1
|
Beal MA, Meier MJ, Dykes A, Yauk CL, Lambert IB, Marchetti F. The functional mutational landscape of the lacZ gene. iScience 2023; 26:108407. [PMID: 38058303 PMCID: PMC10696112 DOI: 10.1016/j.isci.2023.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/23/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
The lacZ gene of Escherichia coli encodes β-galactosidase (β-gal), a lactose metabolism enzyme of the lactose operon. Previous chemical modification or site-directed mutagenesis experiments have identified 21 amino acids that are essential for β-gal catalytic activity. We have assembled over 10,000 lacZ mutations from published studies that were collected using a positive selection assay to identify mutations in lacZ that disrupted β-gal function. We analyzed 6,465 independent lacZ mutations that resulted in 2,732 missense mutations that impaired β-gal function. Those mutations affected 492 of the 1,023 lacZ codons, including most of the 21 previously known residues critical for catalytic activity. Most missense mutations occurred near the catalytic site and in regions important for subunit tetramerization. Overall, our work provides a comprehensive and detailed map of the amino acid residues affecting the structure and catalytic activity of the β-gal enzyme.
Collapse
Affiliation(s)
- Marc A. Beal
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Matthew J. Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Angela Dykes
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Iain B. Lambert
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
2
|
Menon V, Brash DE. Next-generation sequencing methodologies to detect low-frequency mutations: "Catch me if you can". MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108471. [PMID: 37716438 PMCID: PMC10843083 DOI: 10.1016/j.mrrev.2023.108471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Mutations, the irreversible changes in an organism's DNA sequence, are present in tissues at a variant allele frequency (VAF) ranging from ∼10-8 per bp for a founder mutation to ∼10-3 for a histologically normal tissue sample containing several independent clones - compared to 1%- 50% for a heterozygous tumor mutation or a polymorphism. The rarity of these events poses a challenge for accurate clinical diagnosis and prognosis, toxicology, and discovering new disease etiologies. Standard Next-Generation Sequencing (NGS) technologies report VAFs as low as 0.5% per nt, but reliably observing rarer precursor events requires additional sophistication to measure ultralow-frequency mutations. We detail the challenge; define terms used to characterize the results, which vary between laboratories and sometimes conflict between biologists and bioinformaticists; and describe recent innovations to improve standard NGS methodologies including: single-strand consensus sequence methods such as Safe-SeqS and SiMSen-Seq; tandem-strand consensus sequence methods such as o2n-Seq and SMM-Seq; and ultrasensitive parent-strand consensus sequence methods such as DuplexSeq, PacBio HiFi, SinoDuplex, OPUSeq, EcoSeq, BotSeqS, Hawk-Seq, NanoSeq, SaferSeq, and CODEC. Practical applications are also noted. Several methods quantify VAF down to 10-5 at a nt and mutation frequency (MF) in a target region down to 10-7 per nt. By expanding to > 1 Mb of sites never observed twice, thus forgoing VAF, other methods quantify MF < 10-9 per nt or < 15 errors per haploid genome. Clonal expansion cannot be directly distinguished from independent mutations by sequencing, so it is essential for a paper to report whether its MF counted only different mutations - the minimum independent-mutation frequency MFminI - or all mutations observed including recurrences - the larger maximum independent-mutation frequency MFmaxI which may reflect clonal expansion. Ultrasensitive methods reveal that, without their use, even mutations with VAF 0.5-1% are usually spurious.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA.
| | - Douglas E Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA.
| |
Collapse
|
3
|
Garcia-Ruiz A, Kornacker K, Brash DE. Cyclobutane Pyrimidine Dimer Hyperhotspots as Sensitive Indicators of Keratinocyte UV Exposure †. Photochem Photobiol 2022; 98:987-997. [PMID: 35944237 PMCID: PMC9802031 DOI: 10.1111/php.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 01/03/2023]
Abstract
The dominant DNA damage generated by UV exposure is the cyclobutane pyrimidine dimer (CPD), which alters skin cell physiology and induces cell death and mutation. Genome-wide nucleotide-resolution analysis of CPDs in melanocytes and fibroblasts has identified "CPD hyperhotspots", pyrimidine-pyrimidine sites hundreds of fold more susceptible to the generation of CPDs than the genomic average. Identifying hyperhotspots in keratinocytes could enable measuring individual past UV exposure in small skin samples and predicting future skin cancer risk. We therefore exposed neonatal human epidermal keratinocytes to narrowband UVB and quantified CPDs using the adductSeq high-throughput DNA sequencing method. Keratinocytes contained thousands of CPD hyperhotspots, with a UVB-sensitivity up to 550 fold greater than the genomic average. As with melanocytes, the most sensitive sites were located in promoter regions at ETS-family transcription factor binding sequence motifs, near RNA processing genes. Moreover, they lay at sequence motifs bound to ETS1 in CpG islands. These genes were specifically upregulated in skin and the CPD hyperhotspots were mutated in a fraction of keratinocyte cancers. Crucially for their biological importance and practical application, CPD hyperhotspot locations and UV-sensitivity ranking demonstrated high reproducibility across experiments and across skin donors. CPD hyperhotspots are therefore sensitive indicators of UV exposure.
Collapse
Affiliation(s)
- Alejandro Garcia-Ruiz
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
| | | | - Douglas E. Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA
| |
Collapse
|
4
|
Ikehata H, Yamamoto M. Cyclobutane Pyrimidine Dimers Produced with Narrowband UVB Are on Average More Mutagenic than Those with Broadband UVB in Mouse Skin. Photochem Photobiol 2021; 98:916-924. [PMID: 34843117 DOI: 10.1111/php.13568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/28/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
Although narrowband UVB (NB-UVB) has replaced broadband UVB (BB-UVB) because of its greater effectiveness in dermatological phototherapy, it is twice as carcinogenic as BB-UVB at an equivalent inflammatory dose. To clarify the basis of the different genotoxicities, we comparatively evaluated the mutagenicities in mouse skin of the two UVB types along with their efficiencies in the formation of cyclobutane pyrimidine dimer (CPD), which is a major mutagenic DNA photolesion specifically produced by UVR. We found that the mutagenicity averaged per single molecule of CPD was 2.5- and 1.8-fold higher in NB-UVB-exposed epidermis and dermis, respectively, which indicates that NB-UVB is more mutagenic for the skin than BB-UVB at doses producing an equimolar amount of CPD. Analysis of effective wavelengths for UV photolesion formation with each UVB source revealed a remarkable difference in the peak effective wavelengths for CPD formation: 15 nm longer for NB-UVB in the epidermis. Although the analysis of mutation profiles showed largely similar UV-specific signatures between the two UVB types, a relatively stronger preference for UVA-specific mutations was observed for NB-UVB. These results suggest that the difference in the effective wavelengths for CPD formation leads to the different mutagenicities and carcinogenicities between the UVB sources.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Beal MA, Meier MJ, LeBlanc DP, Maurice C, O'Brien JM, Yauk CL, Marchetti F. Chemically induced mutations in a MutaMouse reporter gene inform mechanisms underlying human cancer mutational signatures. Commun Biol 2020; 3:438. [PMID: 32796912 PMCID: PMC7429849 DOI: 10.1038/s42003-020-01174-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Transgenic rodent (TGR) models use bacterial reporter genes to quantify in vivo mutagenesis. Pairing TGR assays with next-generation sequencing (NGS) enables comprehensive mutation pattern analysis to inform mutational mechanisms. We used this approach to identify 2751 independent lacZ mutations in the bone marrow of MutaMouse animals exposed to four chemical mutagens: benzo[a]pyrene, N-ethyl-N-nitrosourea, procarbazine, and triethylenemelamine. We also collected published data for 706 lacZ mutations from eight additional environmental mutagens. We report that lacZ gene sequencing generates chemical-specific mutation signatures observed in human cancers with established environmental causes. For example, the mutation signature of benzo[a]pyrene, a carcinogen present in tobacco smoke, matched the signature associated with tobacco-induced lung cancers. Our results suggest that the analysis of chemically induced mutations in the lacZ gene shortly after exposure provides an effective approach to characterize human-relevant mechanisms of carcinogenesis and propose novel environmental causes of mutation signatures observed in human cancers.
