technology, Technische Universität Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Anja Lode,
| |
Collapse
|
17
|
Viability and Functionality of Neonatal Porcine Islet-like Cell Clusters Bioprinted in Alginate-Based Bioinks. Biomedicines 2022; 10:biomedicines10061420. [PMID: 35740440 PMCID: PMC9220255 DOI: 10.3390/biomedicines10061420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
The transplantation of pancreatic islets can prevent severe long-term complications in diabetes mellitus type 1 patients. With respect to a shortage of donor organs, the transplantation of xenogeneic islets is highly attractive. To avoid rejection, islets can be encapsulated in immuno-protective hydrogel-macrocapsules, whereby 3D bioprinted structures with macropores allow for a high surface-to-volume ratio and reduced diffusion distances. In the present study, we applied 3D bioprinting to encapsulate the potentially clinically applicable neonatal porcine islet-like cell clusters (NICC) in alginate-methylcellulose. The material was additionally supplemented with bovine serum albumin or the human blood plasma derivatives platelet lysate and fresh frozen plasma. NICC were analysed for viability, proliferation, the presence of hormones, and the release of insulin in reaction to glucose stimulation. Bioprinted NICC are homogeneously distributed, remain morphologically intact, and show a comparable viability and proliferation to control NICC. The number of insulin-positive cells is comparable between the groups and over time. The amount of insulin release increases over time and is released in response to glucose stimulation over 4 weeks. In summary, we show the successful bioprinting of NICC and could demonstrate functionality over the long-term in vitro. Supplementation resulted in a trend for higher viability, but no additional benefit on functionality was observed.
Collapse
|
18
|
Recent Advances in 3D Bioprinting: A Review of Cellulose-Based Biomaterials Ink. Polymers (Basel) 2022; 14:polym14112260. [PMID: 35683932 PMCID: PMC9183181 DOI: 10.3390/polym14112260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Cellulose-based biodegradable hydrogel proves to be excellently suitable for the medical and water treatment industry based on the expressed properties such as its flexible structure and broad compatibility. Moreover, their potential to provide excellent waste management from the unutilized plant has triggered further study on the advanced biomaterial applications. To extend the use of cellulose-based hydrogel, additive manufacturing is a suitable technique for hydrogel fabrication in complex designs. Cellulose-based biomaterial ink used in 3D bioprinting can be further used for tissue engineering, drug delivery, protein study, microalgae, bacteria, and cell immobilization. This review includes a discussion on the techniques available for additive manufacturing, bio-based material, and the formation of a cellulose-based hydrogel.
Collapse
|
19
|
Tuerxun K, He J, Ibrahim I, Yusupu Z, Yasheng A, Xu Q, Tang R, Aikebaier A, Wu Y, Tuerdi M, Nijiati M, Zou X, Xu T. Bioartificial livers: a review of their design and manufacture. Biofabrication 2022; 14. [PMID: 35545058 DOI: 10.1088/1758-5090/ac6e86] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
Acute liver failure (ALF) is a rapidly progressive disease with high morbidity and mortality rates. Liver transplantation and artificial liver support systems, such as artificial livers (ALs) and bioartificial livers (BALs), are the two major therapies for ALF. Compared to ALs, BALs are composed of functional hepatocytes that provide essential liver functions, including detoxification, metabolite synthesis, and biotransformation. Furthermore, BALs can potentially provide effective support as a form of bridging therapy to liver transplantation or spontaneous recovery for patients with ALF. In this review, we systematically discussed the currently available state-of-the-art designs and manufacturing processes for BAL support systems. Specifically, we classified the cell sources and bioreactors that are applied in BALs, highlighted the advanced technologies of hepatocyte culturing and bioreactor fabrication, and discussed the current challenges and future trends in developing next generation BALs for large scale clinical applications.
Collapse
Affiliation(s)
- Kahaer Tuerxun
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Jianyu He
- Department of Mechanical Engineering, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing, Beijing, 100084, CHINA
| | - Irxat Ibrahim
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Zainuer Yusupu
- Department of Ultrasound, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Abudoukeyimu Yasheng
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Qilin Xu
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Ronghua Tang
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Aizemaiti Aikebaier
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Yuanquan Wu
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Maimaitituerxun Tuerdi
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Mayidili Nijiati
- Medical imaging center, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Xiaoguang Zou
- Hospital Organ, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Tao Xu
- Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing, 100084, CHINA
| |
Collapse
|
20
|
Photosynthetic microorganisms for the oxygenation of advanced 3D bioprinted tissues. Acta Biomater 2022:S1742-7061(22)00278-1. [PMID: 35562006 DOI: 10.1016/j.actbio.2022.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
3D bioprinting technology has emerged as a tool that promises to revolutionize the biomedical field, including tissue engineering and regeneration. Despite major technological advancements, several challenges remain to be solved before 3D bioprinted tissues could be fully translated from the bench to the bedside. As oxygen plays a key role in aerobic metabolism, which allows energy production in the mitochondria; as a consequence, the lack of tissue oxygenation is one of the main limitations of current bioprinted tissues and organs. In order to improve tissue oxygenation, recent approaches have been established for a broad range of clinical applications, with some already applied using 3D bioprinting technologies. Among them, the incorporation of photosynthetic microorganisms, such as microalgae and cyanobacteria, is a promising approach that has been recently explored to generate chimerical plant-animal tissues where, upon light exposure, oxygen can be produced and released in a localized and controlled manner. This review will briefly summarize the state-of-the-art approaches to improve tissue oxygenation, as well as studies describing the use of photosynthetic microorganisms in 3D bioprinting technologies. STATEMENT OF SIGNIFICANCE: 3D bioprinting technology has emerged as a tool for the generation of viable and functional tissues for direct in vitro and in vivo applications, including disease modeling, drug discovery and regenerative medicine. Despite the latest advancements in this field, suboptimal oxygen delivery to cells before, during and after the bioprinting process limits their viability within 3D bioprinted tissues. This review article first highlights state-of-the-art approaches used to improve oxygen delivery in bioengineered tissues to overcome this challenge. Then, it focuses on the emerging roles played by photosynthetic organisms as novel biomaterials for bioink generation. Finally, it provides considerations around current challenges and novel potential opportunities for their use in bioinks, by comparing latest published studies using algae for 3D bioprinting.
