1
|
Johnston S, Gallaher Z, Czaja K. Exogenous reference gene normalization for real-time reverse transcription-polymerase chain reaction analysis under dynamic endogenous transcription. Neural Regen Res 2015; 7:1064-72. [PMID: 25722696 PMCID: PMC4340019 DOI: 10.3969/j.issn.1673-5374.2012.14.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/24/2012] [Indexed: 12/21/2022] Open
Abstract
Quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is widely used to investigate transcriptional changes following experimental manipulations to the nervous system. Despite the widespread utilization of qPCR, the interpretation of results is marred by the lack of a suitable reference gene due to the dynamic nature of endogenous transcription. To address this inherent deficiency, we investigated the use of an exogenous spike-in mRNA, luciferase, as an internal reference gene for the 2(-∆∆Ct) normalization method. To induce dynamic transcription, we systemically administered capsaicin, a neurotoxin selective for C-type sensory neurons expressing the TRPV-1 receptor, to adult male Sprague-Dawley rats. We later isolated nodose ganglia for qPCR analysis with the reference being either exogenous luciferase mRNA or the commonly used endogenous reference β-III tubulin. The exogenous luciferase mRNA reference clearly demonstrated the dynamic expression of the endogenous reference. Furthermore, variability of the endogenous reference would lead to misinterpretation of other genes of interest. In conclusion, traditional reference genes are often unstable under physiologically normal situations, and certainly unstable following the damage to the nervous system. The use of exogenous spike-in reference provides a consistent and easily implemented alternative for the analysis of qPCR data.
Collapse
Affiliation(s)
- Stephen Johnston
- Programs in Neuroscience and Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA
| | - Zachary Gallaher
- Programs in Neuroscience and Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA
| | - Krzysztof Czaja
- Programs in Neuroscience and Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA
| |
Collapse
|
2
|
Harmon SM. The Toxicity of Persistent Organic Pollutants to Aquatic Organisms. PERSISTENT ORGANIC POLLUTANTS (POPS): ANALYTICAL TECHNIQUES, ENVIRONMENTAL FATE AND BIOLOGICAL EFFECTS 2015. [DOI: 10.1016/b978-0-444-63299-9.00018-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
3
|
San Segundo L, Martini F, Pablos MV. Gene expression responses for detecting sublethal effects of xenobiotics and whole effluents on a Xenopus laevis embryo assay. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:2018-2025. [PMID: 23637088 DOI: 10.1002/etc.2267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/10/2012] [Accepted: 04/26/2013] [Indexed: 06/02/2023]
Abstract
In the present study, the authors investigated the effects of bisphenol A, chlorpyrifos, methylparaben, and 2 effluent samples from wastewater treatment plants located in the province of Madrid, Spain, on the messenger RNA expression of specific genes involved in early development (ESR1, pax6, bmp4, and myf5) and a gene involved in the general stress response (hsp70) during Xenopus laevis embryo development. Gene expression was analyzed after 4 h, 24 h, and 96 h of exposure by semiquantitative reverse-transcriptase-polymerase chain reaction. Concentration ranges of the compounds and dilutions for the samples were selected to cause morphological alterations in embryos after 96 h of exposure. Transcript levels of ESR1, pax6, and hsp70 were differentially altered at early developmental stages with patterns specific to the contaminant and the exposure time. However, further studies are needed to establish transcript levels of specific genes as biomarkers of sublethal effects in an environmental risk-assessment framework. Besides, studies including more generic responses, such as genes encoding antioxidant enzymes, together with genes related to embryonic development have to be developed to look for a battery of mechanistic endpoints for the evaluation of chemical exposure at the molecular level in a first-tier assessment.
