1
|
Grebe LA, Richter P, Altenkirch T, Mann M, Müller MJ, Büchs J, Magnus JB. Sampling-free investigation of microbial carbon source preferences on renewable feedstocks via online monitoring of oxygen transfer rate. Bioprocess Biosyst Eng 2024:10.1007/s00449-024-03117-x. [PMID: 39680140 DOI: 10.1007/s00449-024-03117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024]
Abstract
The transition towards sustainable bioprocesses requires renewable feedstocks to reduce dependency on finite resources. While plant-based feedstocks offer significant potential, their complex composition poses new challenges. The microorganisms often exhibit polyauxic growth when presented with multiple carbon sources simultaneously, consuming them in a distinct order according to their carbon source preferences. The traditional investigation of polyauxic growth involves laborious sampling and offline analysis, hindering high-throughput screenings. This study introduces an efficient method for identifying carbon source consumption and their order of metabolization by various microorganisms using the respiration activity monitoring system (RAMOS) in shake flasks. As aerobic carbon metabolization and oxygen consumption are strictly correlated, the characteristic phases of polyauxic growth are visible in the oxygen transfer rate (OTR) and can be assigned to the respective carbon sources. An extended 16-flask RAMOS enables real-time monitoring of microbial respiration on up to seven carbon sources and one reference cultivation simultaneously, thus providing crucial insights into their metabolization without extensive sampling and offline analysis. The method's accuracy was validated against traditional high-performance liquid chromatography (HPLC). Its applicability to both fast-growing Escherichia coli (investigated carbon sources: glucose, arabinose, sorbitol, xylose, and glycerol) and slow-growing Ustilago trichophora (glucose, glycerol, xylose, sorbitol, rhamnose, galacturonic acid, and lactic acid) was demonstrated. Additionally, it was successfully applied to the plant-based second-generation feedstock corn leaf hydrolysate, revealing the bioavailability of the included carbon sources (glucose, sucrose, arabinose, xylose, and galactose) and their order of metabolization by Ustilago maydis.
Collapse
Affiliation(s)
- Luca Antonia Grebe
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Paul Richter
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany
| | - Torben Altenkirch
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Marcel Mann
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany
| | - Markus Jan Müller
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany
| | - Jørgen Barsett Magnus
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany.
| |
Collapse
|
2
|
Miebach K, Finger M, Scherer AMK, Maaß CA, Büchs J. Hydrogen online monitoring based on thermal conductivity for anaerobic microorganisms. Biotechnol Bioeng 2023; 120:2199-2213. [PMID: 37462090 DOI: 10.1002/bit.28502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
H2 -producing microorganisms are a promising source of sustainable biohydrogen. However, most H2 -producing microorganisms are anaerobes, which are difficult to cultivate and characterize. While several methods for measuring H2 exist, common H2 sensors often require oxygen, making them unsuitable for anaerobic processes. Other sensors can often not be operated at high gas humidity. Thus, we applied thermal conductivity (TC) sensors and developed a parallelized, online H2 monitoring for time-efficient characterization of H2 production by anaerobes. Since TC sensors are nonspecific for H2 , the cross-sensitivity of the sensors was evaluated regarding temperature, gas humidity, and CO2 concentrations. The systems' measurement range was validated with two anaerobes: a high H2 -producer (Clostridium pasteurianum) and a low H2 -producer (Phocaeicola vulgatus). Online monitoring of H2 production in shake flask cultivations was demonstrated, and H2 transfer rates were derived. Combined with online CO2 and pressure measurements, molar gas balances of the cultivations were closed, and an anaerobic respiration quotient was calculated. Thus, insight into the effect of medium components and inhibitory cultivation conditions on H2 production with the model anaerobes was gained. The presented online H2 monitoring method can accelerate the characterization of anaerobes for biohydrogen production and reveal metabolic changes without expensive equipment and offline analysis.