Collapse
|
21
|
Dawiec-Liśniewska A, Podstawczyk D, Bastrzyk A, Czuba K, Pacyna-Iwanicka K, Okoro OV, Shavandi A. aNew trends in biotechnological applications of photosynthetic microorganisms. Biotechnol Adv 2022; 59:107988. [DOI: 10.1016/j.biotechadv.2022.107988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
|
22
|
Green Bioprinting with Layer-by-Layer Photo-Crosslinking: A Designed Experimental Investigation on Shape Fidelity and Cell Viability of Printed Constructs. JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING 2022. [DOI: 10.3390/jmmp6020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Process variables of bioprinting (including extrusion pressure, nozzle size, and bioink composition) can affect the shape fidelity and cell viability of printed constructs. Reported studies show that increasing extrusion pressure or decreasing nozzle size would decrease cell viability in printed constructs. However, a smaller nozzle size is often necessary for printing constructs of higher shape fidelity, and a higher extrusion pressure is usually needed to extrude bioink through nozzles with a smaller diameter. Because values of printing process variables that increase shape fidelity can be detrimental to cell viability, the optimum combination of variables regarding both shape fidelity and cell viability must be determined for specific bioink compositions. This paper reports a designed experimental investigation (full factorial design with three variables and two levels) on bioprinting by applying layer-by-layer photo-crosslinking and using the alginate-methylcellulose-GelMA bioink containing algae cells. The study investigates both the main effects and interaction effects of extrusion pressure, nozzle size, and bioink composition on the shape fidelity and cell viability of printed constructs. Results show that, as extrusion pressure changed from its low level to its high level, shape fidelity and cell viability decreased. As nozzle size changed from its low level to its high level, shape fidelity decreased while cell viability increased. As bioink composition changed from its low level (with more methylcellulose content in the bioink) to its high level (with less methylcellulose content in the bioink), shape fidelity and cell viability increased.
Collapse
|
23
|
Krujatz F, Dani S, Windisch J, Emmermacher J, Hahn F, Mosshammer M, Murthy S, Steingroewer J, Walther T, Kühl M, Gelinsky M, Lode A. Think outside the box: 3D bioprinting concepts for biotechnological applications – recent developments and future perspectives. Biotechnol Adv 2022; 58:107930. [DOI: 10.1016/j.biotechadv.2022.107930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
24
|
Wangpraseurt D, You S, Sun Y, Chen S. Biomimetic 3D living materials powered by microorganisms. Trends Biotechnol 2022; 40:843-857. [DOI: 10.1016/j.tibtech.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
|
25
|
He F, Ou Y, Liu J, Huang Q, Tang B, Xin F, Zhang J, Jiang M, Chen S, Yu Z. 3D Printed Biocatalytic Living Materials with Dual-Network Reinforced Bioinks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104820. [PMID: 34854551 DOI: 10.1002/smll.202104820] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/31/2021] [Indexed: 06/13/2023]
Abstract
The field of living materials seeks to harness living cells as microfactories that can construct a material itself or enhance the performance of material in some manner. While recent advances in 3D printing allow microbe manipulation to create bespoke living materials, the effective coupling of these living components in reinforced bioink designs remains a major challenge due to the difficulty in building a robust and cell-friendly microenvironment. Here, a type of dual-network bioink is reported for the 3D printing of living materials with enhanced biocatalysis capabilities, where bioinks are readily printable and provide a biocompatible environment along with desirable mechanical performance. It is demonstrated that integrating microbes into these bioinks enables the direct printing of catalytically living materials with high cell viability and maintains metabolic activity, which those living materials can be preserved and reused. Further, a bacteria-algae coculture system is fabricated for the bioremediation of chemicals, giving rise to its potential field applications.
Collapse
Affiliation(s)
- Fukun He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yangteng Ou
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Qiu Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Bao Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
26
|
Ito T, Endo S, Sugahara Y, Tamate R, Guégan R. Preparation of biocompatible hydrogels reinforced by different nanosheets. RSC Adv 2021; 12:753-761. [PMID: 35425126 PMCID: PMC8978654 DOI: 10.1039/d1ra07604c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
The impact of inorganic nanosheets with various chemical compositions and properties at different concentrations on the rheological properties and the gelation formation of a thermo-responsive hydrogel was investigated. F127 Pluronic triblock copolymers, with the structure (EO)99(PO)65(EO)99 (EO: ethylene oxide and PO propylene oxide respectively), functionalized by dimethacrylate (F127-DMA) at a concentration of 25% was used in this study. After careful characterization by complementary techniques: transmission electron microscopy (TEM), atomic force microscopy (AFM), and X-ray diffraction of nanosheets derived from the peeling of layered materials (montmorillonite, organoclays and hexaniobate), the nanosheets were seen to be suitably dispersed in the hydrogels. The inclusion of hydrophobic nanosheets (i.e. those treated with the grafting of surfactants onto their surface: organoclays and hexaniobate) leads to a depression of the gelation temperature while the nanocomposites exhibit an enhancement of their elastic properties, as determined by rheological measurements. In contrast, the inclusion of hydrophilic nanosheet derived from raw montmorillonite engenders an opposite trend. The whole nanocomposites whose gelation temperature can be tuned by both the nature and concentration of the nanosheets were successfully photopolymerized allowing the formation of a 3D structure containing a large content of water. The results obtained in this study open new perspectives for possible uses of hydrogel-based nanocomposites as embedding matrixes for bio-organisms.