Collapse
Affiliation(s)
- Laura San Segundo
- Department of the Environment, National Institute for Agricultural and Food Research and Technology, Madrid, Spain.
| | | | | |
Collapse
|
4
|
Iwamoto DV, Kurylo CM, Schorling KM, Powell WH. Induction of cytochrome P450 family 1 mRNAs and activities in a cell line from the frog Xenopus laevis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:165-172. [PMID: 22446828 PMCID: PMC3639473 DOI: 10.1016/j.aquatox.2012.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 05/31/2023]
Abstract
Cytochrome P450 family 1 (CYP1) includes four subfamilies of enzymes: CYP1A, CYP1B, CYP1C, and CYP1D. In many vertebrates, CYP1A, 1B, and 1C expression is induced by agonists of the aryl hydrocarbon receptor, including toxic contaminants such as chlorinated dioxins, coplanar chlorinated biphenyls, and polynuclear aromatic hydrocarbons. Assessed at the level of mRNA, protein, or enzyme activity, CYP1s (especially CYP1As) represent potent and popular biomarkers of contaminant exposure in aquatic vertebrates. Alkylated resorufins are synthetic substrates used to detect, quantify, and describe catalytic activities of cytochrome P450s. The ability to oxidize specific resorufin-based substrates can distinguish the catalytic activities of individual CYP1s. Xenopus laevis, the African clawed frog, is the most widely employed amphibian model in aquatic toxicology, yet the number, inducibility, and activities of CYP1s have not been systematically characterized in this species. Here we report the cloning of cDNAs encoding two new CYP1 family members, X. laevis CYP1B and CYP1C, along with an integrated assessment of the induction of alkyloxyuresorufin-O-dealkylase (AROD) activities and mRNA expression of four known X. laevis CYP1s: CYP1A6, CYP1A7, CYP1B, and CYP1C. Using XLK-WG, an X. laevis kidney epithelial cell line, we determined that EROD (ethoxyresorufin substrate) and MROD (methoxyresorufin) were both induced 3000- to 5000-fold following 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) exposure up to 250 nM, while BROD (benzyloxyresorufin) and PROD (pentyloxyresorufin) activity was not detectable regardless of TCDD treatment. TCDD induced CYP1A6 and CYP1A7 mRNAs by 2-3 orders of magnitude, while CYP1B and CYP1C were unchanged. The more potent AHR agonist, FICZ (6-formylindolo[3,2-b]carbazole), induced CYP1B up to 10-fold at concentrations between 0.1 and 250 nM, while CYP1C induction was less than 3-fold. CYP1B mRNA showed the highest constitutive mRNA expression, 5- to 75-fold greater than the other CYP1 transcripts. Taken together, these results suggest that CYP1A6 and CYP1A7 perform the bulk of EROD and MROD activities we observed in these cells. The ability of each X. laevis CYP1 to catalyze oxidation of individual resorufin substrates remains to be determined. Correlating CYP1 mRNA and induced AROD activity is a significant step toward clarifying the biochemical meaning of these biomarkers and the roles of CYP1 enzymes in X. laevis. The cell culture approach represents an important complement to the long standing use of frog embryos and tadpoles in toxicological studies, providing a well suited model system for determining the molecular mechanisms underlying the regulation of these important biomarkers of contaminant exposure.
Collapse
Affiliation(s)
| | | | | | - Wade H. Powell
- Corresponding author at: Biology Department, Kenyon College, 302A College Park St., Gambier, OH 43022, USA. Tel.: +1 740 427 5396; fax: +1 740 427 5741. (W.H. Powell)
| |
Collapse
|
5
|
Gillardin V, Silvestre F, Divoy C, Thomé JP, Kestemont P. Effects of Aroclor 1254 on oxidative stress in developing Xenopus laevis tadpoles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:546-551. [PMID: 18407353 DOI: 10.1016/j.ecoenv.2008.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 02/12/2008] [Accepted: 02/24/2008] [Indexed: 05/26/2023]
Abstract
Over the last decades, amphibians decline has been reported worldwide. Exposure to polychlorinated biphenyls (PCBs) is one of the possible causes in addition to climate changes, UV-radiation or habitat destruction. In the present study, we tested the hypothesis that PCBs could induce oxidative stress in young tadpoles. Developing Xenopus laevis were exposed from 2- to 5-d postfertilization (pf) to 0.1 or 1 mg/l of Aroclor 1254. Lipid peroxidation and antioxidant systems (SOD, CAT, GST, GPx, GR activities and t-GSH level) were investigated in whole organisms. Exposure to both concentrations did not impact on the survival and development whereas the average body weight decreased. Exposure to 1 mg/l of Aroclor 1254 induced a significant (p<0.05) increase of GST activity when compared to controls 0 and DMSO. The other antioxidant enzymes and LPO evaluation remained unchanged. Our results demonstrate that exposure of X. laevis tadpoles to environmental concentrations of Aroclor 1254 interfere with normal growth. They also highlight that very young X. laevis tadpoles express antioxidant systems.
