1
|
Liddicoat C, Edwards RA, Roach M, Robinson JM, Wallace KJ, Barnes AD, Brame J, Heintz-Buschart A, Cavagnaro TR, Dinsdale EA, Doane MP, Eisenhauer N, Mitchell G, Rai B, Ramesh SA, Breed MF. Bioenergetic mapping of 'healthy microbiomes' via compound processing potential imprinted in gut and soil metagenomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173543. [PMID: 38821286 DOI: 10.1016/j.scitotenv.2024.173543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Despite mounting evidence of their importance in human health and ecosystem functioning, the definition and measurement of 'healthy microbiomes' remain unclear. More advanced knowledge exists on health associations for compounds used or produced by microbes. Environmental microbiome exposures (especially via soils) also help shape, and may supplement, the functional capacity of human microbiomes. Given the synchronous interaction between microbes, their feedstocks, and micro-environments, with functional genes facilitating chemical transformations, our objective was to examine microbiomes in terms of their capacity to process compounds relevant to human health. Here we integrate functional genomics and biochemistry frameworks to derive new quantitative measures of in silico potential for human gut and environmental soil metagenomes to process a panel of major compound classes (e.g., lipids, carbohydrates) and selected biomolecules (e.g., vitamins, short-chain fatty acids) linked to human health. Metagenome functional potential profile data were translated into a universal compound mapping 'landscape' based on bioenergetic van Krevelen mapping of function-level meta-compounds and corresponding functional relative abundances, reflecting imprinted genetic capacity of microbiomes to metabolize an array of different compounds. We show that measures of 'compound processing potential' associated with human health and disease (examining atherosclerotic cardiovascular disease, colorectal cancer, type 2 diabetes and anxious-depressive behavior case studies), and displayed seemingly predictable shifts along gradients of ecological disturbance in plant-soil ecosystems (three case studies). Ecosystem quality explained 60-92 % of variation in soil metagenome compound processing potential measures in a post-mining restoration case study dataset. With growing knowledge of the varying proficiency of environmental microbiota to process human health associated compounds, we might design environmental interventions or nature prescriptions to modulate our exposures, thereby advancing microbiota-oriented approaches to human health. Compound processing potential offers a simplified, integrative approach for applying metagenomics in ongoing efforts to understand and quantify the role of microbiota in environmental- and human-health.
Collapse
Affiliation(s)
- Craig Liddicoat
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia.
| | - Robert A Edwards
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Michael Roach
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Jake M Robinson
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Kiri Joy Wallace
- Environmental Research Institute, University of Waikato, Hamilton, Aotearoa, New Zealand
| | - Andrew D Barnes
- Environmental Research Institute, University of Waikato, Hamilton, Aotearoa, New Zealand
| | - Joel Brame
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Anna Heintz-Buschart
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Timothy R Cavagnaro
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Elizabeth A Dinsdale
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Michael P Doane
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), 04103 Leipzig, Germany; Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Grace Mitchell
- Environmental Research Institute, University of Waikato, Hamilton, Aotearoa, New Zealand; Manaaki Whenua - Landcare Research, Hamilton, Aotearoa, New Zealand
| | - Bibishan Rai
- Environmental Research Institute, University of Waikato, Hamilton, Aotearoa, New Zealand
| | - Sunita A Ramesh
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
2
|
Markt R, Prem EM, Lackner N, Mutschlechner M, Illmer P, Wagner AO. Pre-treatment with Trichoderma viride: Towards a better understanding of its consequences for anaerobic digestion. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13281. [PMID: 38940659 PMCID: PMC11212294 DOI: 10.1111/1758-2229.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/30/2024] [Indexed: 06/29/2024]
Abstract
Understanding and optimising biological pre-treatment strategies for enhanced bio-methane production is a central aspect in second-generation biofuel research. In this regard, the application of fungi for pre-treatment seems highly promising; however, understanding the mode of action is crucial. Here, we show how aerobic pre-treatment of crystalline cellulose with the cellulolytic Trichoderma viride affects substrate degradability during mesophilic, anaerobic digestion. It could be demonstrated that fungal pre-treatment resulted in a slightly reduced substrate mass. Nevertheless, no significant impact on the overall methane yield was found during batch fermentation. Short chain organic acids accumulation, thus, overall degradation dynamics including methane production kinetics were affected by the pre-treatment as shown by Gompertz modelling. Finally, 16S rRNA amplicon sequencing followed by ANCOM-BC resulted in up to 53 operative taxonomic units including fermentative, syntrophic and methanogenic taxa, whereby their relative abundances were significantly affected by fungal pre-treatment depending on the duration of the pre-treatment. The results demonstrated the impact of soft rot fungal pre-treatment of cellulose on subsequent anaerobic cellulose hydrolysis as well as on methanogenic activity. To the best of our knowledge, this is the first study to investigate the direct causal effects of pre-treatment with T. viride on basic but crucial anaerobic digestion parameters in a highly standardised approach.