Collapse
Affiliation(s)
- Marc A Beal
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Danielle P LeBlanc
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Clotilde Maurice
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON, Canada
| | - Jason M O'Brien
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| |
Collapse
|
6
|
Generali M, Casanova EA, Kehl D, Wanner D, Hoerstrup SP, Cinelli P, Weber B. Autologous endothelialized small-caliber vascular grafts engineered from blood-derived induced pluripotent stem cells. Acta Biomater 2019; 97:333-343. [PMID: 31344511 DOI: 10.1016/j.actbio.2019.07.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023]
Abstract
An ideal cell source for human therapeutic and disease modeling applications should be easily accessible and possess unlimited differentiation and expansion potential. Human induced pluripotent stem cells (hiPSCs) derived from peripheral blood mononuclear cells (PBMCs) represent a promising source given their ease of harvest and their pluripotent nature. Previous studies have demonstrated the feasibility of using PBMC-derived hiPSCs for vascular tissue engineering. However, so far, no endothelialization of hiPSC-derived tissue engineered vascular grafts (TEVGs) based on fully biodegradable polymers without xenogenic matrix components has been shown. In this study, we have generated hiPSCs from PBMCs and differentiated them into αSMA- and calponin-positive smooth muscle cells (SMCs) as well as endothelial cells (ECs) positive for CD31, vWF and eNOS. Both cell types were co-seeded on PGA-P4HB starter matrices and cultured under static or dynamic conditions to induce tissue formation in vitro. The resulting small diameter vascular grafts showed abundant amounts of extracellular matrix, containing a thin luminal layer of vWF-positive cells and a subendothelial αSMA-positive layer approximating the architecture of native vessels. Our results demonstrate the successful generation of TEVGs based on SMCs and ECs differentiated from PBMC-derived hiPSC combined with a biodegradable polymer. These results pave the way for developing autologous PBMC-derived hiPSC-based vascular constructs for therapeutic applications or disease modeling. STATEMENT OF SIGNIFICANCE: We report for the first time the possibility to employ human peripheral blood mononuclear cell (PBMC)-derived iPSCs to generate biodegradable polymer-based tissue engineered vascular grafts (TEVG), which mimic the native layered architecture of blood vessels. hiPSCs from PBMCs were differentiated into smooth muscle cells as well as endothelial cells. These cells were co-seeded on a biodegradable PGA/P4HB scaffold and cultured in a bioreactor to induce tissue formation in vitro. The resulting small diameter TEVG showed abundant amounts of extracellular matrix, containing a αSMA-positive layer in the interstitium and a thin luminal layer of vWF-positive endothelial cells approximating the architecture of native vessels. Our findings improving the generation of autologous vascular replacements using blood as an easily accessible cell source.
Collapse
Affiliation(s)
- Melanie Generali
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland.
| | - Elisa A Casanova
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Debora Kehl
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland.
| | - Debora Wanner
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland.
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland; Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Paolo Cinelli
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland.
| | - Benedikt Weber
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Ikehata H. Mechanistic considerations on the wavelength-dependent variations of UVR genotoxicity and mutagenesis in skin: the discrimination of UVA-signature from UV-signature mutation. Photochem Photobiol Sci 2018; 17:1861-1871. [PMID: 29850669 DOI: 10.1039/c7pp00360a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ultraviolet radiation (UVR) predominantly induces UV-signature mutations, C → T and CC → TT base substitutions at dipyrimidine sites, in the cellular and skin genome. I observed in our in vivo mutation studies of mouse skin that these UVR-specific mutations show a wavelength-dependent variation in their sequence-context preference. The C → T mutation occurs most frequently in the 5'-TCG-3' sequence regardless of the UVR wavelength, but is recovered more preferentially there as the wavelength increases, resulting in prominent occurrences exclusively in the TCG sequence in the UVA wavelength range, which I will designate as a "UVA signature" in this review. The preference of the UVB-induced C → T mutation for the sequence contexts shows a mixed pattern of UVC- and UVA-induced mutations, and a similar pattern is also observed for natural sunlight, in which UVB is the most genotoxic component. In addition, the CC → TT mutation hardly occurs at UVA1 wavelengths, although it is detected rarely but constantly in the UVC and UVB ranges. This wavelength-dependent variation in the sequence-context preference of the UVR-specific mutations could be explained by two different photochemical mechanisms of cyclobutane pyrimidine dimer (CPD) formation. The UV-signature mutations observed in the UVC and UVB ranges are known to be caused mainly by CPDs produced through the conventional singlet/triplet excitation of pyrimidine bases after the direct absorption of the UVC/UVB photon energy in those bases. On the other hand, a novel photochemical mechanism through the direct absorption of the UVR energy to double-stranded DNA, which is called "collective excitation", has been proposed for the UVA-induced CPD formation. The UVA photons directly absorbed by DNA produce CPDs with a sequence context preference different from that observed for CPDs caused by the UVC/UVB-mediated singlet/triplet excitation, causing CPD formation preferentially at thymine-containing dipyrimidine sites and probably also preferably at methyl CpG-associated dipyrimidine sites, which include the TCG sequence. In this review, I present a mechanistic consideration on the wavelength-dependent variation of the sequence context preference of the UVR-specific mutations and rationalize the proposition of the UVA-signature mutation, in addition to the UV-signature mutation.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
8
|
Investigation of the mechanisms of photo-induced formation of cyclobutane dimers of cytosine and 2,4-diaminopyrimidine. J Mol Model 2016; 22:230. [PMID: 27572158 DOI: 10.1007/s00894-016-3087-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
The mechanisms of the formation of cyclobutane dimers (CBD) of cytosine and 2,4-diaminopyrimidine were studied at the CC2 theoretical level and cc-pVDZ basis functions. Four orientations of the two monomers are explored: cys-syn, cis-anti, trans-syn, and trans-anti. The research revealed that in all cases the cyclobutane structures are formed along the (1)ππ* excited-state reaction paths of the stacked aggregates. We localized the S1/S0 conical intersections mediating those transformations. The results obtained agree well with the previously reported investigations on the cis-syn cyclodimer formations of other pyrimidines.