Collapse
Affiliation(s)
- Virginie Gillardin
- Unité de Recherche en Biologie des Organismes (URBO), Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | | | | | | | | |
Collapse
|
6
|
Liu W, Yang YS, Li PJ, Zhou QX, Xie LJ, Han YP. Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices. JOURNAL OF HAZARDOUS MATERIALS 2009; 161:878-883. [PMID: 18502577 DOI: 10.1016/j.jhazmat.2008.04.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 03/17/2008] [Accepted: 04/12/2008] [Indexed: 05/26/2023]
Abstract
Impact assessment of contaminants in soil is an important issue in environmental quality study and remediation of contaminated land. A random amplified polymorphic DNA (RAPD) 'fingerprinting' technique was exhibited to detect genotoxin-induced DNA damage of plants from heavy metal contaminated soil. This study compared the effects occurring at molecular and population levels in barley seedlings exposed to cadmium (Cd) contamination in soil. Results indicate that reduction of root growth and increase of total soluble protein level in the root tips of barley seedlings occurred with the ascending Cd concentrations. For the RAPD analyses, nine 10-base pair (bp) random RAPD primers (decamers) with 60-70% GC content were found to produce unique polymorphic band patterns and subsequently were used to produce a total of 129 RAPD fragments of 144-2639 base pair in molecular size in the root tips of control seedlings. Results produced from nine primers indicate that the changes occurring in RAPD profiles of the root tips following Cd treatment included alterations in band intensity as well as gain or loss of bands compared with the control seedlings. New amplified fragments at molecular size from approximately 154 to 2245 bp appeared almost for 10, 20 and 40 mg L(-1) Cd with 9 primers (one-four new polymerase chain reaction, (PCR) products), and the number of missing bands enhanced with the increasing Cd concentration for nine primers. These results suggest that genomic template stability reflecting changes in RAPD profiles were significantly affected and it compared favourably with the traditional indices such as growth and soluble protein level at the above Cd concentrations. The DNA polymorphisms detected by RAPD can be applied as a suitable biomarker assay for detection of the genotoxic effects of Cd stress in soil on plants. As a tool in risk assessment the RAPD assay can be used in characterisation of Cd hazard in soil.
Collapse
Affiliation(s)
- Wan Liu
- KeyLaboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | | | | | | | | | | |
Collapse
|
7
|
Gillardin V, Silvestre F, Dieu M, Delaive E, Raes M, Thomé JP, Kestemont P. Protein expression profiling in the African clawed frog Xenopus laevis tadpoles exposed to the polychlorinated biphenyl mixture aroclor 1254. Mol Cell Proteomics 2008; 8:596-611. [PMID: 19011258 DOI: 10.1074/mcp.m800323-mcp200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure to environmental pollutants such as polychlorinated biphenyls (PCBs) is now taken into account to partly explain the worldwide decline of amphibians. PCBs induce deleterious effects on developing amphibians including deformities and delays in metamorphosis. However, the molecular mechanisms by which they express their toxicity during the development of tadpoles are still largely unknown. A proteomics analysis was performed on developing Xenopus laevis tadpoles exposed from 2 to 5 days postfertilization to either 0.1 or 1 ppm Aroclor 1254, a PCB mixture. Two-dimensional DIGE with a minimal labeling method coupled to nanoflow liquid chromatography-tandem mass spectrometry was used to detect and identify proteins differentially expressed under PCBs conditions. Results showed that 59 spots from the 0.1 ppm Aroclor 1254 condition and 57 spots from the 1 ppm Aroclor 1254 condition displayed a significant increase or decrease of abundance compared with the control. In total, 28 proteins were identified. The results suggest that PCBs induce mechanisms against oxidative stress (peroxiredoxins 1 and 2), adaptative changes in the energetic metabolism (enolase 1, glycerol-3-phosphate dehydrogenase, and creatine kinase muscle and brain types), and the implication of the unfolded protein response system (glucose-regulated protein, 58 kDa). They also affect, at least at the highest concentration tested, the synthesis of proteins involved in normal cytogenesis (alpha-tropomyosin, myosin heavy chain, and alpha-actin). For the first time, proteins such as aldehyde dehydrogenase 7A1, CArG binding factor-A, prolyl 4-hydroxylase beta, and nuclear matrix protein 200 were also shown to be up-regulated by PCBs in developing amphibians. These data argue that protein expression reorganization should be taken into account while estimating the toxicological hazard of wild amphibian populations exposed to PCBs.