Collapse
Affiliation(s)
- Rudolf Markt
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | - Eva Maria Prem
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | - Nina Lackner
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | | | - Paul Illmer
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | | |
Collapse
|
3
|
Margreiter C, Probst M, Prem EM, Hofmann A, Wagner AO. Gasification chars and activated carbon: Systematic physico-chemical characterization and effect on biogas production. Heliyon 2024; 10:e31264. [PMID: 38803868 PMCID: PMC11128995 DOI: 10.1016/j.heliyon.2024.e31264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Gasification residues/chars (GR) and activated carbon (AC) are added to wastewater treatment processes mainly as a fourth purification stage, e.g., to adsorb heavy metals or pharmaceutical residues. However, the effects of GR or AC, which are transferred to the anaerobic digestion (AD) via the sludge, are not yet fully understood. Although, the positive effect of char addition on AD has been demonstrated in several investigations, systematic studies with chemically well described chars are still missing. Therefore, in this study, different chars were characterized in detail, subjected to AD in different concentrations, and their effect on methane production investigated. GR of a gasification plant with a floating fixed bed technology, carbon made by chemical impregnation with ZnCl2 from waste-wood, carbon produced by thermochemical activation with CO2 from GR and commercial powdered AC were used for the experiments. Among others, thermogravimetric analysis, physisorption, pH, and conductivity analysis were used to characterize the chars. Mesophilic AD batch tests with different concentrations (0.025, 0.05, 0.5, 1.0, 7.0, 14.0 gL-1) of all chars (GR and ACs, respectively) were performed with digester sludge from a wastewater treatment plant for a period of 47 d. Volatile fatty acids (VFA) as well as biogas production and CH4 concentrations were monitored. It could be shown, that concentrations below 1.0 g char L-1 did not result in significant effects on CH4 and/or VFA production, whereas high concentrations of GR and AC influenced both, the CH4 yield and kinetics. Depending on the production process and the characteristics of the chars, the effect on AD varied, whereby both, positive and negative effects on biogas yield and methane production were observed. This study provides the first systematic evaluation of char application to AD processes, and therefore allows for better predictions of char applicability and effect.
Collapse
Affiliation(s)
- Christian Margreiter
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, A-6020, Innsbruck, Austria
- Josef Ressel Center for the Production of Activated Carbon from Municipal Residues, MCI Innsbruck, Maximilianstraße 2, A-6020, Innsbruck, Austria
| | - Maraike Probst
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, A-6020, Innsbruck, Austria
| | - Eva Maria Prem
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, A-6020, Innsbruck, Austria
| | - Angela Hofmann
- Josef Ressel Center for the Production of Activated Carbon from Municipal Residues, MCI Innsbruck, Maximilianstraße 2, A-6020, Innsbruck, Austria
| | - Andreas Otto Wagner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, A-6020, Innsbruck, Austria
| |
Collapse
|
4
|
Prem EM, Markt R, Wunderer M, Wagner AO. Meso- and thermophilic posttreatment of press water coming from a thermophilic municipal solid waste digester. Biotechnol Bioeng 2024; 121:266-280. [PMID: 37902646 PMCID: PMC10953027 DOI: 10.1002/bit.28577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
An efficient biogas production out of organic (waste) materials is important to contribute to a carbon-neutral future. In this study, thermophilic press water (PW) coming from an organic fraction of the municipal solid waste digester was further digested in a thermo- and mesophilic posttreatment approach using two semicontinuous 14 L digesters. The results showed that the PW can still have considerable high biogas potential-at least during the touristic high season in central Europe. The change in temperature led to an increase in volatile fatty acid concentrations and a decrease in biogas production in the mesophilic approach in the first days. However, the losses in biogas production at the beginning could be compensated thus there were no considerable differences in biogas production between thermo- and mesophilic posttreatment at the end of incubation. This can most probably be contributed to a change in the microbial community, and potentially problematic intermediates like valerate could be better degraded in the mesophilic reactor. Especially the abundance of representatives of the phylum Bacteroidota, like Fermentimonas spp., increased during mesophilic anaerobic digestion.