Collapse
|
9
|
Ikehata H, Mori T, Yamamoto M. In Vivo Spectrum of UVC-induced Mutation in Mouse Skin Epidermis May Reflect the Cytosine Deamination Propensity of Cyclobutane Pyrimidine Dimers. Photochem Photobiol 2015; 91:1488-96. [PMID: 26335024 DOI: 10.1111/php.12525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/23/2015] [Indexed: 01/15/2023]
Abstract
Although ultraviolet radiation (UVR) has a genotoxicity for inducing skin cancers, the skin may tolerate UVC component because the epidermal layer prevents this short wavelength range from passing through. Here, UVC genotoxicity for mouse skin was evaluated in terms of DNA damage formation and mutagenicity. UVC induced UVR photolesions and mutations remarkably in the epidermis but poorly in the dermis, confirming the barrier ability of the epidermis against shorter UVR wavelengths. Moreover, the epidermis itself responded to UVC mutagenicity with mutation induction suppression, which suppressed the mutant frequencies to a remarkably low, constant level regardless of UVC dose. The mutation spectrum observed in UVC-exposed epidermis showed a predominance of UV-signature mutation, which occurred frequently in 5'-TCG-3', 5'-TCA-3' and 5'-CCA-3' contexts. Especially, for the former two contexts, the mutations recurred at several sites with more remarkable recurrences at the 5'-TCG-3' sites. Comparison of the UVC mutation spectrum with those observed in longer UVR wavelength ranges led us to a mechanism that explains why the sequence context preference of UV-signature mutation changes according to the wavelength, which is based on the difference in the mCpG preference of cyclobutane pyrimidine dimer (CPD) formation among UVR ranges and the sequence context-dependent cytosine deamination propensity of CPD.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshio Mori
- Radioisotope Research Center, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
10
|
Development and validation of a new transgenic hairless albino mouse as a mutational model for potential assessment of photocarcinogenicity. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 791:42-52. [PMID: 26338542 DOI: 10.1016/j.mrgentox.2015.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 11/24/2022]
Abstract
Short-term phototoxicity testing is useful in selecting test agents for the longer and more expensive photocarcinogenesis safety tests; however, no validated short-term tests have been proven reliable in predicting the outcome of a photocarcinogenesis safety test. A transgenic, hairless, albino (THA) mouse model was developed that carries the gpt and red/gam [Spi(-)] genes from the gpt delta mouse background and the phenotypes from the SKH-1 mouse background to use as a short-term test in lieu of photocarcinogenesis safety tests. Validation of the THA mouse model was confirmed by exposing groups of male mice to sub-erythemal doses of ultraviolet B (UVB) irradiation for three consecutive days emitted from calibrated overhead, Kodacel-filtered fluorescent lamps and measuring the mutant frequencies (MFs) in the gpt and red/gam (Spi(-)) genes and types of mutations in the gpt gene. The doses or irradiation were monitored with broad-spectrum dosimeters that were calibrated to a NIST-traceable standard and cumulative CIE-weighted doses were 20.55 and 41.0mJ/cm(2) (effective). Mice were sacrificed 14 days after the final UVB exposure and MFs in both the gpt and red/gam genes were evaluated in the epidermis. The exposure of mice to UVB induced significant ten- to twelve-fold increases in the gpt MF and three- to five-fold increases in the Spi(-) MF over their respective background MF, 26±3×10(-6) and 9±1×10(-6). The gpt mutation spectra were significantly different between that of the UVB-irradiated and that of non-irradiated mice although the mutation spectra of both groups were dominated by C→T transitions (84% and 66%). In mice exposed to UVB, the C→T transitions occurred almost exclusively at dipyrimidine sites (92%), whereas in non-irradiated control mice, the C→T transitions occurred at CpG sites (86%). These results suggest that the newly developed THA mice are a useful and reliable model for testing UVB-induced mutagenicity in skin tissue. The application of this model for short-term prediction of solar-induced skin carcinogenicity is presently under investigation.
Collapse
|
11
|
Brash DE. UV signature mutations. Photochem Photobiol 2014; 91:15-26. [PMID: 25354245 DOI: 10.1111/php.12377] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/22/2014] [Indexed: 12/17/2022]
Abstract
Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations—deviations from a random distribution of base changes to create a pattern typical of that mutagen—and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the nontranscribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; UV's nonsignature mutations may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents.
Collapse
Affiliation(s)
- Douglas E Brash
- Departments of Therapeutic Radiology and Dermatology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
12
|
Song Q, Cannistraro VJ, Taylor JS. Synergistic modulation of cyclobutane pyrimidine dimer photoproduct formation and deamination at a TmCG site over a full helical DNA turn in a nucleosome core particle. Nucleic Acids Res 2014; 42:13122-33. [PMID: 25389265 PMCID: PMC4245940 DOI: 10.1093/nar/gku1049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sunlight-induced C to T mutation hotspots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C or 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by DNA polymerase η and defines a probable mechanism for the origin of UV-induced C to T mutations. We have now determined the photoproduct formation and deamination rates for 10 consecutive T=mCG CPDs over a full helical turn at the dyad axis of a nucleosome and find that whereas photoproduct formation and deamination is greatly inhibited for the CPDs closest to the histone surface, it is greatly enhanced for the outermost CPDs. Replacing the G in a T=mCG CPD with A greatly decreased the deamination rate. These results show that rotational position and flanking sequence in a nucleosome can significantly and synergistically modulate CPD formation and deamination that contribute to C to T mutations associated with skin cancer induction and may have influenced the evolution of the human genome.