Collapse
Affiliation(s)
- Taiga Ito
- Department of Applied Chemistry, Waseda University Tokyo Japan
| | - Saki Endo
- Department of Applied Chemistry, Waseda University Tokyo Japan
| | - Yoshiyuki Sugahara
- Department of Applied Chemistry, Waseda University Tokyo Japan.,Kagami Memorial Institute for Materials Science and Technology, Waseda University Tokyo Japan
| | - Ryota Tamate
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science Tsukuba Japan
| | - Régis Guégan
- Global Center for Science and Engineering, Waseda University Tokyo Japan
| |
Collapse
|
27
|
Martin N, Bernat T, Dinasquet J, Stofko A, Damon A, Deheyn DD, Azam F, Smith JE, Davey MP, Smith AG, Vignolini S, Wangpraseurt D. Synthetic algal-bacteria consortia for space-efficient microalgal growth in a simple hydrogel system. JOURNAL OF APPLIED PHYCOLOGY 2021; 33:2805-2815. [PMID: 39660099 PMCID: PMC7617206 DOI: 10.1007/s10811-021-02528-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2024]
Abstract
Photosynthetic microalgae are an attractive source of food, fuel, or nutraceuticals, but commercial production of microalgae is limited by low spatial efficiency. In the present study we developed a simple photosynthetic hydrogel system that cultivates the green microalga, Marinichlorella kaistiae KAS603, together with a novel strain of the bacteria, Erythrobacter sp. We tested the performance of the co-culture in the hydrogel using a combination of chlorophyll-a fluorimetry, microsensing, and bio-optical measurements. Our results showed that growth rates in algal-bacterial hydrogels were about threefold enhanced compared to hydrogels with algae alone. Chlorophyll-a fluorimetry-based light curves found that electron transport rates were enhanced about 20% for algal-bacterial hydrogels compared to algal hydrogels for intermediate irradiance levels. We also show that the living hydrogel is stable under different environmental conditions and when exposed to natural seawater. Our study provides a potential bio-inspired solution for problems that limit the space-efficient cultivation of microalgae for biotechnological applications.
Collapse
Affiliation(s)
- Noah Martin
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
| | - Tatum Bernat
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
| | - Julie Dinasquet
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
| | - Andrea Stofko
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
| | - April Damon
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
| | - Dimitri D. Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
| | - Farooq Azam
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
| | - Jennifer E. Smith
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
| | - Matthew P. Davey
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
- Scottish Association for Marine Science, Oban PA37 1QA, UK
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, UK
| | - Daniel Wangpraseurt
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, UK
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093-0205, USA
| |
Collapse
|
28
|
Miguel SP, Ribeiro MP, Otero A, Coutinho P. Application of microalgae and microalgal bioactive compounds in skin regeneration. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
What can biofabrication do for space and what can space do for biofabrication? Trends Biotechnol 2021; 40:398-411. [PMID: 34544616 DOI: 10.1016/j.tibtech.2021.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023]
Abstract
Biofabrication in space is one of the novel promising and prospective research directions in the rapidly emerging field of space STEM. There are several advantages of biofabrication in space. Under microgravity, it is possible to engineer constructs using more fluidic channels and thus more biocompatible bioinks. Microgravity enables biofabrication of tissue and organ constructs of more complex geometries, thus facilitating novel scaffold-, label-, and nozzle-free technologies based on multi-levitation principles. However, when exposed to microgravity and cosmic radiation, biofabricated tissues could be used to study pathophysiological phenomena that will be useful on Earth and for deep space manned missions. Here, we provide leading concepts about the potential mutual benefits of the application of biofabrication technologies in space.
Collapse
|
30
|
Varma A, Gemeda HB, McNulty MJ, McDonald KA, Nandi S, Knipe JM. Immobilization of transgenic plant cells towards bioprinting for production of a recombinant biodefense agent. Biotechnol J 2021; 16:e2100133. [PMID: 34347377 DOI: 10.1002/biot.202100133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/08/2022]
Abstract
Transgenic rice cells (Oryza sativa) producing recombinant butyrylcholinesterase (BChE) as a prophylactic/therapeutic against organophosphate nerve agent poisoning, cocaine toxicity, and neurodegenerative diseases like Alzheimer's were immobilized in a polyethylene glycol-based hydrogel. The cells were sustained for 14 days in the semi-solid matrix, undergoing a growth phase from days 0-6, a BChE production phase in sugar-free medium from days 6-12, and a growth/recovery phase from days 12-14. Throughout this period, the cells maintained similar viability to those in suspension cultures and displayed analogous sugar consumption trends. The rice cells in the hydrogel also produced a significant amount of active BChE, comparable to the levels produced in liquid cultures. A considerable fraction of this BChE was secreted into the media, allowing for easier product separation. To the best of our knowledge, this proof-of-concept is the first report of immobilization of recombinant plant cells for continuous production of high-value heterologous proteins. This work serves as a foundation for further investigation towards plant cell bioprinting and the development of a simple, efficient, robust, modular, and potentially field-deployable bioreactor system for the manufacture of biologics. GRAPHICAL ABSTRACT AND LAY SUMMARY: Transgenic rice cells were combined with a polyethylene glycol tetra-acrylate (PEGTA) and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) bioink and cured with UV light to construct an immobilized cell-based protein production system. The cells were maintained for 14 days in the hydrogel matrix and were induced to actively make and secrete recombinant butyrylcholinesterase, a complex enzyme that irreversibly binds to and can hydrolyze organophosphate. This proof-of-concept study showcases the use of immobilized and potentially bioprintable plant cells to produce high-value proteins with prophylactic and therapeutic applications.