Collapse
Affiliation(s)
- Eva Maria Prem
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | - Rudolf Markt
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | | | | |
Collapse
|
5
|
Prem EM, Schwarzenberger A, Markt R, Wagner AO. Effects of phenyl acids on different degradation phases during thermophilic anaerobic digestion. Front Microbiol 2023; 14:1087043. [PMID: 37089573 PMCID: PMC10113666 DOI: 10.3389/fmicb.2023.1087043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Aromatic compounds like phenyl acids (PA) can accumulate during anaerobic digestion (AD) of organic wastes due to an increased entry of lignocellulose, secondary plant metabolites or proteins, and thermodynamic challenges in degrading the benzene ring. The effects of aromatic compounds can be various - from being highly toxic to be stimulating for methanogenesis - depending on many parameters like inoculum or molecular characteristics of the aromatic compound. To contribute to a better understanding of the consequences of PA exposure during AD, the aim was to evaluate the effects of 10 mM PA on microbial communities degrading different, degradation phase-specific substrates in thermophilic batch reactors within 28 days: Microcrystalline cellulose (MCC, promoting hydrolytic to methanogenic microorganisms), butyrate or propionate (promoting syntrophic volatile fatty acid (VFA) oxidisers to methanogens), or acetate (promoting syntrophic acetate oxidisers to methanogens). Methane production, VFA concentrations and pH were evaluated, and microbial communities and extracellular polymeric substances (EPS) were assessed. The toxicity of PA depended on the type of substrate which in turn determined the (i) microbial diversity and composition and (ii) EPS quantity and quality. Compared with the respective controls, methane production in MCC reactors was less impaired by PA than in butyrate, propionate and acetate reactors which showed reductions in methane production of up to 93%. In contrast to the controls, acetate concentrations were high in all PA reactors at the end of incubation thus acetate was a bottle-neck intermediate in those reactors. Considerable differences in EPS quantity and quality could be found among substrates but not among PA variants of each substrate. Methanosarcina spp. was the dominant methanogen in VFA reactors without PA exposure and was inhibited when PA were present. VFA oxidisers and Methanothermobacter spp. were abundant in VFA assays with PA exposure as well as in all MCC reactors. As MCC assays showed higher methane yields, a higher microbial diversity and a higher EPS quantity and quality than VFA reactors when exposed to PA, we conclude that EPS in MCC reactors might have been beneficial for absorbing/neutralising phenyl acids and keeping (more susceptible) microorganisms shielded in granules or biofilms.
Collapse
Affiliation(s)
- Eva Maria Prem
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
6
|
Transcriptome profiling of Paraburkholderia aromaticivorans AR20-38 during ferulic acid bioconversion. AMB Express 2022; 12:148. [DOI: 10.1186/s13568-022-01487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractThe importance and need of renewable-based, sustainable feedstocks increased in recent years. Lignin-derived monomers have high potential, energetic and economic value in the microbial bioconversion to valuable biomolecules. The bacterium Paraburkholderia aromaticivorans AR20-38 produces a remarkable yield of vanillic acid from ferulic acid at moderate and low temperatures and is therefore a good candidate for biotechnological applications. To understand this bioconversion process on a molecular level, a transcriptomic study during the bioconversion process was conducted to elucidate gene expression patterns. Differentially expressed genes, cellular transporters as well as transcriptional factors involved in the bioconversion process could be described. Additional enzymes known for xenobiotic degradation were differentially expressed and a potential membrane vesicle mechanism was detected. The bioconversion mechanism on a transcriptional level of P. aromaticivorans could be elucidated and results can be used for strain optimization. Additionally, the transcriptome study showed the high potential of the strain for other degradation applications.
Collapse
|
7
|
Stability of the Anaerobic Digestion Process during Switch from Parallel to Serial Operation—A Microbiome Study. SUSTAINABILITY 2022. [DOI: 10.3390/su14127161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anaerobic digestion is a common procedure of treating sewage sludge at wastewater treatment plants. However, plants differ in terms of the number of reactors and, in case of several reactors, their operation mode. To confirm the flexibility of well adapted, full-scale anaerobic digestion plants, we monitored the physicochemical process conditions of two continuously stirred tank reactors over one hydraulic retention time before and after the operation mode was switched from parallel to serial operation. To investigate changes in the involved microbiota, we applied Illumina amplicon sequencing. The rapid change between operation modes did not affect the process performance. In both parallel and serial operation mode, we detected a highly diverse microbial community, in which Bacteroidetes, Firmicutes, Proteobacteria and Claocimonetes were high in relative abundance. While a prominent core microbiome was maintained in both configurations, changes in the involved microbiota were evident at a lower taxonomical level comparing both reactors and operation modes. The most prominent methanogenic Euryarchaeota detected were Methanosaeta and cand. Methanofastidiosum. Volatile fatty acids were degraded immediately in both reactors, suggesting that the second reactor could be used to produce methane on demand, by inserting easily degradable substrates.