Collapse
Affiliation(s)
- Qian Song
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
13
|
Ikehata H, Chang Y, Yokoi M, Yamamoto M, Hanaoka F. Remarkable induction of UV-signature mutations at the 3'-cytosine of dipyrimidine sites except at 5'-TCG-3' in the UVB-exposed skin epidermis of xeroderma pigmentosum variant model mice. DNA Repair (Amst) 2014; 22:112-22. [PMID: 25128761 DOI: 10.1016/j.dnarep.2014.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/12/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022]
Abstract
The human POLH gene is responsible for the variant form of xeroderma pigmentosum (XP-V), a genetic disease highly susceptible to cancer on sun-exposed skin areas, and encodes DNA polymerase η (polη), which is specialized for translesion DNA synthesis (TLS) of UV-induced DNA photolesions. We constructed polη-deficient mice transgenic with lacZ mutational reporter genes to study the effect of Polh null mutation (Polh(-/-)) on mutagenesis in the skin after UVB irradiation. UVB induced lacZ mutations with remarkably higher frequency in the Polh(-/-) epidermis and dermis than in the wild-type (Polh(+/+)) and heterozygote. DNA sequences of a hundred lacZ mutants isolated from the epidermis of four UVB-exposed Polh(-/-) mice were determined and compared with mutant sequences from irradiated Polh(+)(/)(+) mice. The spectra of the mutations in the two genotypes were both highly UV-specific and dominated by C→T transitions at dipyrimidines, namely UV-signature mutations. However, sequence preferences of the occurrence of UV-signature mutations were quite different between the two genotypes: the mutations occurred at a higher frequency preferentially at the 5'-TCG-3' sequence context than at the other dipyrimidine contexts in the Polh(+/+) epidermis, whereas the mutations were induced remarkably and exclusively at the 3'-cytosine of almost all dipyrimidine contexts with no preference for 5'-TCG-3' in the Polh(-/-) epidermis. In addition, in Polh(-/-) mice, a small but remarkable fraction of G→T transversions was also observed exclusively at the 3'-cytosine of dipyrimidine sites, strongly suggesting that these transversions resulted not from oxidative damage but from UV photolesions. These results would reflect the characteristics of the error-prone TLS functioning in the bypass of UV photolesions in the absence of polη, which would be mediated by mechanisms based on the two-step model of TLS. On the other hand, the deamination model would explain well the mutation spectrum in the Polh(+/+) genotype.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Physiological Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Yumin Chang
- Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masayuki Yokoi
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Masayuki Yamamoto
- Department of Physiological Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Fumio Hanaoka
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| |
Collapse
|
14
|
Ikehata H, Kumagai J, Ono T, Morita A. Solar-UV-signature mutation prefers TCG to CCG: extrapolative consideration from UVA1-induced mutation spectra in mouse skin. Photochem Photobiol Sci 2014; 12:1319-27. [PMID: 23471200 DOI: 10.1039/c3pp25444e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UVA1 exerts its genotoxicity on mammalian skin by producing cyclobutane pyrimidine dimers (CPDs) in DNA and preferentially inducing solar-UV-signature mutations, C → T base substitution mutations at methylated CpG-associated dipyrimidine (Py-mCpG) sites, as demonstrated previously using a 364 nm laser as a UVA1 source and lacZ-transgenic mice that utilize the transgene as a mutational reporter. In the present study, we confirmed that a broadband UVA1 source induced the same mutation profiles in mouse epidermis as the UVA1 laser, generalizing the previous result from a single 364 nm to a wider wavelength range of UVA1 (340-400 nm). Combined with our previous data on the mutation spectra induced in mouse epidermis by UVB, UVA2 and solar UVR, we proved that the solar-UV-signature mutation is commonly observed in the wavelength range from UVB to UVA, and found that UVA1 induces this mutation more preferentially than the other shorter wavelength ranges. This finding indicates that the solar-UV-signature mutation-causing CPDs, which are known to prefer Py-mCpG sites, could be produced with the energy provided by the longer wavelength region of UVR, suggesting a photochemical reaction through the excitation of pyrimidine bases to energy states that can be accomplished by absorption of even low-energy UVR. On the other hand, the lower proportions of solar-UV-signature mutations observed in the mutation spectra for UVB and solar UVR indicate that the direct photochemical reaction through excited singlet state of pyrimidine bases, which can be accomplished only by high-energy UVR, is also involved in the mutation induction at those shorter wavelengths of UVR. We also found that the solar-UV signature prefers 5'-TCG-3' to 5'-CCG-3' as mutational target sites, consistent with the fact that UVA induces CPDs selectively at thymine-containing dipyrimidine sites and that solar UVR induces them preferably at Py-mCpG sites. However, the mutation spectrum in human p53 gene from non-melanoma skin cancers shows the opposite preference for 5'-CCG-3' sites. This apparent discrepancy in the site preference seems to result from the lack of 5'-TCG-3' sites mutable to missense mutations on the nontranscribed strand of human p53 gene, which should be evolutionally acquired under selective pressure from the sun.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | |
Collapse
|
15
|
Masumura K, Sakamoto Y, Ikeda M, Asami Y, Tsukamoto T, Ikehata H, Kuroiwa Y, Umemura T, Nishikawa A, Tatematsu M, Ono T, Nohmi T. Antigenotoxic effects of p53 on spontaneous and ultraviolet light B--induced deletions in the epidermis of gpt delta transgenic mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:244-252. [PMID: 20740625 DOI: 10.1002/em.20610] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 05/29/2023]
Abstract
Tumor development in the skin may be a multistep process where multiple genetic alterations occur successively. The p53 gene is involved in genome stability and thus is referred to as "the guardian of the genome." To better understand the antigenotoxic effects of p53 in ultraviolet light B (UVB)-induced mutagenesis, mutations were measured in the epidermis of UVB-irradiated p53(+/+) and p53(-/-) gpt delta mice. In the mouse model, point mutations and deletions are separately identified by the gpt and Spi(-) assays, respectively. The mice were exposed to UVB at single doses of 0.5, 1.0, or 2.0 kJ/m(2) . The mutant frequencies (MFs) were determined 4 weeks after the irradiation. All doses of UVB irradiation enhanced gpt MFs by about 10 times than that of unirradiated mice. There were no significant differences in gpt MFs and the mutation spectra between p53(+/+) and p53(-/-) mice. The predominant mutations induced by UVB irradiation were G:C to A:T transitions at dipyrimidines. In contrast, in unirradiated p53(-/-) mice, the frequencies of Spi(-) large deletions of more than 1 kb and complex-type deletions with rearrangements were significantly higher than those of the Spi(-) large deletions in p53(+/+) counterparts. The specific Spi(-) mutation frequency of more than 1 kb deletions and complex types increased in a dose-dependent manner in the p53(+/+) mice. However, no increase of such large deletions was observed in irradiated p53(-/-) mice. These results suggest that the antigenotoxic effects of p53 may be specific to deletions and complex-type mutations induced by double-strand breaks in DNA.
Collapse
Affiliation(s)
- Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
He D, Uehara Y, Furuya M, Ikehata H, Komura JI, Yamauchi K, Kakinuma S, Shang Y, Shimada Y, Ootsuyama A, Norimura T, Ono T. Effects of calorie restriction on the age-dependent accumulation of mutations in the small intestine of lacZ-transgenic mice. Mech Ageing Dev 2011; 132:117-22. [PMID: 21300080 DOI: 10.1016/j.mad.2011.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/14/2010] [Accepted: 01/26/2011] [Indexed: 10/18/2022]
Abstract
To understand the effect of calorie restriction on genome maintenance systems, the age-dependent accumulation of mutations in animals maintained on high and low calorie diets was examined using lacZ-transgenic mice. Mice were fed a diet of 95 kcal/w or 65 kcal/w from 2 to 17 months of age. The mutation frequencies in the lacZ gene in epithelial tissues from the small intestine were examined at 12 and 17 months. Mutation frequencies were found to be lower in mice fed with a low calorie diet than in mice fed with a high calorie diet at the two age points. The molecular nature of the mutations was examined with DNA sequencing. It showed a predominance of transversions from G:C to T:A, and this is a typical type of mutation induced by reactive oxygen species. The fraction of this type of mutation among the different types of mutations detected was not affected by calorie restriction. The percentage of the other types of mutation was not influenced either. These results suggest that calorie restriction reduces the age-dependent accumulation of mutations by stimulating or inducing various types of DNA protection and repair systems rather than protecting cells against any specific type of DNA alteration.