Collapse
Affiliation(s)
- Virginie Gillardin
- Unité de Recherche en Biologie des Organismes, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | | | | | | | | | | | | |
Collapse
|
8
|
Liu W, Yang YS, Francis D, Rogers HJ, Li P, Zhang Q. Cadmium stress alters gene expression of DNA mismatch repair related genes in Arabidopsis seedlings. CHEMOSPHERE 2008; 73:1138-1144. [PMID: 18722640 DOI: 10.1016/j.chemosphere.2008.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 05/21/2008] [Accepted: 07/09/2008] [Indexed: 05/26/2023]
Abstract
Cadmium (Cd) is a non essential element, and is a widespread environmental pollutant. Exposure to Cd can result in a variety of adverse health effects in plant and humans. In the current study, Arabidopsis seedlings were used as a bio-indicator of Cd pollution. Seedlings were grown on MS media containing 0-6.0 mg L(-1) Cd for 18 days, and the gene expression patterns were used to link increased Cd exposure with progressive biological effects. Reduction of total soluble protein content in shoots of the Arabidopsis seedlings occurred with increase in Cd concentrations. For the gene expression patterns, seven genes known to be involved in cell division and DNA mismatch repair (MMR) system were investigated by semi-quantitative RT-PCR, and normalized using 18S rRNA gene expression. Expression of the proliferating cell nuclear antigen 2 (atPCNA 2), MutS 3 homolog (atMSH 3) and MutL1 homolog (atMLH1) genes in shoots of Arabidopsis was strongly induced by exposure to 0.75 mg L(-1) Cd, but were repressed by other Cd concentrations whereas exposure to 0.75-6 mg L(-1) of Cd resulted in a decreased expression of atPCNA1, atMSH 2, 6 and 7 genes independently of any observable biological effects, including survival, fresh weight and chlorophyll level of shoots. This work demonstrated that specific gene expression changes could serve as useful molecular biomarkers indicative of Cd exposure and related biological effects.
Collapse
Affiliation(s)
- W Liu
- Cardiff University, School of Earth Sciences, Cardiff CF10 3YE, UK
| | | | | | | | | | | |
Collapse
|
9
|
Zimmermann AL, King EA, Dengler E, Scogin SR, Powell WH. An aryl hydrocarbon receptor repressor from Xenopus laevis: function, expression, and role in dioxin responsiveness during frog development. Toxicol Sci 2008; 104:124-34. [PMID: 18385208 DOI: 10.1093/toxsci/kfn066] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Xenopus laevis and other frogs are extremely insensitive to the toxicity of xenobiotic ligands of the aryl hydrocarbon receptor (AHR), including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Premetamorphic life stages are especially insensitive, and they are reported to be refractory to induction of Cytochrome P4501As, which are readily induced in older animals. The AHR repressor (AHRR) is a member of the AHR gene family. AHRR expression is induced by TCDD; it then represses AHR in an apparent negative feedback loop. In this study, we sought to test the hypothesis that constitutive AHRR expression underlies the lack of TCDD responsiveness in frog early life stages. We determined the sequence of an AHRR complimentary DNA encoding an 85.3-kDa protein sharing 52-55% identity with the bHLH/PAS domains of other AHRRs. In transient transfection assays, X. laevis AHRR inhibited TCDD-induced reporter gene expression mediated by either X. laevis AHR paralog, AHR1alpha or AHR1beta. AHRR messenger RNA was expressed at low levels in embryos (Nieuwkoop-Faber stage 33-38; approximately 52 h.p.f.) and was induced approximately twofold following TCDD exposure (42 ng/g wet weight). In contrast, AHRR exhibited higher constitutive expression and was induced more than threefold in tadpoles at stage 52-55 (prometamorphic; approximately 4 weeks postfertilization) and in isolated viscera of stage 62 tadpoles (in the metamorphic climax; approximately 7 weeks postfertilization). Although the magnitude of induction was smaller, the temporal pattern of AHRR expression and inducibility resembled that of CYP1A6. Thus, attenuated transcriptional activation of AHR target genes and low TCDD toxicity in X. laevis embryos cannot be explained by constitutive, high-level expression of AHRR.