Collapse
|
8
|
Improving the specificity of E. coli acetate/propionate exclusion biosensors via iterative engineering. Enzyme Microb Technol 2022; 160:110091. [DOI: 10.1016/j.enzmictec.2022.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022]
|
9
|
Margesin R, Ludwikowski TM, Kutzner A, Wagner AO. Low-Temperature Biodegradation of Lignin-Derived Aromatic Model Monomers by the Cold-Adapted Yeast Rhodosporidiobolus colostri Isolated from Alpine Forest Soil. Microorganisms 2022; 10:microorganisms10030515. [PMID: 35336090 PMCID: PMC8955795 DOI: 10.3390/microorganisms10030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/12/2023] Open
Abstract
The contribution of cold-adapted yeasts to the emerging field of lignin biovalorization has not yet been studied. The red-pigmented basidiomycetous yeast strain Rhodosporidiobolus colostri DBVPG 10655 was examined for its potential to degrade five selected lignin-derived aromatic monomers (syringic acid, p-coumaric acid, 4-hydroxybenzoic acid, ferulic acid, and vanillic acid). The strain utilized p-coumaric acid, 4-hydroxybenzoic acid, and ferulic acid not only as the sole carbon source; full biodegradation occurred also in mixtures of multiple monomers. Vanillic acid was not utilized as the sole carbon source, but was degraded in the presence of p-coumaric acid, 4-hydroxybenzoic acid, and ferulic acid. Syringic acid was utilized neither as the sole carbon source nor in mixtures of compounds. Biodegradation of lignin-derived aromatic monomers was detected over a broad temperature range (1–25 °C), which is of ecological significance and of biotechnological relevance.
Collapse
|
10
|
Wunderer M, Markt R, Lackner N, Wagner AO. The glutamyl tail length of the cofactor F 420 in the methanogenic Archaea Methanosarcina thermophila and Methanoculleus thermophilus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151112. [PMID: 34688753 DOI: 10.1016/j.scitotenv.2021.151112] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The cofactor F420 is synthesized by many different organisms and as a redox cofactor, it plays a crucial role in the redox reactions of catabolic and biosynthetic metabolic pathways. It consists of a deazaflavin structure, which is linked via lactate to an oligoglutamate chain, that can vary in length. In the present study, the methanogenic Archaea Methanosarcina thermophila and Methanoculleus thermophilus were cultivated on different carbon sources and their coenzyme F420 composition has been assayed by reversed-phase ion-pair high-performance liquid chromatography with fluorometric detection regarding both, overall cofactor F420 production and distribution of F420 glutamyl tail length. In Methanosarcina thermophila cultivated on methanol, acetate, and a mixture of acetate and methanol, the most abundant cofactors were F420-5 and F420-4, whereby the last digit refers to the number of expressed glutamyl rests. By contrast, in the obligate CO2 reducing Methanoculleus thermophilus the most abundant cofactors were F420-3 and F420-4. In Methanosarcina thermophila, the relative proportions of the expressed F420 tail length changed during batch growth on all three carbon sources. Over time F420-3 and F420-4 decreased while F420-5 and F420-6 increased in their relative proportion in comparison to total F420 content. In contrast, in Methanoculleus thermophilus the relative abundance of the different F420 cofactors remained stable. It was also possible to differentiate the two methanogenic Archaea based on the glutamyl tail length of the cofactor F420. The cofactor F420-5 in concentrations >2% could only be assigned to Methanosarcina thermophila. In all four variants a trend for a positive correlation between the DNA concentration and the total concentration of the cofactor could be shown. Except for the variant Methanosarcinathermophila with acetate as sole carbon source the same could be shown between the concentration of the mcrA gene copy number and the total concentration of the cofactor.
Collapse
Affiliation(s)
- Mathias Wunderer
- Universität Innsbruck, Department of Microbiology, Technikerstraße 25d, 6020 Innsbruck, Austria.
| | - Rudolf Markt
- Universität Innsbruck, Department of Microbiology, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Nina Lackner
- Universität Innsbruck, Department of Microbiology, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Andreas O Wagner
- Universität Innsbruck, Department of Microbiology, Technikerstraße 25d, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Pandey AK, Pilli S, Bhunia P, Tyagi RD, Surampalli RY, Zhang TC, Kim SH, Pandey A. Dark fermentation: Production and utilization of volatile fatty acid from different wastes- A review. CHEMOSPHERE 2022; 288:132444. [PMID: 34626658 DOI: 10.1016/j.chemosphere.2021.132444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Volatile fatty acids (VFAs) are the building blocks of the chemical industry, and they are the primary contributors to the planet's organic carbon cycle. VFA production from fossil fuels (mostly petroleum) is unsustainable, pollutes the environment, and generates greenhouse gases. As a result of these issues, there is a pressing need to develop alternate sources for the long-term generation of VFAs via anaerobic digestion. The accessible feedstocks for its sustainable production, as well as the influencing parameters, are discussed in this review. The use of VFAs as a raw material to make a variety of consumer products is reviewed in order to find a solution. It also bridges the gap between traditional and advanced VFA production and utilization methods from a variety of solid and liquid waste sources for economical stability.