Collapse
Affiliation(s)
- Anika Varma
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Hawi B Gemeda
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Matthew J McNulty
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, California, USA.,Global HealthShare Initiative, University of California, Davis, California, USA
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, California, USA.,Global HealthShare Initiative, University of California, Davis, California, USA
| | - Jennifer M Knipe
- Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
31
|
Recent advances in tissue engineering and anticancer modalities with photosynthetic microorganisms as potent oxygen generators. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
32
|
Yap JX, Leo CP, Mohd Yasin NH, Derek CJC. Sustainable cultivation of Navicula incerta using cellulose-based scaffold incorporated with nanoparticles in air-liquid interface cultivation system. CHEMOSPHERE 2021; 273:129657. [PMID: 33524750 DOI: 10.1016/j.chemosphere.2021.129657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Microalgae cultivation using open cultivation systems requires large area and it is susceptible to contamination as well as weather changes. Meanwhile, the closed systems require large capital investment, and they are susceptible to the build-up of dissolved oxygen. Air-liquid interface culture systems with low water-footprint, but high packing density can be used for microalgae cultivation if low-cost culture scaffolds are available. In this study, cellulose-based scaffolds were synthesized using NaOH/urea aqueous solution as the solvent. Titanium dioxide (TiO2), silica gel and polyethylene glycol 1000 (PEG 1000) nanoparticles were added into the membrane scaffolds to increase the hydrophilicity of nutrient absorbing to support the growth of microalgae. The membrane scaffolds were characterized by FTIR, SEM, contact angle, porosity and porometry. All three nanoparticles additives showed their ability in reducing the contact angle of membrane scaffolds from 63.4 ± 2.3° to a range of 52.6 ± 1.2° to 38.8 ± 1.5° due to the hydrophilic properties of the nanoparticles. The decreasing in pore size when nanoparticles were added did not affect the porosity of membrane scaffolds. Cellulose membrane scaffold with TiO2 showed the highest percentage of microalgae Navicula incerta growth rate of 22.1% because of the antibacterial properties of TiO2 in lowering the risk of cell contamination and enhancing the growth of N. incerta. The results exhibited that cellulose-based scaffold with TiO2 added could be an effective support in plant cell culture field.
Collapse
Affiliation(s)
- Jia Xin Yap
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, 14300, Malaysia
| | - C P Leo
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, 14300, Malaysia
| | - Nazlina Haiza Mohd Yasin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, 14300, Malaysia.
| |
Collapse
|
33
|
Immobilising Microalgae and Cyanobacteria as Biocomposites: New Opportunities to Intensify Algae Biotechnology and Bioprocessing. ENERGIES 2021. [DOI: 10.3390/en14092566] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There is a groundswell of interest in applying phototrophic microorganisms, specifically microalgae and cyanobacteria, for biotechnology and ecosystem service applications. However, there are inherent challenges associated with conventional routes to their deployment (using ponds, raceways and photobioreactors) which are synonymous with suspension cultivation techniques. Cultivation as biofilms partly ameliorates these issues; however, based on the principles of process intensification, by taking a step beyond biofilms and exploiting nature inspired artificial cell immobilisation, new opportunities become available, particularly for applications requiring extensive deployment periods (e.g., carbon capture and wastewater bioremediation). We explore the rationale for, and approaches to immobilised cultivation, in particular the application of latex-based polymer immobilisation as living biocomposites. We discuss how biocomposites can be optimised at the design stage based on mass transfer limitations. Finally, we predict that biocomposites will have a defining role in realising the deployment of metabolically engineered organisms for real world applications that may tip the balance of risk towards their environmental deployment.
Collapse
|
34
|
Abstract
3D-Bioprinting has seen a rapid expansion in the last few years, with an increasing number of reported bioinks. Alginate is a natural biopolymer that forms hydrogels by ionic cross-linking with calcium ions. Due to its biocompatibility and ease of gelation, it is an ideal ingredient for bioinks. This review focuses on recent advances on bioink formulations based on the combination of alginate with other polysaccharides. In particular, the molecular weight of the alginate and its loading level have an impact on the material's performance, as well as the loading of the divalent metal salt and its solubility, which affects the cross-linking of the gel. Alginate is often combined with other polysaccharides that can sigificantly modify the properties of the gel, and can optimise alginate for use in different biological applications. It is also possible to combine alginate with sacrificial polymers, which can temporarily reinforce the 3D printed construct, but then be removed at a later stage. Other additives can be formulated into the gels to enhance performance, including nanomaterials that tune rheological properties, peptides to encourage cell adhesion, or growth factors to direct stem cell differentiation. The ease of formulating multiple components into alginate gels gives them considerable potential for further development. In summary, this review will facilitate the identification of different alginate-polysaccharide bioink formulations and their optimal applications, and help inform the design of second generation bioinks, allowing this relatively simple gel system to achieve more sophisticated control over biological processes.
Collapse
Affiliation(s)
- Carmen C Piras
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - David K Smith
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| |
Collapse
|
35
|
Guduric V, Belton N, Richter RF, Bernhardt A, Spangenberg J, Wu C, Lode A, Gelinsky M. Tailorable Zinc-Substituted Mesoporous Bioactive Glass/Alginate-Methylcellulose Composite Bioinks. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1225. [PMID: 33807758 PMCID: PMC7961332 DOI: 10.3390/ma14051225] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
Bioactive glasses have been used for bone regeneration applications thanks to their excellent osteoconductivity, an osteostimulatory effect, and high degradation rate, releasing biologically active ions. Besides these properties, mesoporous bioactive glasses (MBG) are specific for their highly ordered mesoporous channel structure and high specific surface area, making them suitable for drug and growth factor delivery. In the present study, calcium (Ca) (15 mol%) in MBG was partially and fully substituted with zinc (Zn), known for its osteogenic and antimicrobial properties. Different MBG were synthesized, containing 0, 5, 10, or 15 mol% of Zn. Up to 7 wt.% of Zn-containing MBG could be mixed into an alginate-methylcellulose blend (algMC) while maintaining rheological properties suitable for 3D printing of scaffolds with sufficient shape fidelity. The suitability of these composites for bioprinting applications has been demonstrated with immortalized human mesenchymal stem cells. Uptake of Ca and phosphorus (P) (phosphate) ions by composite scaffolds was observed, while the released concentration of Zn2+ corresponded to the initial amount of this ion in prepared glasses, suggesting that it can be controlled at the MBG synthesis step. The study introduces a tailorable bioprintable material system suitable for bone tissue engineering applications.
