1
|
Arora N, Kaur R, Anjum F, Tripathi S, Mishra A, Kumar R, Prasad A. Neglected Agent Eminent Disease: Linking Human Helminthic Infection, Inflammation, and Malignancy. Front Cell Infect Microbiol 2019; 9:402. [PMID: 31867284 PMCID: PMC6909818 DOI: 10.3389/fcimb.2019.00402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Helminthic parasitic infection is grossly prevalent across the globe and is considered a significant factor in human cancer occurrence induced by biological agents. Although only three helminths (Schistosoma haematobium, Clonorchis sinensis, and Opisthorchis viverrini) so far have been directly associated with carcinogenesis; there are evidence suggesting the involvement of other species too. Broadly, human helminthiasis can cause chronic inflammation, genetic instability, and host immune modulation by affecting inter- and intracellular communications, disruption of proliferation-anti-proliferation pathways, and stimulation of malignant stem cell progeny. These changes ultimately lead to tumor development through the secretion of soluble factors that interact with host cells. However, the detailed mechanisms by which helminths introduce and promote malignant transformation of host cells are still not clear. Here, we reviewed the current understanding of immune-pathogenesis of helminth parasites, which have been associated with carcinogenesis, and how these infections initiate carcinogenesis in the host.
Collapse
Affiliation(s)
- Naina Arora
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Rimanpreet Kaur
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Farhan Anjum
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Shweta Tripathi
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Rajiv Kumar
- Institute for Himalayan Bioresource Technology (CSIR), Palampur, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| |
Collapse
|
2
|
Mendonça TP, Davi de Aquino J, Junio da Silva W, Mendes DR, Campos CF, Vieira JS, Barbosa NP, Carvalho Naves MP, Olegário de Campos Júnior E, Alves de Rezende AA, Spanó MA, Bonetti AM, Vieira Santos VS, Pereira BB, Resende de Morais C. Genotoxic and mutagenic assessment of spinosad using bioassays with Tradescantia pallida and Drosophila melanogaster. CHEMOSPHERE 2019; 222:503-510. [PMID: 30721808 DOI: 10.1016/j.chemosphere.2019.01.182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Spinosad (SPN) is a naturally-occurring insecticide obtained from the fermentation process of the actinomycete Saccharopolyspora spinosa. Owing to the larvicidal action, the compound has been used in the control of Aedes aegypti. As a new insecticide commercially available in the market, few data are reported on genotoxic effects in non-target organisms. The objective of the present study was to evaluate the mutagenic effect of SPN through the Micronucleus Test in Tradescantia pallida (Trad-MCN) and using the mutation and somatic recombination test in Drosophila melanogaster (SMART). At the Trad-MCN, after acclimatization (24 h), T. pallida stems were submitted to chronic treatment with SPN at concentrations of 0.156; 0.312; 0.625; 1.25 and 2.5 g/L solution for 24 h, followed by a recovery period. In SMART, considering the third stage larvae, offspring resulting from the ST and HB crossing were placed on chronic treatment (48 h) with 0.039; 0.078 and 0.156 μg/mL of SPN solution. No mutagenic effect was observed at any of the evaluated concentrations in SMART. Additionally, SPN is more toxic after metabolism via CYP6A2 (cytochrome P450) in D. melanogaster. However, SPN at the concentrations of 0.625; 1.25 and 2.5 g/L was able to induce high frequency of micronuclei in T. pallida. Under the experimental conditions of T. pallida in the present study, SPN caused genotoxic activity.
Collapse
Affiliation(s)
- Tarcísio Paiva Mendonça
- Department of Cell Biology, Fundação Carmelitana Mário Palmério, 38500-000, Monte Carmelo, Minas Gerais, Brazil
| | - Jéssica Davi de Aquino
- Department of Cell Biology, Fundação Carmelitana Mário Palmério, 38500-000, Monte Carmelo, Minas Gerais, Brazil
| | - Weverson Junio da Silva
- Department of Cell Biology, Fundação Carmelitana Mário Palmério, 38500-000, Monte Carmelo, Minas Gerais, Brazil
| | - Daniele Ruela Mendes
- Department of Cell Biology, Fundação Carmelitana Mário Palmério, 38500-000, Monte Carmelo, Minas Gerais, Brazil
| | - Carlos Fernando Campos
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Jéssica Soares Vieira
- Department of Cell Biology, Fundação Carmelitana Mário Palmério, 38500-000, Monte Carmelo, Minas Gerais, Brazil
| | - Nathalya Pereira Barbosa
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Maria Paula Carvalho Naves
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | | | | | - Mário Antônio Spanó
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Ana Maria Bonetti
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Vanessa Santana Vieira Santos
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Boscolli Barbosa Pereira
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil; Institute of Geography, Federal University of Uberlândia, Campus Santa Mônica, 38400-902, Uberlândia, Minas Gerais, Brazil.