Collapse
Affiliation(s)
- Dongwei He
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Ultraviolet (UV) light induces specific mutations in the cellular and skin genome such as UV-signature and triplet mutations, the mechanism of which has been thought to involve translesion DNA synthesis (TLS) over UV-induced DNA base damage. Two models have been proposed: "error-free" bypass of deaminated cytosine-containing cyclobutane pyrimidine dimers (CPDs) by DNA polymerase η, and error-prone bypass of CPDs and other UV-induced photolesions by combinations of TLS and replicative DNA polymerases--the latter model has also been known as the two-step model, in which the cooperation of two (or more) DNA polymerases as misinserters and (mis)extenders is assumed. Daylight UV induces a characteristic UV-specific mutation, a UV-signature mutation occurring preferentially at methyl-CpG sites, which is also observed frequently after exposure to either UVB or UVA, but not to UVC. The wavelengths relevant to the mutation are so consistent with the composition of daylight UV that the mutation is called solar-UV signature, highlighting the importance of this type of mutation for creatures with the cytosine-methylated genome that are exposed to the sun in the natural environment. UVA has also been suggested to induce oxidative types of mutation, which would be caused by oxidative DNA damage produced through the oxidative stress after the irradiation. Indeed, UVA produces oxidative DNA damage not only in cells but also in skin, which, however, does not seem sufficient to induce mutations in the normal skin genome. In contrast, it has been demonstrated that UVA exclusively induces the solar-UV signature mutations in vivo through CPD formation.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Division of Genome and Radiation Biology, Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | | |
Collapse
|
18
|
González-Ramírez I, Roca-Sanjuán D, Climent T, Serrano-Pérez JJ, Merchán M, Serrano-Andrés L. On the photoproduction of DNA/RNA cyclobutane pyrimidine dimers. Theor Chem Acc 2010. [DOI: 10.1007/s00214-010-0854-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Loh YH, Hartung O, Li H, Guo C, Sahalie JM, Manos PD, Urbach A, Heffner GC, Grskovic M, Vigneault F, Lensch MW, Park IH, Agarwal S, Church GM, Collins JJ, Irion S, Daley GQ. Reprogramming of T cells from human peripheral blood. Cell Stem Cell 2010; 7:15-9. [PMID: 20621044 DOI: 10.1016/j.stem.2010.06.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 05/31/2010] [Accepted: 06/05/2010] [Indexed: 12/31/2022]
Affiliation(s)
- Yuin-Han Loh
- Division of Pediatric Hematology Oncology, Department of Biological Chemistry and Molecular Pharmacology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Maguire A, Lyng FM, Walsh JE. Solar simulated radiation induced cell death depends on spectral distribution and irradiance but not output delivery. RADIATION PROTECTION DOSIMETRY 2010; 140:147-157. [PMID: 20203123 DOI: 10.1093/rpd/ncq080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photo-biological investigations are dependent on calibration and characterisation to determine the relevance of an artificial irradiator to the study at hand. The importance of this has been voiced in the literature. However, the importance of output delivery is relatively unknown. The biological relevance of a high-energy, rapidly pulsing solar simulator was investigated using the clonogenic assay and was found to be reciprocity law compliant despite an exaggerated ultraviolet (UV) irradiance in excess of 1600 W m(-2) delivered per pulse. In fact, it was found to be the least cytotoxic irradiator compared with a second solar simulator and a UVB fluorescent lamp with continuous UV irradiances of 55 and 6.4 W m(-2), respectively. The reduced survival observed with the continuous irradiators is attributed to differences in spectral irradiance and distribution, particularly in the UVB, which in the absence of thorough calibration and characterisation may have resulted in erroneous conclusions.
Collapse
Affiliation(s)
- Alanna Maguire
- Radiation and Environmental Science Centre (RESC), Focus Institute, Dublin Institute of Technology, Dublin 8, Ireland.
| | | | | |
Collapse
|
21
|
Ikehata H, Okuyama R, Ogawa E, Nakamura S, Usami A, Mori T, Tanaka K, Aiba S, Ono T. Influences of p53 deficiency on the apoptotic response, DNA damage removal and mutagenesis in UVB-exposed mouse skin. Mutagenesis 2010; 25:397-405. [DOI: 10.1093/mutage/geq019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
22
|
Rochette PJ, Lacoste S, Therrien JP, Bastien N, Brash DE, Drouin R. Influence of cytosine methylation on ultraviolet-induced cyclobutane pyrimidine dimer formation in genomic DNA. Mutat Res 2009; 665:7-13. [PMID: 19427505 DOI: 10.1016/j.mrfmmm.2009.02.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/25/2009] [Accepted: 02/17/2009] [Indexed: 10/21/2022]
Abstract
The ultraviolet (UV) component of sunlight is the main cause of skin cancer. More than 50% of all non-melanoma skin cancers and >90% of squamous cell carcinomas in the US carry a sunlight-induced mutation in the p53 tumor suppressor gene. These mutations have a strong tendency to occur at methylated cytosines. Ligation-mediated PCR (LMPCR) was used to compare at nucleotide resolution DNA photoproduct formation at dipyrimidine sites either containing or lacking a methylated cytosine. For this purpose, we exploited the fact that the X chromosome is methylated in females only on the inactive X chromosome, and that the FMR1 (fragile-X mental retardation 1) gene is methylated only in fragile-X syndrome male patients. Purified genomic DNA was irradiated with UVC (254nm), UVB (290-320nm) or monochromatic UVB (302 and 313nm) to determine the effect of different wavelengths on cyclobutane pyrimidine dimer (CPD) formation along the X-linked PGK1 (phosphoglycerate kinase 1) and FMR1 genes. We show that constitutive methylation of cytosine increases the frequency of UVB-induced CPD formation by 1.7-fold, confirming that methylation per se is influencing the probability of damage formation. This was true for both UVB sources used, either broadband or monochromatic, but not for UVC. Our data prove unequivocally that following UVB exposure methylated cytosines are significantly more susceptible to CPD formation compared with unmethylated cytosines.
Collapse
Affiliation(s)
- Patrick J Rochette
- Division of Pathology, Department of Medical Biology, Université Laval, Québec, QC, Canada
| | | | | | | | | | | |
Collapse
|
23
|
UVA1 genotoxicity is mediated not by oxidative damage but by cyclobutane pyrimidine dimers in normal mouse skin. J Invest Dermatol 2008; 128:2289-96. [PMID: 18356809 DOI: 10.1038/jid.2008.61] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
UVA1 induces the formation of 8-hydroxy-2'-deoxyguanosines (8-OH-dGs) and cyclobutane pyrimidine dimers (CPDs) in the cellular genome. However, the relative contribution of each type of damage to the in vivo genotoxicity of UVA1 has not been clarified. We irradiated living mouse skin with 364-nm UVA1 laser light and analyzed the DNA damage formation and mutation induction in the epidermis and dermis. Although dose-dependent increases were observed for both 8-OH-dG and CPD, the mutation induction in the skin was found to result specifically from the CPD formation, based on the induced mutation spectra in the skin genome: the dominance of C --> T transition at a dipyrimidine site. Moreover, these UV-specific mutations occurred preferentially at the 5'-TCG-3' sequence, suggesting that CpG methylation and photosensitization-mediated triplet energy transfer to thymine contribute to the CPD-mediated UVA1 genotoxicity. Thus, it is the CPD formation, not the oxidative stress, that effectively brings about the genotoxicity in normal skin after UVA1 exposure. We also found differences in the responses to the UVA1 genotoxicity between the epidermis and the dermis: the mutation induction after UVA1 irradiation was suppressed in the dermis at all levels of irradiance examined, whereas it leveled off from a certain high irradiance in the epidermis.