Collapse
|
10
|
Langerveld AJ, Mihalko D, DeLong C, Walburn J, Ide CF. Gene expression changes in postmortem tissue from the rostral pons of multiple system atrophy patients. Mov Disord 2007; 22:766-77. [PMID: 17290454 DOI: 10.1002/mds.21259] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease characterized by various degrees of Parkinsonism, cerebellar ataxia, and autonomic dysfunction. In this report, Affymetrix DNA microarrays were used to measure changes in gene expression in the rostral pons, an area that undergoes extensive damage in MSA, but not other synucleinopathies. Significant changes in expression of 254 genes (180 downregulated and 74 upregulated) occurred in pons tissue from MSA patients when compared with control patients. The downregulated genes were primarily associated with biological functions known to be impaired in Parkinson's disease (PD) and other neurological diseases; for example, downregulation occurred in genes associated with mitochondrial function, ubiquitin-proteasome function, protein modification, glycolysis/metabolism, and ion transport. On the other hand, upregulated genes were associated with transcription/RNA modification, inflammation, immune system function, and oligodendrocyte maintenance and function. Immunocytochemistry, in conjunction with quantitative image analysis, was carried out to characterize alpha-synuclein protein expression as glial cytoplasmic inclusions in the pontocerebellar tract in rostral pons tissue and to determine the relationship between the amount of aggregated alpha-synuclein protein and changes in specific gene expression. Of the regulated genes, 86 were associated with the amount of observed aggregated alpha-synuclein protein in the rostral pons tissue. These data indicate that cells in the pons of MSA patients show changes in gene expression previously associated with the substantia nigra of PD patients and/or other neurological diseases, with additional changes, for example related to oligodendrocyte function unique to MSA.
Collapse
|
11
|
Menzel R, Yeo HL, Rienau S, Li S, Steinberg CEW, Stürzenbaum SR. Cytochrome P450s and short-chain dehydrogenases mediate the toxicogenomic response of PCB52 in the nematode Caenorhabditis elegans. J Mol Biol 2007; 370:1-13. [PMID: 17499272 DOI: 10.1016/j.jmb.2007.04.058] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 04/13/2007] [Accepted: 04/19/2007] [Indexed: 11/28/2022]
Abstract
Although non-coplanar PCBs are ubiquitous organic chemicals known to induce numerous biological responses and thus are toxic to man and wildlife, little is known about the toxic mode of action. Using PCB52, an ortho-substituted, 2,2',5,5'-tetrachlorobiphenyl, it was possible to pinpoint the relationship between induced gene expression and observed toxicity in the model nematode Caenorhabditis elegans. On the basis of the calculated EC20 for brood size (5 mg/l), whole genome DNA microarray experiments were performed to identify differentially expressed genes. Gene knockdown by RNAi was used to determine the consequences in reproductive fitness in the presence and in the absence of PCB52. On the basis of altered phenotype, several gene classes were identified to have a pivotal role in PCB52 toxicogenesis, most notably cytochrome P450s, short-chain dehydrogenases and lipases. In addition to this, four of six selected cytochrome P450s were shown to be involved in fat storage, with PCB52 exposure increasing the fat content in N2 wild-type as indicated by staining with Nile red. Furthermore, exposure to PCB52 induces a general detoxification response via small heat-shock proteins and caspases. Our data provide strong evidence of the molecular mechanisms that underlie the toxicity of non-coplanar PCBs, and confirms that, despite the ability to metabolize PCB, alterations in lipid metabolism and storage are major factors that drive the toxic effect of PCB52.
