1
|
Lara AR, Kunert F, Vandenbroucke V, Taymaz-Nikerel H, Martínez LM, Sigala JC, Delvigne F, Gosset G, Büchs J. Transport-controlled growth decoupling for self-induced protein expression with a glycerol-repressible genetic circuit. Biotechnol Bioeng 2024; 121:1789-1802. [PMID: 38470342 DOI: 10.1002/bit.28697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Decoupling cell formation from recombinant protein synthesis is a potent strategy to intensify bioprocesses. Escherichia coli strains with mutations in the glucose uptake components lack catabolite repression, display low growth rate, no overflow metabolism, and high recombinant protein yields. Fast growth rates were promoted by the simultaneous consumption of glucose and glycerol, and this was followed by a phase of slow growth, when only glucose remained in the medium. A glycerol-repressible genetic circuit was designed to autonomously induce recombinant protein expression. The engineered strain bearing the genetic circuit was cultured in 3.9 g L-1 glycerol + 18 g L-1 glucose in microbioreactors with online oxygen transfer rate monitoring. The growth was fast during the simultaneous consumption of both carbon sources (C-sources), while expression of the recombinant protein was low. When glycerol was depleted, the growth rate decreased, and the specific fluorescence reached values 17% higher than those obtained with a strong constitutive promoter. Despite the relatively high amount of C-source used, no oxygen limitation was observed. The proposed approach eliminates the need for the substrate feeding or inducers addition and is set as a simple batch culture while mimicking fed-batch performance.
Collapse
Affiliation(s)
- Alvaro R Lara
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Flavio Kunert
- Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | - Vincent Vandenbroucke
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Hilal Taymaz-Nikerel
- Department of Genetics and Bioengineering, Istanbul Bilgi University, Istanbul, Turkey
| | - Luz María Martínez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Juan-Carlos Sigala
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Guillermo Gosset
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Jochen Büchs
- Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Urniezius R, Masaitis D, Levisauskas D, Survyla A, Babilius P, Godoladze D. Adaptive control of the E. coli-specific growth rate in fed-batch cultivation based on oxygen uptake rate. Comput Struct Biotechnol J 2023; 21:5785-5795. [PMID: 38213900 PMCID: PMC10781999 DOI: 10.1016/j.csbj.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 01/13/2024] Open
Abstract
In this study, an automatic control system is developed for the setpoint control of the cell biomass specific growth rate (SGR) in fed-batch cultivation processes. The feedback signal in the control system is obtained from the oxygen uptake rate (OUR) measurement-based SGR estimator. The OUR online measurements adapt the system controller to time-varying operating conditions. The developed approach of the PI controller adaptation is presented and discussed. The feasibility of the control system for tracking a desired biomass growth time profile is demonstrated with numerical simulations and fed-batch culture E . c o l i control experiments in a laboratory-scale bioreactor. The procedure was cross-validated with the open-loop digital twin SGR estimator, as well as with the adaptive control of the SGR, by tracking a desired setpoint time profile. The digital twin behavior statistically showed less of a bias when compared to SGR estimator performance. However, the adaptation-when using first principles-was outperformed 30 times by the model predictive controller in a robustness check scenario.