Collapse
|
24
|
Ikehata H, Ono T. Significance of CpG methylation for solar UV-induced mutagenesis and carcinogenesis in skin. Photochem Photobiol 2007; 83:196-204. [PMID: 16620158 DOI: 10.1562/2006-02-28-ir-822] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations detected in the p53 gene in human nonmelanoma skin cancers show a highly UV-specific mutation pattern, a dominance of C --> T base substitutions at dipyrimidine sites plus frequent CC --> TT tandem substitutions, indicating a major involvement of solar UV in the skin carcinogenesis. These mutations also have another important characteristic of frequent occurrences at CpG dinucleotide sites, some of which actually show prominent hotspots in the p53 gene. Although mammalian solar UV-induced mutation spectra were studied intensively in the aprt gene using rodent cultured cells and the UV-specific mutation pattern was confirmed, the second characteristic of the p53 mutations in human skin cancers had not been reproduced. However, studies with transgenic mouse systems developed thereafter for mutation research, which harbor methyl CpG-abundant transgenes as mutation markers, yielded complete reproductions of the situation of the human skin cancer mutations in terms of both the UV-specific pattern and the frequent occurrence at CpG sites. In this review, we evaluate the significance of the CpG methylation for solar UV mutagenesis in the mammalian genome, which would lead to skin carcinogenesis. We propose that the UV-specific mutations at methylated CpG sites, C --> T transitions at methyl CpG-associated dipyrimidine sites, are a solar UV-specific mutation signature, and have estimated the wavelength range effective for the solar-UV-specific mutation as 310-340 nm. We also recommend the use of methyl CpG-enriched sequences as mutational targets for studies on solar-UV genotoxicity for human, rather than conventional mammalian mutational marker genes such as the aprt and hprt genes.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | | |
Collapse
|
25
|
Ikehata H, Ono T, Tanaka K, Todo T. A model for triplet mutation formation based on error-prone translesional DNA synthesis opposite UV photolesions. DNA Repair (Amst) 2007; 6:658-68. [PMID: 17275422 DOI: 10.1016/j.dnarep.2006.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 12/14/2006] [Accepted: 12/14/2006] [Indexed: 11/23/2022]
Abstract
A triplet mutation is defined as multiple base substitutions or frameshifts within a three-nucleotide sequence which includes a dipyrimidine sequence. Triplet mutations have recently been identified as a new type of UV-specific mutation, although the mechanism of their formation is unknown. A total of 163 triplet mutations were identified through an extensive search of previously published data on UV-induced mutations, including mutations from skin, skin cancer, and cultured mammalian cells. Seven common patterns of sequence changes were found: Type I, NTC-->TTT; Type IIa, NCC-->PyTT or PyCT (Py, pyrimidine); Type IIb, TCC-->PuTT or PuCT (Pu, purine); Type III, NCC-->NAT or NTA; Type IV, NTT-->AAT; Type Va, NCT-->NTX; and Type Vb, PuCT-->XTT (N and X, independent anonymous bases). Furthermore, it is suggested that the type of UV lesion responsible for each of these triplet mutation classes are (a) pyrimidine(6-4)pyrimidone photoproducts for Types I, IIb, III, IV and Vb, (b) cyclobutane pyrimidine dimers for Type Va, and (c) Dewar valence isomers for Types IIa and IIb. These estimations are based primarily on results from previous studies using photolyases specific for each type of UV lesion. A model is proposed to explain the formation of each type of triplet mutation, based on error-prone translesional DNA synthesis opposite UV-specific photolesions. The model is largely consistent with the 'A-rule', and predicts error-prone insertions not only opposite photolesions but also opposite the undamaged template base one-nucleotide downstream from the lesions.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
| | | | | | | |
Collapse
|
26
|
Celewicz L, Mayer M, Shetlar MD. The Photochemistry of Thymidylyl-(3′-5′)-5-methyl-2′-deoxycytidine in Aqueous Solution¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb00201.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Ikehata H, Saito Y, Yanase F, Mori T, Nikaido O, Ono T. Frequent recovery of triplet mutations in UVB-exposed skin epidermis of Xpc-knockout mice. DNA Repair (Amst) 2007; 6:82-93. [PMID: 17049932 DOI: 10.1016/j.dnarep.2006.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 09/11/2006] [Accepted: 09/11/2006] [Indexed: 10/24/2022]
Abstract
Mutations of the Xpc gene cause a deficiency in global genome repair, a subpathway of nucleotide excision repair (NER), in mammalian cells. We used transgenic mice harboring the lambda-phage-based lacZ mutational reporter gene to study the effect of an Xpc null mutation (Xpc-/-) on damage induction, repair and mutagenesis in mouse skin epidermis after UVB irradiation. UVB induced equal amounts of cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (64PPs) in mouse skin epidermis of Xpc-/- and wild-type mice. CPDs were not significantly removed in either of the mouse genotypes by 12h after irradiation, whereas removal of 64PPs was observed in the wild-type. Irradiation with 300 and 400J/m2 UVB increased the lacZ mutant frequency in the Xpc-/- epidermis to at least twice as high as in the wild-type. Ninety-nine lacZ mutants isolated from the UVB-exposed epidermis of Xpc(-/-)mice were analyzed and compared with mutant sequences from irradiated wild-type mice. The spectra of the mutations in the two genotypes were both highly UV-specific and similar in the dominance of C-->T transitions at dipyrimidine sites; however, Xpc-/- mice had a higher frequency of two-base tandem substitutions, including CC-->TT mutations, three-base tandem substitutions and double base substitutions that were separated by one unchanged base in a three-base sequence (alternating mutations). These tandem/alternating mutations included a remarkably large number of triplet mutations, a recently reported, novel type of UV-specific mutation, characterized by multiple base substitutions or frameshifts within a three-nucleotide sequence containing a dipyrimidine. We concluded that the triplet mutation is a UV-specific mutation that preferably occurs in NER deficient genetic backgrounds.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Valentine CR, Rainey HF, Farrell JM, Delongchamp RR, Howard PC, Hass BS. Sensitivity of UVB-Induced Mutant Detection in the ΦX174 Transgenic Forward Mutation Assay. Genes Environ 2007. [DOI: 10.3123/jemsge.29.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
29
|