Collapse
Affiliation(s)
- Ralph Menzel
- Department of Biology, Freshwater and Stress Ecology, Humboldt University at Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Lehigh Shirey EA, Jelaso Langerveld A, Mihalko D, Ide CF. Polychlorinated biphenyl exposure delays metamorphosis and alters thyroid hormone system gene expression in developing Xenopus laevis. ENVIRONMENTAL RESEARCH 2006; 102:205-14. [PMID: 16720020 DOI: 10.1016/j.envres.2006.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 03/29/2006] [Accepted: 04/03/2006] [Indexed: 05/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that disrupt thyroid hormone (TH) system function in numerous species. Previous studies have shown delayed metamorphosis in developing Xenopus laevis frogs exposed to PCBs, but the underlying molecular mechanisms have not been thoroughly investigated. In this research, developing X. laevis tadpoles were exposed to environmentally relevant concentrations (5, 50ppb) of Aroclor 1254 (A1254), a PCB mixture, dissolved in water and 0.25% dimethyl sulfoxide. Quantitative real-time reverse transcriptase polymerase chain reaction was used to measure expression of several TH system genes, other genes that regulate growth and development, and a xenobiotic response gene. Exposure to 50ppb A1254 significantly delayed metamorphosis and significantly altered gene expression of three thyroid system genes: transthyretin and types II and III deiodinase. Since all three genes regulate the amount of available, biologically active TH, PCB-induced changes in the expression of these genes may underlie alterations in metamorphic timing.
Collapse
|
13
|
Katbamna B, Langerveld AJ, Ide CF. Aroclor 1254 impairs the hearing ability of Xenopus laevis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:971-83. [PMID: 16703389 DOI: 10.1007/s00359-006-0134-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 04/11/2006] [Accepted: 04/23/2006] [Indexed: 11/26/2022]
Abstract
In this study we assessed the effects of chronic, dietary exposure of Aroclor 1254 (A1254) on the hearing of Xenopus frogs. We used the auditory brainstem response (ABR) to assay changes in hearing physiology; ABR thresholds, as well as latency-intensity and amplitude-intensity profiles of the initial positive (P1) and negative (N1) peaks were measured. Two groups of animals that received 50 ppm and 100 ppm of A1254 in their diet from 5 days post-fertilization through metamorphosis were compared to a control group that received untreated chow. The results showed significant threshold elevations in the 3-4 kHz range and significantly delayed peak latencies and reduced amplitudes at these frequencies in A1254 treated animals as compared to control animals. These findings indicate that A1254 selectively damages the high-frequency sensorineural hearing system associated with the basilar papilla of frogs. This preferential damage may be related to inherent differences in the vulnerability of the basilar versus amphibian papilla in the frog. The overall results of this study are also consistent with the reported A1254-induced auditory deficits in mammals indicating that the basilar papilla of the Xenopus frog may serve as an effective model for studying the effects of A1254 on the auditory system.
Collapse
Affiliation(s)
- Bharti Katbamna
- Department of Speech Pathology and Audiology, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008-5355, USA.
| | | | | |
Collapse
|
14
|
Fisher MA, Mehne C, Means JC, Ide CF. Induction of CYP1A mRNA in Carp (Cyprinus carpio) from the Kalamazoo River polychlorinated biphenyl-contaminated superfund site and in a laboratory study. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2006; 50:14-22. [PMID: 16328624 DOI: 10.1007/s00244-004-0171-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 05/14/2005] [Indexed: 05/05/2023]
Abstract
The Kalamazoo River Superfund site in Michigan is contaminated with polychlorinated biphenyls (PCBs), which were heavily discharged into the river from several paper companies as part of the deinking process in the 1950s through 1970s. We characterized biomarkers of chronic PCB exposure in a resident fish population using real-time reverse transcriptase-polymerase chain reaction to examine mRNA expression levels of multiple genes in carp (Cyprinus carpio) liver from PCB contaminated and reference sites in the Kalamazoo River. We also measured these same genes in juvenile carp exposed to dietary PCBs for 4 months. Kalamazoo River carp had significantly increased levels of cytochrome P450 1A (CYP1A) mRNA as did carp fed PCBs in the laboratory. No significant mRNA upregulation occurred in the specific oxidative stress genes (gamma-glutamylcysteine synthetase and magnesium superoxide dismutase) and metabolic genes (phosphoenolpyruvate carboxykinase and nucleolin) examined. These data are consistent with the idea that carp from the Kalamazoo River Superfund Site are responding to PCB exposure via upregulation of CYP1A independent of activation of the oxidative stress response genes normally thought to be co-regulated with CYP1A.
