1
|
Qin S, Liu Y, He G, Yang J, Zeng F, Lu Q, Wang M, He B, Song Y. Spatiotemporal Delivery of Dual Nanobodies by Engineered Probiotics to Reverse Tumor Immunosuppression via Targeting Tumor-Derived Exosomes. ACS NANO 2024; 18:26858-26871. [PMID: 39308426 DOI: 10.1021/acsnano.4c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The anti-PD-L1 and its bispecific antibodies have exhibited durable antitumor immunity but still elicit immunosuppression mainly caused by tumor-derived exosomes (TDEs), leading to difficulty in clinical transformation. Herein, engineered Escherichia coli Nissle 1917 (EcN) coexpressing anti-PD-L1 and anti-CD9 nanobodies (EcN-Nb) are developed and decorated with zinc-based metal-organic frameworks (MOFs) loaded with indocyanine green (ICG), to generate EcN-Nb-ZIF-8CHO-ICG (ENZC) for spatiotemporal lysis of bacteria for immunotherapy. The tumor-homing hybrid system can specifically release nanobodies in response to near-infrared (NIR) radiation, thereby targeting TDEs and changing their biological distribution, remodeling tumor-associated macrophages to M1 states, activating more effective and cytotoxic T lymphocytes, and finally, leading to the inhibition of tumor proliferation and metastasis. Altogether, the microfluidic-enabled MOF-modified engineered probiotics target TDEs and activate the antitumor immune response in a spatiotemporally manipulated manner, offering promising TDE-targeted immune therapy.
Collapse
Affiliation(s)
- Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yuta Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jingjing Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qianglan Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Meng Wang
- Department of Gastric and Hernia Surgery, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing 210023, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Hadi MI, Laksmi FA, Helbert, Amalia AR, Muhammad AD, Violando WA. An efficient approach for overproduction of DNA polymerase from Pyrococcus furiosus using an optimized autoinduction system in Escherichia coli. World J Microbiol Biotechnol 2024; 40:324. [PMID: 39294482 DOI: 10.1007/s11274-024-04127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/31/2024] [Indexed: 09/20/2024]
Abstract
High fidelity DNA polymerase from Pyrococcus furiosus (Pfupol) is an attractive alternative to the highly popular DNA polymerase from Thermus aquaticus. Because this enzyme is in great demand for biotechnological applications, optimizing Pfupol production is essential to supplying the industry's expanding demand. T7-induced promoter expression in Escherichia coli expression systems is used to express recombinant Pfupol; however, this method is not cost-effective. Here, we have effectively developed an optimized process for the autoinduction approach of Pfupol expression in a defined medium. To better examine Pfupol's activities, its purified fraction was used. A 71 mg/L of pure Pfupol was effectively produced, resulting in a 2.6-fold increase in protein yield when glucose, glycerol, and lactose were added in a defined medium at concentrations of 0.05%, 1%, and 0.6%, respectively, and the condition for production in a 5 L bioreactor was as follow: 200 rpm, 3 vvm, and 10% inoculant. Furthermore, the protein exhibited 1445 U/mg of specific activity when synthesized in its active state. This work presents a high level of Pfupol production, which makes it an economically viable and practically useful approach.
Collapse
Affiliation(s)
- Moch Irfan Hadi
- Faculty of Science and Technology, UIN Sunan Ampel, Surabaya, Indonesia
| | - Fina Amreta Laksmi
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, 16911, West Java, Indonesia.
| | - Helbert
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, 16911, West Java, Indonesia
| | - Arfena Rizqi Amalia
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, 16911, West Java, Indonesia
| | - Azriel Dafa Muhammad
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, 16911, West Java, Indonesia
| | | |
Collapse
|
3
|
Liu ML, Liang XM, Jin MY, Huang HW, Luo L, Wang H, Shen X, Xu ZL. Food-Borne Biotoxin Neutralization in Vivo by Nanobodies: Current Status and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10753-10771. [PMID: 38706131 DOI: 10.1021/acs.jafc.4c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Food-borne biotoxins from microbes, plants, or animals contaminate unclean, spoiled, and rotten foods, posing significant health risks. Neutralizing such toxins is vital for human health, especially after food poisoning. Nanobodies (Nbs), a type of single-domain antibodies derived from the genetic cloning of a variable domain of heavy chain antibodies (VHHs) in camels, offer unique advantages in toxin neutralization. Their small size, high stability, and precise binding enable effective neutralization. The use of Nbs in neutralizing food-borne biotoxins offers numerous benefits, and their genetic malleability allows tailored optimization for diverse toxins. As nanotechnology continues to evolve and improve, Nbs are poised to become increasingly efficient and safer tools for toxin neutralization, playing a pivotal role in safeguarding human health and environmental safety. This review not only highlights the efficacy of these agents in neutralizing toxins but also proposes innovative solutions to address their current challenges. It lays a solid foundation for their further development in this crucial field and propels their commercial application, thereby contributing significantly to advancements in this domain.