Collapse
Affiliation(s)
- Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - S Pilli
- Department of Civil Engineering, National Institute of Technology, Warangal, 506004, Telangana, India.
| | - P Bhunia
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752050, India
| | - R D Tyagi
- INRS Eau, Terre, Environnement, 490, rue de la Couronne, Québec, G1K 9A9, Canada
| | - Rao Y Surampalli
- Global Institute for Energy, Environment and Sustainability, Kansas, USA
| | - Tian C Zhang
- Department of Civil & Environmental Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, NE, 68182-0178, USA
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| |
Collapse
|
12
|
Hahne K, Rödel G, Ostermann K. A fluorescence-based yeast sensor for monitoring acetic acid. Eng Life Sci 2021; 21:303-313. [PMID: 33976603 PMCID: PMC8092980 DOI: 10.1002/elsc.202000006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 11/18/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulation of acetic acid indicates an imbalance of the process due to a disturbed composition of the microorganisms. Hence, monitoring the acetic acid concentration is an important parameter to control the biogas process. Here, we describe the generation and validation of a fluorescence-based whole cell sensor for the detection of acetic acid based on the yeast Saccharomyces cerevisiae. Acetic acid induces the transcription of a subset of genes. The 5´-regulatory sequences (5´ URS) of these genes were cloned into a multicopy plasmid to drive the expression of a red fluorescent reporter gene. The 5´ URS of YGP1, encoding a cell wall-related glycoprotein, led to a 20-fold increase of fluorescence upon addition of 30 mM acetic acid to the media. We show that the system allows estimating the approximate concentration of acetic acid in condensation samples from a biogas plant. To avoid plasmid loss and increase the long-term stability of the sensor, we integrated the reporter construct into the yeast genome and tested the suitability of spores for long-term storage of sensor cells. Lowering the reporter gene's copy number resulted in a significant drop of the fluorescence, which can be compensated by applying a yeast pheromone-based signal amplification system.
Collapse
Affiliation(s)
- Katja Hahne
- Institute of Genetics, Faculty of BiologyTechnische Universität DresdenDresdenGermany
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| | - Gerhard Rödel
- Institute of Genetics, Faculty of BiologyTechnische Universität DresdenDresdenGermany
| | - Kai Ostermann
- Institute of Genetics, Faculty of BiologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
13
|
Klammsteiner T, Walter A, Bogataj T, Heussler CD, Stres B, Steiner FM, Schlick-Steiner BC, Insam H. Impact of Processed Food (Canteen and Oil Wastes) on the Development of Black Soldier Fly ( Hermetia illucens) Larvae and Their Gut Microbiome Functions. Front Microbiol 2021; 12:619112. [PMID: 33552039 PMCID: PMC7858275 DOI: 10.3389/fmicb.2021.619112] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/04/2021] [Indexed: 01/22/2023] Open
Abstract
Canteens represent an essential food supply hub for educational institutions, companies, and business parks. Many people in these locations rely on a guaranteed service with consistent quality. It is an ongoing challenge to satisfy the demand for sufficient serving numbers, portion sizes, and menu variations to cover food intolerances and different palates of customers. However, overestimating this demand or fluctuating quality of dishes leads to an inevitable loss of unconsumed food due to leftovers. In this study, the food waste fraction of canteen leftovers was identified as an optimal diet for black soldier fly (Hermetia illucens) larvae based on 50% higher consumption and 15% higher waste reduction indices compared with control chicken feed diet. Although the digestibility of food waste was nearly twice as high, the conversion efficiency of ingested and digested chicken feed remains unparalleled (17.9 ± 0.6 and 37.5 ± 0.9 in CFD and 7.9 ± 0.9 and 9.6 ± 1.0 in FWD, respectively). The oil separator waste fraction, however, inhibited biomass gain by at least 85% and ultimately led to a larval mortality of up to 96%. In addition to monitoring larval development, we characterized physicochemical properties of pre- and post-process food waste substrates. High-throughput amplicon sequencing identified Firmicutes, Proteobacteria, and Bacteroidota as the most abundant phyla, and Morganella, Acinetobacter, and certain Lactobacillales species were identified as indicator species. By using metagenome imputation, we additionally gained insights into the functional spectrum of gut microbial communities. We anticipate that the results will contribute to the development of decentralized waste-management sites that make use of larvae to process food waste as it has become common practice for biogas plants.