Collapse
Affiliation(s)
- Vera Guduric
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (V.G.); (N.B.); (R.F.R.); (A.B.); (J.S.); (A.L.)
| | - Niall Belton
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (V.G.); (N.B.); (R.F.R.); (A.B.); (J.S.); (A.L.)
| | - Richard Frank Richter
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (V.G.); (N.B.); (R.F.R.); (A.B.); (J.S.); (A.L.)
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (V.G.); (N.B.); (R.F.R.); (A.B.); (J.S.); (A.L.)
| | - Janina Spangenberg
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (V.G.); (N.B.); (R.F.R.); (A.B.); (J.S.); (A.L.)
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, China;
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (V.G.); (N.B.); (R.F.R.); (A.B.); (J.S.); (A.L.)
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (V.G.); (N.B.); (R.F.R.); (A.B.); (J.S.); (A.L.)
| |
Collapse
|
36
|
Agarwal T, Kazemi S, Costantini M, Perfeito F, Correia CR, Gaspar V, Montazeri L, De Maria C, Mano JF, Vosough M, Makvandi P, Maiti TK. Oxygen releasing materials: Towards addressing the hypoxia-related issues in tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111896. [PMID: 33641899 DOI: 10.1016/j.msec.2021.111896] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Manufacturing macroscale cell-laden architectures is one of the biggest challenges faced nowadays in the domain of tissue engineering. Such living constructs, in fact, pose strict requirements for nutrients and oxygen supply that can hardly be addressed through simple diffusion in vitro or without a functional vasculature in vivo. In this context, in the last two decades, a substantial amount of work has been carried out to develop smart materials that could actively provide oxygen-release to contrast local hypoxia in large-size constructs. This review provides an overview of the currently available oxygen-releasing materials and their synthesis and mechanism of action, highlighting their capacities under in vitro tissue cultures and in vivo contexts. Additionally, we also showcase an emerging concept, herein termed as "living materials as releasing systems", which relies on the combination of biomaterials with photosynthetic microorganisms, namely algae, in an "unconventional" attempt to supply the damaged or re-growing tissue with the necessary supply of oxygen. We envision that future advances focusing on tissue microenvironment regulated oxygen-supplying materials would unlock an untapped potential for generating a repertoire of anatomic scale, living constructs with improved cell survival, guided differentiation, and tissue-specific biofunctionality.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Sara Kazemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marco Costantini
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Francisca Perfeito
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Clara R Correia
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Vítor Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Carmelo De Maria
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Pooyan Makvandi
- Center for MicroBioRobotics (CMBR), Istituto Italiano di Tecnologia, Pisa, Italy
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
37
|
Maharjan S, Alva J, Cámara C, Rubio AG, Hernández D, Delavaux C, Correa E, Romo MD, Bonilla D, Santiago ML, Li W, Cheng F, Ying G, Zhang YS. Symbiotic Photosynthetic Oxygenation within 3D-Bioprinted Vascularized Tissues. MATTER 2021; 4:217-240. [PMID: 33718864 PMCID: PMC7945990 DOI: 10.1016/j.matt.2020.10.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In this study, we present the photosynthetic oxygen (O2) supply to mammalian cells within a volumetric extracellular matrix-like construct, whereby a three-dimensional (3D)-bioprinted fugitive pattern encapsulating unicellular green algae, Chlamydomonas reinhardtii (C. reinhardtii), served as a natural photosynthetic O2-generator. The presence of bioprinted C. reinhardtii enhanced the viability and functionality of mammalian cells while reducing the hypoxic conditions within the tissues. We were able to subsequently endothelialize the hollow perfusable microchannels formed after enzymatic removal of the bioprinted C. reinhardtii-laden patterns from the matrices following the initial oxygenation period, to obtain biologically relevant vascularized mammalian tissue constructs. The feasibility of co-culture of C. reinhardtii with human cells, the printability and the enzymatic degradability of the fugitive bioink, as well as the exploration of C. reinhardtii as a natural, eco-friendly, cost-effective, and sustainable source of O2 would likely promote the development of engineered tissues, tissue models, and food for various applications.
Collapse
Affiliation(s)
- Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Jacqueline Alva
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Cassandra Cámara
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Andrés G. Rubio
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - David Hernández
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Clément Delavaux
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Erandy Correa
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Mariana D. Romo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Diana Bonilla
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Mille Luis Santiago
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Wanlu Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Feng Cheng
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Guoliang Ying
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
38
|
Biochemical characterization of Nostoc sp. exopolysaccharides and evaluation of potential use in wound healing. Carbohydr Polym 2020; 254:117303. [PMID: 33357870 DOI: 10.1016/j.carbpol.2020.117303] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 01/16/2023]
Abstract
Exopolysaccharides (EPS) produced by cyanobacteria are complex biomolecules of anionic nature with potential biomedical applications. In this study, the EPS produced by the Nostoc sp. strains PCC7936 and PCC7413 were characterized and evaluated as a biomaterial for new wound dressings. The addition of acetate ions to the culture medium slightly stimulated EPS production, achieving 1463.1 ± 16.0 mgL-1 (PCC7413) and 1372.1 ± 29.0 mgL-1 (PCC7936). Both EPS presented nine monosaccharide residues and a MW > 1000 kDa. The acetate addition changed the monosaccharide molar percentages. FTIR and DLS results confirmed the anionic nature and the presence of sulfate groups in both EPS, which are determinant features for biomedical applications. Both EPS at 1%(w/v) formed gels in the presence of 0.4%(w/v) FeCl3. Results obtained for MTT assay and wound healing in vitro scratch assay revealed hydrogels biocompatibility and ability to promote fibroblast migration and proliferation that was greater in PCC7936. The Nostoc EPS hydrogels presented promising properties to be applied in the treatment of skin injuries.