Collapse
Affiliation(s)
- M A Fisher
- Environmental Institute, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, Michigan 49008, USA.
| | | | | | | |
Collapse
|
15
|
Johnson DR, Lee PKH, Holmes VF, Alvarez-Cohen L. An internal reference technique for accurately quantifying specific mRNAs by real-time PCR with application to the tceA reductive dehalogenase gene. Appl Environ Microbiol 2005; 71:3866-71. [PMID: 16000799 PMCID: PMC1169012 DOI: 10.1128/aem.71.7.3866-3871.2005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accuracy of mRNA quantification by reverse transcription (RT) in conjunction with real-time PCR (qPCR) is limited by mRNA losses during sample preparation (cell lysis, RNA isolation, and DNA removal) and by inefficiencies in reverse transcription. To control for these losses and inefficiencies, a technique was developed that utilizes an exogenous internal reference mRNA (ref mRNA) along with mRNA absolute standard curves. The technique was applied to quantify mRNA of the trichloroethene (TCE) reductive dehalogenase-encoding tceA gene in an anaerobic TCE-to-ethene dechlorinating microbial enrichment. Compared to RT-qPCR protocols that utilize DNA absolute standard curves, application of the new technique increased measured quantities of tceA mRNA by threefold, demonstrating a substantial improvement in quantification. The technique was also effective for quantifying the loss of mRNA during specific steps of the sample processing protocol. Analysis revealed that the efficiency of the RNA isolation (56%) step was significantly less than that of the cell lysis (84%), DNA removal (93%), and RT (88%) steps. The technique was applied to compare the effects of cellular exposure to different chlorinated ethenes on tceA expression. Results show that exposure to TCE or cis-1,2-dichloroethene resulted in 25-fold-higher quantities of tceA mRNA than exposure to vinyl chloride or chlorinated ethene starvation.
Collapse
Affiliation(s)
- David R Johnson
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710.
| | | | | | | |
Collapse
|
16
|
Jelaso AM, DeLong C, Means J, Ide CF. Dietary exposure to Aroclor 1254 alters gene expression in Xenopus laevis frogs. ENVIRONMENTAL RESEARCH 2005; 98:64-72. [PMID: 15721885 DOI: 10.1016/j.envres.2004.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 05/19/2004] [Accepted: 05/21/2004] [Indexed: 05/24/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that contribute to worldwide health problems. Despite data associating PCBs with adverse health effects, decisions to clean up contaminated sites remain controversial. Cleanup decisions are typically based on risk assessment methods that are not sensitive enough to detect subtle changes in health. We have recently shown that gene expression signatures can serve as sensitive molecular biomarkers of exposure and related health effects. Our initial studies were carried out with developing Xenopus laevis tadpoles that were exposed to the PCB mixture Aroclor 1254 (A1254) for 2 days. A1254 was dissolved in dimethyl sulfoxide and added to the aquarium water for rapid loading of PCBs into the tadpole tissue. These studies showed that increases in the expression of specific genes occurred independent of adverse health effects, and decreases in specific genes correlated with the appearance of observable health effects, including decreased survival and gross morphological and behavioral abnormalities. In this report, we extend our previous work to test the use of gene expression signatures as biomarkers in frogs exposed to PCBs through the diet from early tadpole stages through metamorphosis. This work showed that chronic low-dose exposure to A1254 (24 ppm) in food produced tissue levels of 17 ppm and increased gene expression of nerve growth factor and proopiomelanocortin independent of adverse health effects. Exposure to higher doses of A1254 (200 ppm) produced tissue levels of 80 ppm and increased expression of p450 1A1, also, independent of adverse health effects. This work provides further evidence for the use of gene expression changes as biomarkers of exposure to PCBs.
Collapse
Affiliation(s)
- Anna M Jelaso
- Environmental Institute and the Great Lakes Center for Environmental and Molecular Sciences, Western Michigan University, Room 3924 Wood Hall, Kalamazoo, MI 49008, USA.
| | | | | | | |
Collapse
|
17
|
|