Collapse
Affiliation(s)
| | - Andreas Walter
- Department of Biotechnology and Food Engineering, MCI – The Entrepreneurial School, Innsbruck, Austria
| | - Tajda Bogataj
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Carina D. Heussler
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Blaž Stres
- Department of Animal Science, University of Ljubljana, Ljubljana, Slovenia
- Institute of Sanitary Engineering, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Heribert Insam
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Prem EM, Mutschlechner M, Stres B, Illmer P, Wagner AO. Lignin intermediates lead to phenyl acid formation and microbial community shifts in meso- and thermophilic batch reactors. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:27. [PMID: 33472684 PMCID: PMC7816434 DOI: 10.1186/s13068-020-01855-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/09/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Lignin intermediates resulting from lignocellulose degradation have been suspected to hinder anaerobic mineralisation of organic materials to biogas. Phenyl acids like phenylacetate (PAA) are early detectable intermediates during anaerobic digestion (AD) of aromatic compounds. Studying the phenyl acid formation dynamics and concomitant microbial community shifts can help to understand the microbial interdependencies during AD of aromatic compounds and may be beneficial to counteract disturbances. RESULTS The length of the aliphatic side chain and chemical structure of the benzene side group(s) had an influence on the methanogenic system. PAA, phenylpropionate (PPA), and phenylbutyrate (PBA) accumulations showed that the respective lignin intermediate was degraded but that there were metabolic restrictions as the phenyl acids were not effectively processed. Metagenomic analyses confirmed that mesophilic genera like Fastidiosipila or Syntrophomonas and thermophilic genera like Lactobacillus, Bacillus, Geobacillus, and Tissierella are associated with phenyl acid formation. Acetoclastic methanogenesis was prevalent in mesophilic samples at low and medium overload conditions, whereas Methanoculleus spp. dominated at high overload conditions when methane production was restricted. In medium carbon load reactors under thermophilic conditions, syntrophic acetate oxidation (SAO)-induced hydrogenotrophic methanogenesis was the most important process despite the fact that acetoclastic methanogenesis would thermodynamically be more favourable. As acetoclastic methanogens were restricted at medium and high overload conditions, syntrophic acetate oxidising bacteria and their hydrogenotrophic partners could step in for acetate consumption. CONCLUSIONS PAA, PPA, and PBA were early indicators for upcoming process failures. Acetoclastic methanogens were one of the first microorganisms to be impaired by aromatic compounds, and shifts to syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis occurred in thermophilic reactors. Previously assumed associations of specific meso- and thermophilic genera with anaerobic phenyl acid formation could be confirmed.
Collapse
Affiliation(s)
- Eva Maria Prem
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria.
| | - Mira Mutschlechner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Blaz Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- Institute of Sanitary Engineering, Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, 1000, Ljubljana, Slovenia
- Department of Automation, Biocybernetics and Robotics, Jozef Štefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Andreas Otto Wagner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| |
Collapse
|
15
|
Mutschlechner M, Lackner N, Markt R, Salvenmoser W, Dunlap CA, Wagner AO. Proposal of Thermoactinomyces mirandus sp. nov., a filamentous, anaerobic bacterium isolated from a biogas plant. Antonie van Leeuwenhoek 2020; 114:45-54. [PMID: 33215328 PMCID: PMC7840651 DOI: 10.1007/s10482-020-01497-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/04/2020] [Indexed: 11/24/2022]
Abstract
We isolated a filamentous, thermophilic, and first anaerobic representative of the genus Thermoactinomyces, designated strain AMNI-1T, from a biogas plant in Tyrol, Austria and report the results of a phenotypic, genetic, and phylogenetic investigation. Strain AMNI-1T was observed to form a white branching mycelium that aggregates into pellets when grown in liquid medium. Cells could primarily utilize lactose, glucose, and mannose as carbon and energy sources, with acetate accelerating and yeast extract being mandatory for growth. The optimum growth temperature and pH turned out to be 55 °C and pH 7.0, respectively, with an optimum NaCl concentration of 0–2% (w/v). 16S rRNA gene sequence comparison indicated that the genetic relatedness between strain AMNI-1T and Thermoactinomyces intermedius, Thermoactinomyces khenchelensis, and Thermoactinomyces vulgaris was less than 97%. The G + C content of the genomic DNA was 44.7 mol%. The data obtained suggest that the isolate represents a novel and first anaerobic species of the genus Thermoactinomyces, for which the name Thermoactinomyces mirandus is proposed. The type strain is AMNI-1T (= DSM 110094T = LMG 31503T). The description of the genus Thermoactinomyces is emended accordingly.
Collapse
Affiliation(s)
- Mira Mutschlechner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria.