Collapse
|
39
|
Chávez MN, Moellhoff N, Schenck TL, Egaña JT, Nickelsen J. Photosymbiosis for Biomedical Applications. Front Bioeng Biotechnol 2020; 8:577204. [PMID: 33123516 PMCID: PMC7573207 DOI: 10.3389/fbioe.2020.577204] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Without the sustained provision of adequate levels of oxygen by the cardiovascular system, the tissues of higher animals are incapable of maintaining normal metabolic activity, and hence cannot survive. The consequence of this evolutionarily suboptimal design is that humans are dependent on cardiovascular perfusion, and therefore highly susceptible to alterations in its normal function. However, hope may be at hand. “Photosynthetic strategies,” based on the recognition that photosynthesis is the source of all oxygen, offer a revolutionary and promising solution to pathologies related to tissue hypoxia. These approaches, which have been under development over the past 20 years, seek to harness photosynthetic microorganisms as a local and controllable source of oxygen to circumvent the need for blood perfusion to sustain tissue survival. To date, their applications extend from the in vitro creation of artificial human tissues to the photosynthetic maintenance of oxygen-deprived organs both in vivo and ex vivo, while their potential use in other medical approaches has just begun to be explored. This review provides an overview of the state of the art of photosynthetic technologies and its innovative applications, as well as an expert assessment of the major challenges and how they can be addressed.
Collapse
Affiliation(s)
- Myra N Chávez
- Molecular Plant Science, Department Biology I, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicholas Moellhoff
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, Ludwig Maximilian Universität München, Munich, Germany
| | - Thilo L Schenck
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, Ludwig Maximilian Universität München, Munich, Germany
| | - José Tomás Egaña
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jörg Nickelsen
- Molecular Plant Science, Department Biology I, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
40
|
Zhou J, Barati B, Wu J, Scherer D, Karana E. Digital biofabrication to realize the potentials of plant roots for product design. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00088-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractTechnological and economic opportunities, alongside the apparent ecological benefits, point to biodesign as a new industrial paradigm for the fabrication of products in the twenty-first century. The presented work studies plant roots as a biodesign material in the fabrication of self-supported 3D structures, where the biologically and digitally designed materials provide each other with structural stability. Taking a material-driven design approach, we present our systematic tinkering activities with plant roots to better understand and anticipate their responsive behaviour. These helped us to identify the key design parameters and advance the unique potential of plant roots to bind discrete porous structures. We illustrate this binding potential of plant roots with a hybrid 3D object, for which plant roots connect 600 computationally designed, optimized, and fabricated bioplastic beads into a low stool.
Collapse
|
41
|
Correia Carreira S, Begum R, Perriman AW. 3D Bioprinting: The Emergence of Programmable Biodesign. Adv Healthc Mater 2020; 9:e1900554. [PMID: 31407502 DOI: 10.1002/adhm.201900554] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/04/2019] [Indexed: 11/10/2022]
Abstract
Until recently, bioprinting was largely limited to highly interdisciplinary research teams, as the process requires significant input from specialists in the fields of materials science, engineering, and cell biology. With the advent of commercially available high-performance bioprinters, the field has become accessible to a wider range of research groups, who can now buy the hardware off the shelf instead of having to build it from scratch. As a result, bioprinting has rapidly expanded to address a wide array of research foci, which include organotypic in vitro models, complex engineered tissues, and even bioprinted microbial systems. Moreover, in the early days, the range of suitable bioinks was limited. Now, there is a plethora of viable options to suit many cell phenotypes. This rapidly evolving dynamic environment creates endless opportunities for scientists to design and construct highly complex biological systems. However, this scientific diversity presents its own set of challenges, such as defining standardized protocols for characterizing bioprinted structures, which is essential for eventual organ replacement. In this progress report, the current state-of-the-art in the field of bioprinting is discussed, with a special emphasis on recent hardware developments, bioprinting for regenerative medicine, and late-breaking nontraditional topics.
Collapse
Affiliation(s)
- Sara Correia Carreira
- School of Cellular and Molecular MedicineUniversity of Bristol University Walk Bristol BS8 1TD UK
| | - Runa Begum
- School of Cellular and Molecular MedicineUniversity of Bristol University Walk Bristol BS8 1TD UK
| | - Adam W. Perriman
- School of Cellular and Molecular MedicineUniversity of Bristol University Walk Bristol BS8 1TD UK
| |
Collapse
|
42
|
Hedegaard CL, Mata A. Integrating self-assembly and biofabrication for the development of structures with enhanced complexity and hierarchical control. Biofabrication 2020; 12:032002. [DOI: 10.1088/1758-5090/ab84cb] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Wangpraseurt D, You S, Azam F, Jacucci G, Gaidarenko O, Hildebrand M, Kühl M, Smith AG, Davey MP, Smith A, Deheyn DD, Chen S, Vignolini S. Bionic 3D printed corals. Nat Commun 2020; 11:1748. [PMID: 32273516 PMCID: PMC7145811 DOI: 10.1038/s41467-020-15486-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
Abstract
Corals have evolved as optimized photon augmentation systems, leading to space-efficient microalgal growth and outstanding photosynthetic quantum efficiencies. Light attenuation due to algal self-shading is a key limiting factor for the upscaling of microalgal cultivation. Coral-inspired light management systems could overcome this limitation and facilitate scalable bioenergy and bioproduct generation. Here, we develop 3D printed bionic corals capable of growing microalgae with high spatial cell densities of up to 109 cells mL−1. The hybrid photosynthetic biomaterials are produced with a 3D bioprinting platform which mimics morphological features of living coral tissue and the underlying skeleton with micron resolution, including their optical and mechanical properties. The programmable synthetic microenvironment thus allows for replicating both structural and functional traits of the coral-algal symbiosis. Our work defines a class of bionic materials that is capable of interacting with living organisms and can be exploited for applied coral reef research and photobioreactor design. Corals have evolved as finely tuned light collectors. Here, the authors report on the 3D printing of coral-inspired biomaterials, that mimic the coral-algal symbiosis; these bionic corals lead to dense microalgal growth and can find applications in algal biotechnology and applied coral science.