Collapse
Affiliation(s)
- Min-Ling Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Min Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Ming-Yu Jin
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
- School of Life and Health Technology, Dongguan, University of Technology, Dongguan 523808, China
| | - Hui-Wei Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Li ZJ, Zhang ZX, Xu Y, Shi TQ, Ye C, Sun XM, Huang H. CRISPR-Based Construction of a BL21 (DE3)-Derived Variant Strain Library to Rapidly Improve Recombinant Protein Production. ACS Synth Biol 2022; 11:343-352. [PMID: 34919397 DOI: 10.1021/acssynbio.1c00463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Escherichia coli BL21 (DE3) is the most widely used host for recombinant protein expression. However, not every protein can be highly expressed in BL21 (DE3), so individual optimization strategies are often required for different proteins, which is time-consuming and difficult to apply rapidly for industrial production. Constructing more hosts is a good choice to enrich protein expression selection. The expression level of T7 RNAP is the core control node of the pET expression system, so regulating its expression level is an effective way of improving the production of difficult-to-express proteins. Various BL21 (DE3)-derived variant hosts with different translation levels of T7 RNAP could be obtained by changing the ribosomal binding site (RBS) sequences of T7 RNAP in a genome. Here, a BL21 (DE3)-derived variant strain library with different RBS sequences of T7 RNAP was constructed using a base editor and CRISPR-Cas9. Notably, the CRISPR-Cas9 system combined with degenerate primers enabled the construction of an RBS library with 87.5% of the theoretical coverage in single editing, which is more convenient and efficient than the use of a base editor. The expression level of a target gene in the variant strain library ranged from 28 to 220% of the parental strain. Furthermore, a high-throughput host-screening platform for recombinant protein production was constructed, which enabled us to obtain the best expression host for certain target proteins in only 3 days. As a proof of concept, the production of all eight difficult-to-express proteins was greatly improved, including autolytic protein, membrane proteins, antimicrobial peptides, and hardly soluble proteins. Among them, the expression of glucose dehydrogenase in the best host exhibited a 298-fold increase compared to the parental strain. This strategy is simple and effective, requires no advanced equipment, and can be carried out in any laboratory.
Collapse
Affiliation(s)
- Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Yan Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|
5
|
Sun S, Ding Z, Yang X, Zhao X, Zhao M, Gao L, Chen Q, Xie S, Liu A, Yin S, Xu Z, Lu X. Nanobody: A Small Antibody with Big Implications for Tumor Therapeutic Strategy. Int J Nanomedicine 2021; 16:2337-2356. [PMID: 33790553 PMCID: PMC7997558 DOI: 10.2147/ijn.s297631] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
The development of monoclonal antibody treatments for successful tumor-targeted therapies took several decades. However, the efficacy of antibody-based therapy is still confined and desperately needs further improvement. Nanobodies are the recombinant variable domains of heavy-chain-only antibodies, with many unique properties such as small size (~15kDa), excellent solubility, superior stability, ease of manufacture, quick clearance from blood, and deep tissue penetration, which gain increasing acceptance as therapeutical tools and are considered also as building blocks for chimeric antigen receptors as well as for targeted drug delivery. Thus, one of the promising novel developments that may address the deficiency of monoclonal antibody-based therapies is the utilization of nanobodies. This article provides readers the significant factors that the structural and biochemical properties of nanobodies and the research progress on nanobodies in the fields of tumor treatment, as well as their application prospect.
Collapse
Affiliation(s)
- Shuyang Sun
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Ziqiang Ding
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xiaomei Yang
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xinyue Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Minlong Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Li Gao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Qu Chen
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shenxia Xie
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Aiqun Liu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shihua Yin
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Zhiping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xiaoling Lu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|