| | - Nina Lackner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Rudolf Markt
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Willi Salvenmoser
- Department of Zoology, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Christopher A Dunlap
- Crop Bioprotection Research Unit, Agricultural Research Service, US Department of Agriculture, National Center for Agricultural Utilization Research, Peoria, IL, 61604, USA
| | - Andreas O Wagner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| |
Collapse
|
16
|
Lackner N, Wagner AO, Illmer P. Effect of sulfate addition on carbon flow and microbial community composition during thermophilic digestion of cellulose. Appl Microbiol Biotechnol 2020; 104:4605-4615. [PMID: 32219464 PMCID: PMC7190589 DOI: 10.1007/s00253-020-10546-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/20/2020] [Accepted: 03/15/2020] [Indexed: 01/04/2023]
Abstract
Substrates with high sulfate levels pose problems for biogas production as they allow sulfate reducing bacteria to compete with syntrophic and methanogenic members of the community. In addition, the end product of sulfate reduction, hydrogen sulfide, is toxic and corrosive. Here we show how sulfate addition affects physiological processes in a thermophilic methanogenic system by analyzing the carbon flow and the microbial community with quantitative PCR and amplicon sequencing of the 16s rRNA gene. A sulfate addition of 0.5 to 3 g/L caused a decline in methane production by 73-92%, while higher sulfate concentrations had no additional inhibitory effect. Generally, sulfate addition induced a shift in the composition of the microbial community towards a higher dominance of Firmicutes and decreasing abundances of Bacteroidetes and Euryarchaeota. The abundance of methanogens (e.g., Methanoculleus and Methanosarcina) was reduced, while sulfate reducing bacteria (especially Candidatus Desulforudis and Desulfotomaculum) increased significantly in presence of sulfate. The sulfate addition had a significant impact on the carbon flow within the system, shifting the end product from methane and carbon dioxide to acetate and carbon dioxide. Interestingly, methane production quickly resumed, when sulfate was no longer present in the system. Despite the strong impact of sulfate addition on the carbon flow and the microbial community structure during thermophilic biogas production, short-term process disturbances caused by unexpected introduction of sulfate may be overcome due to the high resilience of the engaged microorganisms.
Collapse
Affiliation(s)
- Nina Lackner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria.
| | - Andreas O Wagner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| |
Collapse
|
17
|
Lackner N, Wagner AO, Markt R, Illmer P. pH and Phosphate Induced Shifts in Carbon Flow and Microbial Community during Thermophilic Anaerobic Digestion. Microorganisms 2020; 8:E286. [PMID: 32093251 PMCID: PMC7074938 DOI: 10.3390/microorganisms8020286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/11/2023] Open
Abstract
pH is a central environmental factor influencing CH4 production from organic substrates, as every member of the complex microbial community has specific pH requirements. Here, we show how varying pH conditions (5.0-8.5, phosphate buffered) and the application of a phosphate buffer per se induce shifts in the microbial community composition and the carbon flow during nine weeks of thermophilic batch digestion. Beside monitoring the methane production as well as volatile fatty acid concentrations, amplicon sequencing of the 16S rRNA gene was conducted. The presence of 100 mM phosphate resulted in reduced CH4 production during the initial phase of the incubation, which was characterized by a shift in the dominant methanogenic genera from a mixed Methanosarcina and Methanoculleus to a pure Methanoculleus system. In buffered samples, acetate strongly accumulated in the beginning of the batch digestion and subsequently served as a substrate for methanogens. Methanogenesis was permanently inhibited at pH values ≤5.5, with the maximum CH4 production occurring at pH 7.5. Adaptations of the microbial community to the pH variations included shifts in the archaeal and bacterial composition, as less competitive organisms with a broad pH range were able to occupy metabolic niches at unfavorable pH conditions.
Collapse
Affiliation(s)
- Nina Lackner
- Department of Microbiology, Universität Innsbruck, 6020 Innsbruck, Austria; (A.O.W.); (R.M.); (P.I.)
| | | | | | | |
Collapse
|
18
|
Prem EM, Markt R, Lackner N, Illmer P, Wagner AO. Microbial and Phenyl Acid Dynamics during the Start-up Phase of Anaerobic Straw Degradation in Meso- and Thermophilic Batch Reactors. Microorganisms 2019; 7:E657. [PMID: 31817383 PMCID: PMC6956005 DOI: 10.3390/microorganisms7120657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022] Open
Abstract
Aromatic compounds like phenyl acids derived from lignocellulose degradation have been suspected to negatively influence biogas production processes. However, results on this topic are still inconclusive. To study phenyl acid formation in batch reactors during the start-up phase of anaerobic degradation, different amounts of straw from grain were mixed with mesophilic and thermophilic sludge, respectively. Molecular biological parameters were assessed using next-generation sequencing and qPCR analyses. Metagenomic predictions were done via the program, piphillin. Methane production, concentrations of phenylacetate, phenylpropionate, phenylbutyrate, and volatile fatty acids were monitored chromatographically. Methanosarcina spp. was the dominant methanogen when high straw loads were effectively degraded, and thus confirmed its robustness towards overload conditions. Several microorganisms correlated negatively with phenyl acids; however, a negative effect, specifically on methanogens, could not be proven. A cascade-like increase/decrease from phenylacetate to phenylpropionate, and then to phenylbutyrate could be observed when methanogenesis was highly active. Due to these results, phenylacetate was shown to be an early sign for overload conditions, whereas an increase in phenylbutyrate possibly indicated a switch from degradation of easily available to more complex substrates. These dynamics during the start-up phase might be relevant for biogas plant operators using complex organic wastes for energy exploitation.