Collapse
Affiliation(s)
- Katharina Miebach
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | - Maurice Finger
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | | | | | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Marcel M, Darina E, Patrick K, Aline H, Gabriele P, Stefan J, Jochen B. Impact of different trace elements on metabolic routes during heterotrophic growth of C. ljungdahlii investigated through online measurement of the carbon dioxide transfer rate. Biotechnol Prog 2022; 38:e3263. [PMID: 35434968 DOI: 10.1002/btpr.3263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022]
Abstract
Synthesis gas fermentation using acetogenic clostridia is a rapidly increasing research area. It offers the possibility to produce platform chemicals from sustainable C1 carbon sources. The Wood-Ljungdahl pathway (WLP), which allows acetogens to grow autotrophically, is also active during heterotrophic growth. It acts as an electron sink and allows for the utilization of a wide variety of soluble substrates and increases ATP yields during heterotrophic growth. While glycolysis leads to CO2 evolution, WLP activity results in CO2 fixation. Thus, a reduction of net CO2 emissions during growth with sugars is an indicator of WLP activity. To study the effect of trace elements and ventilation rates on the interaction between glycolysis and the WLP, the model acetogen Clostridium ljungdahlii was cultivated in YTF medium, a complex medium generally employed for heterotrophic growth, with fructose as growth substrate. The recently reported anaRAMOS device was used for online measurement of metabolic activity, in form of CO2 evolution. The addition of multiple trace elements (iron, cobalt, manganese, zinc, nickel, copper, selenium, and tungsten) was tested, to study the interaction between glycolysis and the Wood ljungdahl pathway. While the addition of iron(II) increased growth rates and ethanol production, added nickel(II) increased WLP activity and acetate formation, reducing net CO2 production by 28%. Also, higher CO2 availability through reduced volumetric gas flow resulted in 25% reduction of CO2 evolution. These online metabolic data demonstrate that the anaRAMOS is a valuable tool in the investigation of metabolic responses i.e. to determine nutrient requirements that results in reduced CO2 production. Thereby the media composition can be optimized depending on the specific goal. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mann Marcel
- RWTH Aachen University, AVT - Biochemical Engineering, Aachen, Germany
| | - Effert Darina
- RWTH Aachen University, AVT - Biochemical Engineering, Aachen, Germany
| | - Kottenhahn Patrick
- RWTH Aachen University, AVT - Biochemical Engineering, Aachen, Germany.,Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, Aachen, Germany
| | - Hüser Aline
- RWTH Aachen University, AVT - Biochemical Engineering, Aachen, Germany
| | - Philipps Gabriele
- Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, Aachen, Germany
| | - Jennewein Stefan
- Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, Aachen, Germany
| | - Büchs Jochen
- RWTH Aachen University, AVT - Biochemical Engineering, Aachen, Germany
| |
Collapse
|
4
|
Mann M, Hüser A, Schick B, Dinger R, Miebach K, Büchs J. Online monitoring of gas transfer rates during CO and CO/H 2 gas fermentation in quasi-continuously ventilated shake flasks. Biotechnol Bioeng 2021; 118:2092-2104. [PMID: 33620084 DOI: 10.1002/bit.27722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022]
Abstract
Syngas fermentation is a potential player for future emission reduction. The first demonstration and commercial plants have been successfully established. However, due to its novelty, development of syngas fermentation processes is still in its infancy, and the need to systematically unravel and understand further phenomena, such as substrate toxicity as well as gas transfer and uptake rates, still persists. This study describes a new online monitoring device based on the respiration activity monitoring system for cultivation of syngas fermenting microorganisms with gaseous substrates. The new device is designed to online monitor the carbon dioxide transfer rate (CO2 TR) and the gross gas transfer rate during cultivation. Online measured data are used for the calculation of the carbon monoxide transfer rate (COTR) and hydrogen transfer rate (H2 TR). In cultivation on pure CO and CO + H2 , CO was continuously limiting, whereas hydrogen, when present, was sufficiently available. The maximum COTR measured was approximately 5 mmol/L/h for pure CO cultivation, and approximately 6 mmol/L/h for cultivation with additional H2 in the gas supply. Additionally, calculation of the ratio of evolved carbon dioxide to consumed monoxide, similar to the respiratory quotient for aerobic fermentation, allows the prediction of whether acetate or ethanol is predominantly produced. Clostridium ljungdahlii, a model acetogen for syngas fermentation, was cultivated using only CO, and CO in combination with H2 . Online monitoring of the mentioned parameters revealed a metabolic shift in fermentation with sole CO, depending on COTR. The device presented herein allows fast process development, because crucial parameters for scale-up can be measured online in small-scale gas fermentation.
Collapse
Affiliation(s)
- Marcel Mann
- RWTH Aachen University, AVT-Biochemical Engineering, Aachen, Germany
| | - Aline Hüser
- RWTH Aachen University, AVT-Biochemical Engineering, Aachen, Germany
| | - Benjamin Schick
- RWTH Aachen University, AVT-Biochemical Engineering, Aachen, Germany
| | - Robert Dinger
- RWTH Aachen University, AVT-Biochemical Engineering, Aachen, Germany
| | - Katharina Miebach
- RWTH Aachen University, AVT-Biochemical Engineering, Aachen, Germany
| | - Jochen Büchs
- RWTH Aachen University, AVT-Biochemical Engineering, Aachen, Germany
| |
Collapse
|