Collapse
Affiliation(s)
- Daniel Wangpraseurt
- Bioinspired Photonics Group, Department of Chemistry, University of Cambridge, Cambridge, UK. .,Scripps Institution of Oceanography, University of California San Diego, San Diego, USA. .,Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Shangting You
- Department of Nanoengineering, University of California San Diego, San Diego, CA, USA
| | - Farooq Azam
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Gianni Jacucci
- Bioinspired Photonics Group, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Olga Gaidarenko
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Mark Hildebrand
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Matthew P Davey
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Alyssa Smith
- Bioinspired Photonics Group, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Dimitri D Deheyn
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Shaochen Chen
- Department of Nanoengineering, University of California San Diego, San Diego, CA, USA.
| | - Silvia Vignolini
- Bioinspired Photonics Group, Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
44
|
Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda J. From Shape to Function: The Next Step in Bioprinting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906423. [PMID: 32045053 PMCID: PMC7116209 DOI: 10.1002/adma.201906423] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Indexed: 05/04/2023]
Abstract
In 2013, the "biofabrication window" was introduced to reflect the processing challenge for the fields of biofabrication and bioprinting. At that time, the lack of printable materials that could serve as cell-laden bioinks, as well as the limitations of printing and assembly methods, presented a major constraint. However, recent developments have now resulted in the availability of a plethora of bioinks, new printing approaches, and the technological advancement of established techniques. Nevertheless, it remains largely unknown which materials and technical parameters are essential for the fabrication of intrinsically hierarchical cell-material constructs that truly mimic biologically functional tissue. In order to achieve this, it is urged that the field now shift its focus from materials and technologies toward the biological development of the resulting constructs. Therefore, herein, the recent material and technological advances since the introduction of the biofabrication window are briefly summarized, i.e., approaches how to generate shape, to then focus the discussion on how to acquire the biological function within this context. In particular, a vision of how biological function can evolve from the possibility to determine shape is outlined.
Collapse
Affiliation(s)
- Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Ruben G Scheuring
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Juergen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
45
|
Yoshitomi T, Kaminaga S, Sato N, Toyoshima M, Moriyama T, Yoshimoto K. Formation of Spherical Palmelloid Colony with Enhanced Lipid Accumulation by Gel Encapsulation of Chlamydomonas debaryana NIES-2212. PLANT & CELL PHYSIOLOGY 2020; 61:158-168. [PMID: 31589321 DOI: 10.1093/pcp/pcz188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Microalgae such as Chlamydomonas reinhardtii accumulate triacylglycerol (TAG), which is a potential source of biofuels, under stress conditions such as nitrogen deprivation, whereas Chlamydomonas debaryana NIES-2212 has previously been identified and characterized as one of the rare species of Chlamydomonas, which massively accumulates TAG in the stationary phase without external stress. As the high density of the cells in the stationary phase was supposed to act as a trigger for the accumulation of TAG in C. debaryana, in this study, C. debaryana was encapsulated in a Ca2+-alginate gel for the culture with high cell density. We discovered that the growth of the encapsulated cells resulted in the formation of spherical palmelloid colonies with high cell density, where daughter cells with truncated flagella remained wrapped within the mother cell walls. Interestingly, gel encapsulation markedly promoted proliferation of C. debaryana cells, and the encapsulated cells reached the stationary phase earlier than that of the free-living cells. Gel encapsulation also enhanced TAG accumulation. Gene expression analysis revealed that two genes of acyltransferases, DGAT1 and DGTT3, were upregulated in the stationary phase of free-living C. debaryana. In addition, the gene expression of these acyltransferases increased earlier in the encapsulated cells than that in the free-living cells. The enhanced production of TAG by alginate gel encapsulation was not found in C. reinhardtii which is known to use a different repertoire of acyltransferases in lipid accumulation.
Collapse
Affiliation(s)
- Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Saeko Kaminaga
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Masakazu Toyoshima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Takashi Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| |
Collapse
|
46
|
Mehrotra S, Kumar S, Srivastava V, Mishra T, Mishra BN. 3D Bioprinting in Plant Science: An Interdisciplinary Approach. TRENDS IN PLANT SCIENCE 2020; 25:9-13. [PMID: 31813708 DOI: 10.1016/j.tplants.2019.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Here we highlight advances and opportunities for using 3D bioprinting in plant biology research that could lead to low-cost solutions for biomedical and other applications. For example, the development of plant cell-based and plant-inspired 3D-printed constructs could provide information about single-cell, tissue, and whole-plant interactions with the surrounding environment.