Collapse
Affiliation(s)
- Eva Maria Prem
- Department of Microbiology, Universität Innsbruck, A-6020 Innsbruck, Austria; (R.M.); (N.L.); (P.I.); (A.O.W.)
| | | | | | | | | |
Collapse
|
19
|
Nagler M, Kozjek K, Etemadi M, Insam H, Podmirseg SM. Simple yet effective: Microbial and biotechnological benefits of rumen liquid addition to lignocellulose-degrading biogas plants. J Biotechnol 2019; 300:1-10. [PMID: 31082412 DOI: 10.1016/j.jbiotec.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/30/2023]
Abstract
In biogas plants, lignocellulose-rich biomass (LCB) is particularly slowly degraded, causing high hydraulic retention times. This fact lowers the interests for such substrates. To enhance LCB-degradation, cattle rumen fluid, a highly active microbial resource accruing in the growing meat industry, might be used as a potential source for bioaugmentation. This study compares 0%, 20% and 40% rumen liquid in a batch anaerobic digestion approach. Moreover, it determines the biogas- and methane-potentials as well as degradation-speeds of corn straw, co-digested with cattle manure. It inspects microbial communities via marker-gene sequencing, qPCR and RNA-DGGE and draws attention on possible beneficial effects of rumen addition on the biogas-producing community. Bioaugmentation with 20% and 40% v/v rumen liquid accelerated methane yields by 5 and 6 days, respectively (i.e. reaching 90% of total methane production). It also enhanced LCB- as well as (hemi)cellulose- and volatile fatty acid degradation. These results are supported by increased abundances of bacteria, methanogens and anaerobic fungi in treatments with rumen liquid amendment, and point towards the persistence of specific rumen-borne microorganisms especially during the first phase of the experiment. The results suggest that rumen liquid addition is a promising strategy for enhanced and accelerated exploitation of LCB for biomethanisation.
Collapse
Affiliation(s)
- Magdalena Nagler
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria; ACIB Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.
| | - Katja Kozjek
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria; ACIB Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Mohammad Etemadi
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Heribert Insam
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Sabine Marie Podmirseg
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria; ACIB Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
20
|
Wagner AO, Prem EM, Markt R, Kaufmann R, Illmer P. Formation of phenylacetic acid and phenylpropionic acid under different overload conditions during mesophilic and thermophilic anaerobic digestion. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:26. [PMID: 30787959 PMCID: PMC6368962 DOI: 10.1186/s13068-019-1370-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/03/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Substrate spectra for anaerobic digestion have been broadened in the past decade, inter alia, due to the application of different pretreatment strategies and now include materials rich in lignocellulose, protein, and/or fat. The application of these substrates, however, also entails risks regarding the formation of undesired by-products, among which phenolic compounds are known to accumulate under unfavorable digestion conditions. METHODS Different states of overload were simulated in batch experiments while reviewing the generation of phenyl acids out of different lab-use substrates in order to evaluate the impact on biogas and methane production as well as some additional process performance parameters under defined laboratory conditions. Investigations were conducted under both mesophilic and thermophilic conditions. RESULTS It could be shown that the tested input materials led to the formation of phenyl acids in a substrate-dependent manner with the formation itself being less temperature driven. Once formed, the formation of phenyl acids turned out to be a reversible process. CONCLUSIONS Although a mandatory negative impact of phenyl acids per se on the anaerobic digestion process in general and the methanogenesis process in particular could not be proven, phenyl acids, however, seem to play an important role in the microbial response to overloaded biogas systems.
Collapse
Affiliation(s)
- Andreas Otto Wagner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Eva Maria Prem
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Rudolf Markt
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Rüdiger Kaufmann
- Department of Ecology, Universität Innsbruck, Sternwartestr. 15/Technikerstraße 25/5, 6020 Innsbruck, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
Determination of volatile fatty acids in digestate by solvent extraction with dimethyl carbonate and gas chromatography-mass spectrometry. Anal Chim Acta 2018; 1034:92-101. [DOI: 10.1016/j.aca.2018.06.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/24/2018] [Accepted: 06/30/2018] [Indexed: 11/24/2022]
|
22
|
Wagner AO, Janetschek J, Illmer P. Using Digestate Compost as a Substrate for Anaerobic Digestion. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201700386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andreas Otto Wagner
- University of Innsbruck; Institute of Microbiology; Technikerstrasse 25d 6020 Innsbruck Austria
| | - Julian Janetschek
- University of Innsbruck; Institute of Microbiology; Technikerstrasse 25d 6020 Innsbruck Austria
| | - Paul Illmer
- University of Innsbruck; Institute of Microbiology; Technikerstrasse 25d 6020 Innsbruck Austria
| |
Collapse
|