Ikehata H, Yanase F, Mori T, Nikaido O, Tanaka K, Ono T. Mutation spectrum in UVB-exposed skin epidermis of Xpa-knockout mice: frequent recovery of triplet mutations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:1-13. [PMID: 17163503 DOI: 10.1002/em.20262] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Knockout mutations in both alleles of the Xpa gene give rise to a complete deficiency in nucleotide excision repair (NER) in mammalian cells. We used transgenic mice harboring the lambda-phage-based lacZ mutational reporter gene to study the effect of Xpa null mutation (Xpa(-/-)) on damage induction, repair, and mutagenesis in mouse skin epidermis after UVB irradiation. UVB induced equal amounts of cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (64PPs) in mouse skin epidermis of Xpa(-/-) and wild-type mice. Neither photolesion was removed in the Xpa(-/-) epidermis by 12 hr after irradiation whereas removal of 64PPs was observed in the epidermis of wild-type mice. Irradiation with 200 and 300 J/m(2) UVB increased the lacZ mutant frequency in the epidermis of Xpa(-/-) mice, but the induced mutant frequencies were not significantly different from those previously determined for wild-type mice. One-hundred lacZ mutants isolated from the UVB-exposed epidermis of Xpa(-/-) mice were analyzed and compared with mutant sequences previously determined for irradiated wild-type mice. The distribution of the mutations along the lacZ transgene and the preferred dipyrimidine context of the UV-specific mutations were similar in mutants from the Xpa(-/-) and wild-type mice. The spectra of the mutations in the two genotypes were both highly UV-specific and similar in a dominance of C --> T transitions at dipyrimidine sites; however, Xpa(-/-) mice had a higher frequency than wild-type mice of two-base tandem substitutions, including CC --> TT mutations, three-base tandem mutations and double base substitutions that were separated by one unchanged base in a three-base sequence (alternating mutations). These tandem/alternating mutations included a remarkably large number of triplet mutations, a recently reported, novel type of UV-specific mutation, characterized by multiple base substitutions or frameshifts within a three-nucleotide sequence containing a dipyrimidine. We conclude that the triplet mutation is a UV-specific mutation that preferably occurs in NER-deficient genetic backgrounds.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Seiryo-machi, Sendai 980-8575, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Wang F, Saito Y, Shiomi T, Yamada S, Ono T, Ikehata H. Mutation spectrum in UVB-exposed skin epidermis of a mildly-affected Xpg-deficient mouse. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:107-16. [PMID: 16247763 DOI: 10.1002/em.20173] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A C-terminal 183 amino acid-truncated mutation of the mouse Xpg gene (XpgDeltaex15) gives rise to a partial deficiency in nucleotide excision repair in homozygously affected cells. We studied the effect of this mutation on UVB-induced mutagenesis in mouse skin, using transgenic mice harboring lambda-phage-based bacterial lacZ genes as a mutational reporter. UVB increased the lacZ mutant frequency in the epidermis moderately in the homozygous mutant mice, but significantly higher than in the wild-type or the heterozygous mice, whereas background mutant frequencies were not appreciably different among the three mouse genotypes. Ninety-eight lacZ mutant sequences isolated from the UVB-exposed epidermis of the XpgDeltaex15-homozygous mice were analyzed and compared with mutant sequences from the wild-type mice. The spectra of the mutations in the two mouse genotypes were not significantly different, and they were highly UV-specific. There were frequent C --> T transitions at dipyrimidine sites and several CC --> TT tandem mutations, although the UV-specific mutations occurred more frequently at CpG sites in the mutant mice. The distribution of the mutations observed in the lacZ transgene and the preferred sequence context of the UV-specific C --> T mutations (5'-TC-3' > 5'-CC-3' > 5'-CT-3') in the Xpg-mutant mice were similar to those found in the wild-type mice. Despite these similarities, we detected a previously unrecognized type of the UV-induced mutation only in the Xpg mutant (6/98 in the mutation spectrum of the mutant vs. 0/76 in the wild-type; P = 0.035), which is characterized by multiple base substitutions or frameshifts within a three-nucleotide sequence containing a dipyrimidine. We propose that this putative new class of mutation, which we refer to as a "triplet mutation", is characteristic of UV-induced mutation in an excision-repair-deficient background.
Collapse
Affiliation(s)
- Feng Wang
- Department of Radiotherapy, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Ono T, Ikehata H, Uehara Y, Komura JI. The Maintenance of Genome Integrity is Tissue-Specific. Genes Environ 2006. [DOI: 10.3123/jemsge.28.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Stout GJ, Westdijk D, Calkhoven DM, Pijper O, Backendorf CMP, Willemze R, Mullenders LHF, de Gruijl FR. Epidermal transit of replication-arrested, undifferentiated keratinocytes in UV-exposed XPC mice: an alternative to in situ apoptosis. Proc Natl Acad Sci U S A 2005; 102:18980-5. [PMID: 16365302 PMCID: PMC1323157 DOI: 10.1073/pnas.0505505102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The interplay among nucleotide excision repair, cell-cycle regulation, and apoptosis in the UV-exposed epidermis is extremely important to avoid mutations and malignant transformation. In Xpc(-/-) mice deficient in global genome nucleotide excision repair (GGR), a cell-cycle arrest of epidermal cells in late S-phase [with near-double normal diploid (4N) DNA content] was observed 48-72 h after UV exposure. This arrest resolved without apoptosis (96-168 h). We surmised that these arrested keratinocytes with persistent DNA damage were removed by epidermal turnover. In vivo BrdUrd pulse-chase labeling (>17 h after UV exposure) showed that DNA replication after UV exposure was resumed in Xpc(-/-) mice, but it did not reveal any evidence of retained BrdUrd-labeled S-phase cells in the basal layer of the epidermis at 72 h. Interestingly, by this time a maximum number of cytokeratin 10-negative and cytokeratin 5-positive cells had appeared in the suprabasal epidermal cell layers of UV-exposed Xpc(-/-) mice. Accumulation of these "basal cell"-like keratinocytes in the suprabasal layers was clearly aberrant and was not observed in WT and heterozygous mice. Flow cytometric analyses of single-cell suspensions from UV-exposed Xpc(-/-) epidermis further showed that the "near-4N" arrested cells retained cytokeratin 5 and lacked cytokeratin 10. Hence, we conclude that the arrested near-4N cells became detached from the basal layer without entering a proper differentiation program and were indeed subsequently lost through the epidermal turnover. This expulsion apparently constitutes an alternative route, different from in situ apoptosis, to eliminate DNA-damaged arrested cells from the epidermis.