Collapse
Affiliation(s)
- Shakti Mehrotra
- Department of Biotechnology, Institute of Engineering and Technology, Dr A.P.J. Abdul Kalam Technical University, Sitapur Road, Lucknow, Uttar Pradesh 226021, India
| | - Smita Kumar
- Department of Biotechnology, Institute of Engineering and Technology, Dr A.P.J. Abdul Kalam Technical University, Sitapur Road, Lucknow, Uttar Pradesh 226021, India
| | - Vikas Srivastava
- Department of Botany, Central University of Jammu, Rahya Suchani, Samba District, Jammu and Kashmir 181143, India
| | - Taijshee Mishra
- Center for Policy Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr A.P.J. Abdul Kalam Technical University, Sitapur Road, Lucknow, Uttar Pradesh 226021, India.
| |
Collapse
|
47
|
Ahlfeld T, Guduric V, Duin S, Akkineni AR, Schütz K, Kilian D, Emmermacher J, Cubo-Mateo N, Dani S, Witzleben MV, Spangenberg J, Abdelgaber R, Richter RF, Lode A, Gelinsky M. Methylcellulose – a versatile printing material that enables biofabrication of tissue equivalents with high shape fidelity. Biomater Sci 2020; 8:2102-2110. [DOI: 10.1039/d0bm00027b] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This minireview highlights the use of the polysaccharide methylcellulose for biofabrication applications. Its properties are useful for printing of dissolvable support structures as well as the development of novel bioinks.
Collapse
|
48
|
Malik S, Hagopian J, Mohite S, Lintong C, Stoffels L, Giannakopoulos S, Beckett R, Leung C, Ruiz J, Cruz M, Parker B. Robotic Extrusion of Algae-Laden Hydrogels for Large-Scale Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2020; 4:1900064. [PMID: 31956429 PMCID: PMC6957016 DOI: 10.1002/gch2.201900064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/07/2019] [Indexed: 05/14/2023]
Abstract
A bioprinting technique for large-scale, custom-printed immobilization of microalgae is developed for potential applications within architecture and the built environment. Alginate-based hydrogels with various rheology modifying polymers and varying water percentages are characterized to establish a window of operation suitable for layer-by-layer deposition on a large scale. Hydrogels formulated with methylcellulose and carrageenan, with water percentages ranging from 80% to 92.5%, demonstrate a dominant viscoelastic solid-like property with G' > G″ and a low phase angle, making them the most suitable for extrusion-based printing. A custom multimaterial pneumatic extrusion system is developed to be attached on the end effector of an industrial multiaxis robot arm, allowing precision-based numerically controlled layered deposition of the viscous hydrogel. The relationship between the various printing parameters, namely air pressure, material viscosity, viscoelasticity, feed rate, printing distance, nozzle diameter, and the speed of printing, are characterized to achieve the desired resolution of the component. Printed prototypes are postcured in CaCl2 via crosslinking. Biocompatibility tests show that cells can survive for 21 days after printing the constructs. To demonstrate the methodology for scale-up, a 1000 × 500 mm fibrous hydrogel panel is additively deposited with 3 different hydrogels with varying water percentages.
Collapse
Affiliation(s)
- Shneel Malik
- Bartlett School of ArchitectureUniversity College LondonLondonWC1E 6BTUK
| | - Julie Hagopian
- Bartlett School of ArchitectureUniversity College LondonLondonWC1E 6BTUK
| | - Sanika Mohite
- Bartlett School of ArchitectureUniversity College LondonLondonWC1E 6BTUK
| | - Cao Lintong
- Department of Biochemical EngineeringBernard Katz BuildingUniversity College LondonLondonWC1H 0AHUK
| | - Laura Stoffels
- Institute of Structural and Molecular BiologyUniversity College LondonLondonWC1E 6BTUK
| | | | - Richard Beckett
- Bartlett School of ArchitectureUniversity College LondonLondonWC1E 6BTUK
| | - Christopher Leung
- Bartlett School of ArchitectureUniversity College LondonLondonWC1E 6BTUK
| | - Javier Ruiz
- Bartlett School of ArchitectureUniversity College LondonLondonWC1E 6BTUK
| | - Marcos Cruz
- Bartlett School of ArchitectureUniversity College LondonLondonWC1E 6BTUK
| | - Brenda Parker
- Department of Biochemical EngineeringBernard Katz BuildingUniversity College LondonLondonWC1H 0AHUK
| |
Collapse
|
49
|
Vancauwenberghe V, Baiye Mfortaw Mbong V, Vanstreels E, Verboven P, Lammertyn J, Nicolai B. 3D printing of plant tissue for innovative food manufacturing: Encapsulation of alive plant cells into pectin based bio-ink. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2017.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
50
|
Zhao S, Guo C, Kumarasena A, Omenetto FG, Kaplan DL. 3D Printing of Functional Microalgal Silk Structures for Environmental Applications. ACS Biomater Sci Eng 2019; 5:4808-4816. [PMID: 33448823 DOI: 10.1021/acsbiomaterials.9b00554] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Silk protein-based hydrogel materials suitable for hosting living microalgae due to the biocompatibility and ambient conditions gelation were developed. The silk was selected due to its robust mechanical properties, safe and compatible utility, green sourcing, and versatile materials formation. Through a series of assessments the mechanics and gelation kinetics of the hydrogel materials were optimized for three-dimensional (3D) printing. Silk hydrogel structures containing a marine microalgal strain, Platymonas sp. were printed and these structures supported cell proliferation for at least 4 weeks and consistent photosynthetic activity for more than 90 days, the limits of the study time frame. This long-term cell viability and function suggest that these systems may be suitable for a broad range of applications, such as oxygen replenishment and carbon dioxide reduction toward a green, healthier indoor environment.
Collapse
Affiliation(s)
- Siwei Zhao
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Allison Kumarasena
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Silklab, Department of Biomedical Engineering, Tufts University, 200 Boston Avenue, Suite 4875, Medford, Massachusetts 02155, United States
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Department of Physics, Tufts University, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|