Collapse
Affiliation(s)
- Renaldas Urniezius
- Department of Automation, Kaunas University of Technology, Studentu 48, LT-51367 Kaunas, Lithuania
| | - Deividas Masaitis
- Department of Automation, Kaunas University of Technology, Studentu 48, LT-51367 Kaunas, Lithuania
| | - Donatas Levisauskas
- Department of Automation, Kaunas University of Technology, Studentu 48, LT-51367 Kaunas, Lithuania
| | - Arnas Survyla
- Department of Automation, Kaunas University of Technology, Studentu 48, LT-51367 Kaunas, Lithuania
| | - Povilas Babilius
- Department of Automation, Kaunas University of Technology, Studentu 48, LT-51367 Kaunas, Lithuania
| | - Dziuljeta Godoladze
- Department of Automation, Kaunas University of Technology, Studentu 48, LT-51367 Kaunas, Lithuania
| |
Collapse
|
3
|
Krausch N, Kaspersetz L, Gaytán-Castro RD, Schermeyer MT, Lara AR, Gosset G, Cruz Bournazou MN, Neubauer P. Model-Based Characterization of E. coli Strains with Impaired Glucose Uptake. Bioengineering (Basel) 2023; 10:808. [PMID: 37508835 PMCID: PMC10376147 DOI: 10.3390/bioengineering10070808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The bacterium Escherichia coli is a widely used organism in biotechnology. For high space-time yields, glucose-limited fed-batch technology is the industry standard; this is because an overflow metabolism of acetate occurs at high glucose concentrations. As an interesting alternative, various strains with limited glucose uptake have been developed. However, these have not yet been characterized under process conditions. To demonstrate the efficiency of our previously developed high-throughput robotic platform, in the present work, we characterized three different exemplary E. coli knockout (KO) strains with limited glucose uptake capacities at three different scales (microtiter plates, 10 mL bioreactor system and 100 mL bioreactor system) under excess glucose conditions with different initial glucose concentrations. The extensive measurements of growth behavior, substrate consumption, respiration, and overflow metabolism were then used to determine the appropriate growth parameters using a mechanistic mathematical model, which allowed for a comprehensive comparative analysis of the strains. The analysis was performed coherently with these different reactor configurations and the results could be successfully transferred from one platform to another. Single and double KO mutants showed reduced specific rates for substrate uptake qSmax and acetate production qApmax; meanwhile, higher glucose concentrations had adverse effects on the biomass yield coefficient YXSem. Additional parameters compared to previous studies for the oxygen uptake rate and carbon dioxide production rate indicated differences in the specific oxygen uptake rate qOmax. This study is an example of how automated robotic equipment, together with mathematical model-based approaches, can be successfully used to characterize strains and obtain comprehensive information more quickly, with a trade-off between throughput and analytical capacity.
Collapse
Affiliation(s)
- Niels Krausch
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstr. 76, 13355 Berlin, Germany
| | - Lucas Kaspersetz
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstr. 76, 13355 Berlin, Germany
| | - Rogelio Diego Gaytán-Castro
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62209, Mexico
| | - Marie-Therese Schermeyer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstr. 76, 13355 Berlin, Germany
| | - Alvaro R Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Mexico City 05348, Mexico
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62209, Mexico
| | - Mariano Nicolas Cruz Bournazou
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstr. 76, 13355 Berlin, Germany
- DataHow AG, 8050 Zurich, Switzerland
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstr. 76, 13355 Berlin, Germany
| |
Collapse
|
4
|
Blöbaum L, Haringa C, Grünberger A. Microbial lifelines in bioprocesses: From concept to application. Biotechnol Adv 2023; 62:108071. [PMID: 36464144 DOI: 10.1016/j.biotechadv.2022.108071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Bioprocesses are scaled up for the production of large product quantities. With larger fermenter volumes, mixing becomes increasingly inefficient and environmental gradients get more prominent than in smaller scales. Environmental gradients have an impact on the microorganism's metabolism, which makes the prediction of large-scale performance difficult and can lead to scale-up failure. A promising approach for improved understanding and estimation of dynamics of microbial populations in large-scale bioprocesses is the analysis of microbial lifelines. The lifeline of a microbe in a bioprocess is the experience of environmental gradients from a cell's perspective, which can be described as a time series of position, environment and intracellular condition. Currently, lifelines are predominantly determined using models with computational fluid dynamics, but new technical developments in flow-following sensor particles and microfluidic single-cell cultivation open the door to a more interdisciplinary concept. We critically review the current concepts and challenges in lifeline determination and application of lifeline analysis, as well as strategies for the integration of these techniques into bioprocess development. Lifelines can contribute to a successful scale-up by guiding scale-down experiments and identifying strain engineering targets or bioreactor optimisations.
Collapse
Affiliation(s)
- Luisa Blöbaum
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Bielefeld, Germany; CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Cees Haringa
- Bioprocess Engineering, Applied Sciences/Biotechnology, TU, Delft, Netherlands
| | - Alexander Grünberger
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Bielefeld, Germany; CeBiTec, Bielefeld University, Bielefeld, Germany; Microsystems in Bioprocess Engineering, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|