Collapse
Affiliation(s)
- Gerdine J Stout
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Celewicz L, Mayer M, Shetlar MD. The photochemistry of thymidylyl-(3'-5')-5-methyl-2'-deoxycytidine in aqueous solution. Photochem Photobiol 2005; 81:404-18. [PMID: 15493957 DOI: 10.1562/2004-06-15-ra-201.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The photochemistry of the dinucleoside monophosphate thymidylyl-(3'-5')-5-methyl-2'-deoxycytidine (Tpm5dC) has been studied in aqueous solution using both 254 nm and UV-B radiation. A variety of dinucleotide photoproducts containing 5-methylcytosine (m5C) have been isolated and characterized. These include two cyclobutane dimers (CBD) (the cis-syn [c,s]and trans-syn forms), a (6-4) adduct and its related Dewar isomer, and two isomers of a product in which the m5C moiety was converted into an acrylamidine. Small amounts of thymidylyl-(3'-5')-thymidine (TpT) were also formed, presumably as a secondary photoreaction product. In addition, a photoproduct was characterized in which the m5C moiety was lost, thus generating 3'-thymidylic acid esterified with 2'-deoxyribose at the 5-hydroxyl on the sugar moiety. The c,s CBD of Tpm5dC readily undergoes deamination to form the corresponding CBD of TpT. The kinetics of this deamination process has been studied; the corresponding enthalpy and entropy of activation for the reaction have been evaluated at pH 7.4 as being, respectively, 73.4 kJ/mol and -103.5 J/K mol. Deamination was not observed for the other characterized photoproducts of Tpm5dC.
Collapse
Affiliation(s)
- Lech Celewicz
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94143-0446, USA
| | | | | |
Collapse
|
34
|
Behravesh E, Emami K, Wu H, Gonda S. Comparison of genotoxic damage in monolayer cell cultures and three-dimensional tissue-like cell assemblies. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2005; 35:260-7. [PMID: 15934204 DOI: 10.1016/j.asr.2005.01.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Assessing the biological risks associated with exposure to the high-energy charged particles encountered in space is essential for the success of long-term space exploration. Although prokaryotic and eukaryotic cell models developed in our laboratory and others have advanced our understanding of many aspects of genotoxicity, in vitro models are needed to assess the risk to humans from space radiation insults. Such models must be representative of the cellular interactions present in tissues and capable of quantifying genotoxic damage. Toward this overall goal, the objectives of this study were to examine the effect of the localized microenvironment of cells, cultured as either 2-dimensional (2D) monolayers or 3-dimensional (3D) aggregates, on the rate and type of genotoxic damage resulting from exposure to Fe-charged particles, a significant portion of space radiation. We used rodent transgenic cell lines containing 50-70 copies of a LacI transgene to provide the enhanced sensitivity required to quantify mutational frequency and type in the 1100-bp LacI target as well as assessment of DNA damage to the entire 45-kbp construct. Cultured cells were exposed to high energy Fe charged particles at Brookhaven National Laboratory's Alternating Gradient Synchrotron facility for a total dose ranging from 0.1 to 2 Gy and allowed to recover for 0-7 days, after which mutational type and frequency were evaluated. The mutational frequency was found to be higher in 3D samples than in 2D samples at all radiation doses. Mutational frequency also was higher at 7 days after irradiation than immediately after exposure. DNA sequencing of the mutant targets revealed that deletional mutations contributed an increasingly high percentage (up to 27%) of all mutations in cells as the dose was increased from 0.5 to 2 Gy. Several mutants also showed large and complex deletions in multiple locations within the LacI target. However, no differences in mutational type were found between the 2D and the 3D samples. These 3D tissue-like model systems can reduce the uncertainty involved in extrapolating risk between in vitro cellular and in vivo models.
Collapse
Affiliation(s)
- E Behravesh
- Division of Space and Life Sciences, Universities Space Research Association, Houston, TX 77058, USA.
| | | | | | | |
Collapse
|
35
|
Ikehata H, Nakamura S, Asamura T, Ono T. Mutation spectrum in sunlight-exposed mouse skin epidermis: small but appreciable contribution of oxidative stress-mediated mutagenesis. Mutat Res 2004; 556:11-24. [PMID: 15491628 DOI: 10.1016/j.mrfmmm.2004.06.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 06/19/2004] [Accepted: 06/25/2004] [Indexed: 05/01/2023]
Abstract
We studied the mutations induced in skin by sunlight using transgenic Muta mice. Noon sunlight during summer at Sendai, Japan induced mutations efficiently in both epidermis and dermis. The mutant frequency (MF) in epidermis reached nearly 0.5% during the first 40 min irradiation but became saturated at this level with the appearance of skin inflammation after further irradiation. At the equivalent inflammatory dose, sunlight was twice as genotoxic as 313 nm-peak UVB. The 81 mutations detected in 80 lacZ transgene mutants isolated from the sunlight-exposed epidermis were dominated by C --> T transitions (89%), occurring exclusively at dipyrimidine sites, and also included a CC --> TT tandem substitution. Thus, the sunlight-induced mutation spectrum is highly UV-specific, quite similar to that induced by UVB but significantly different from that induced by UVA. Although oxidative damage-related C --> A transversions were detected only in five mutants (6%), their frequency was elevated to at least 15 times the background level, suggesting that the contribution of UVA-mediated oxidative stress is comparatively small but considerable. An analysis of bases adjacent to the mutated cytosines revealed that the sunlight-induced mutations prefer 5'-TC-3' dipyrimidine sites to 5'-CC-3' and 5'-CT-3'. The distribution of the frequent C --> T transition sites in the transgene was well associated with the CpG motif, which is known to be completely methylated in the gene, and quite similar to that induced by UVB rather than that by UVA. Thus, the UVB component contributes to the sunlight-induced mutations in the mammalian skin much more than the UVA component, whose influence through reactive oxygen species (ROS)-mediated mutagenesis is still appreciable.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
| | | | | | | |
Collapse
|
36
|
Ono T, Ikehata H, Pithani VP, Uehara Y, Chen Y, Kinouchi Y, Shimosegawa T, Hosoi Y. Spontaneous mutations in digestive tract of old mice show tissue-specific patterns of genomic instability. Cancer Res 2004; 64:6919-23. [PMID: 15466182 DOI: 10.1158/0008-5472.can-04-1476] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In an attempt to evaluate the possible role of mutations in the age-dependent increase of tumor incidence, we studied the mutational burden that accumulates in the aging process in different parts of the digestive tract in mice. The mutations were monitored in lacZ genes integrated in the mouse genome. The digestive tract was divided into the esophagus, stomach, proximal, medial, and distal part of the small intestine, and the colon. Epithelial tissues were separated from these tissues with the exception of the esophagus, in which case the whole tissue was examined. At a young age, the mutant frequencies as well as the molecular nature of the mutations were similar among the tissues examined. In old age, on the other hand, mutant frequencies were elevated to different degrees among the tissues; they were high in the small intestine and colon, intermediate in the stomach, and low in the esophagus. The molecular characteristics of the mutations also revealed distinct tissue-specificity; there were elevated rates of a small deletion mutation in the esophagus, G:C to T:A transversion in the proximal small intestine, and multiple mutations in the distal small intestine and colon. The results indicate that different parts of the digestive tract suffer from different kinds of mutational stress in the aging process. The nature of the multiple mutations suggests the presence of a mutator phenotype based on an imbalance in deoxyribonucleotide pools.
Collapse
Affiliation(s)
- Tetsuya Ono
- Division of Genome and Radiation Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | | | |
Collapse
|