| | - Cássio Resende de Morais
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
3
|
de Morais CR, Carvalho SM, Carvalho Naves MP, Araujo G, de Rezende AAA, Bonetti AM, Spanó MA. Mutagenic, recombinogenic and carcinogenic potential of thiamethoxam insecticide and formulated product in somatic cells of Drosophila melanogaster. CHEMOSPHERE 2017; 187:163-172. [PMID: 28846972 DOI: 10.1016/j.chemosphere.2017.08.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
Thiamethoxam (TMX) belongs to a class of neuro-active insecticides referred as neonicotinoids, while actara® (AC) is one of the most popular TMX-based products in Brazil. The aim of this study was to evaluate the mutagenic, recombinogenic and carcinogenic potential of TMX and AC insecticides. The mutagenic and recombinogenic effect of TMX and AC were evaluated in vivo by the Somatic Mutation and Recombination Test (SMART) while carcinogenic effects were evaluated through the Test for Detection of Epithelial Tumor Clones (wts test), both in somatic cells of Drosophila melanogaster. In the SMART, third instar larvae from standard (ST) and high bioactivation (HB) crosses were treated with different concentrations of TMX and AC (2.4; 4.8; 9.7 × 10-4 mM and 1.9 × 10-3 mM). The results revealed mutagenic effects at the highest concentrations tested in the HB cross. In the test for the detection of epithelial tumor, third instar larvae resulting from the cross between wts/TM3, Sb1 virgin females and mwh/mwh males were treated with the same concentrations of TMX and AC used in the SMART. No carcinogenic effect was observed at any of the concentrations tested. In this work, the inhibition of the mechanism of repair by homologous recombination was observed in flies exposed to 9.7 × 10-4 and 1.9 × 10-3 mM of AC. In conclusion, TMX and AC demonstrated to be a promutagen in the highest concentrations tested.
Collapse
Affiliation(s)
- Cássio Resende de Morais
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Stephan Malfitano Carvalho
- Department of Entomology, Federal University of Lavras, PO Box 3037, 37200-000, Lavras, Minas Gerais, Brazil
| | - Maria Paula Carvalho Naves
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Galber Araujo
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil; Department of Molecular Biology, University of Salzburg, 5020, Salzburg, Austria
| | - Alexandre Azenha Alves de Rezende
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Ana Maria Bonetti
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Mário Antônio Spanó
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
4
|
de Morais CR, Bonetti AM, Carvalho SM, de Rezende AAA, Araujo GR, Spanó MA. Assessment of the mutagenic, recombinogenic and carcinogenic potential of fipronil insecticide in somatic cells of Drosophila melanogaster. CHEMOSPHERE 2016; 165:342-351. [PMID: 27664524 DOI: 10.1016/j.chemosphere.2016.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/03/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Fipronil (FP) is an insecticide that belongs to the phenylpyrazole chemical family and is used to control pests by blocking GABA receptor at the entrance channel of the chlorine neurons. The aim of this study was to evaluate the mutagenic, recombinogenic and carcinogenic potential of FP. The mutagenic and recombinogenic effects were evaluated using the somatic mutation and recombination test (SMART) on wing cells of Drosophila melanogaster. Third instar larvae from standard (ST) and high bioactivation (HB) crosses were treated with different concentrations of FP (0.3, 0.7, 1.5 or 3.0 × 10-5 mM). The results showed mutagenic effects at all concentrations tested in the HB cross; and all concentrations tested in the ST cross, except at concentration of 0.7 × 10-5 mM. The carcinogenic effect of FP was assayed through the test for detection of epithelial tumor (warts) in D. melanogaster. Third instar larvae from wts/TM3 virgin females mated to mwh/mwh males were treated with different concentrations of FP (0.3, 0.7, 1.5 or 3.0 × 10-5 mM). All these concentrations induced a statistically significant increase in tumor frequency. In conclusion, FP proved to be mutagenic, recombinogenic and carcinogenic in somatic cells of D. melanogaster.
Collapse
Affiliation(s)
- Cássio Resende de Morais
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Ana Maria Bonetti
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Stephan Malfitano Carvalho
- Departament of Entomology, Federal University of Lavras, PO Box 3037, 37.200-000, Lavras, Minas Gerais, Brazil
| | - Alexandre Azenha Alves de Rezende
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Galber Rodrigues Araujo
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Mário Antônio Spanó
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38400-902, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Kutikhin AG, Yuzhalin AE, Brusina EB. The Role of Helminthes and Fungi in Cancer Development. Infect Agent Cancer 2013. [DOI: 10.1007/978-94-007-5955-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
6
|
|
7
|
Pereira DG, Antunes LM, Graf U, Spanó MA. Protection by Panax ginseng C.A. Meyer against the genotoxicity of doxorubicin in somatic cells of Drosophila melanogaster. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000500024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Mayer DA, Fried B. The role of helminth infections in carcinogenesis. ADVANCES IN PARASITOLOGY 2008; 65:239-96. [PMID: 18063098 DOI: 10.1016/s0065-308x(07)65004-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review examines the significant literature on the role of helminth infections in carcinogenesis. Both parasitic infections and cancer have complex natural histories and long latent periods during which numerous exogenous and endogenous factors interact to obfuscate causality. Although only two helminths, Schistosoma haematobium and Opisthorchis viverrini, have been proven to be definitely carcinogenic to humans, others have been implicated in facilitating malignant transformation. The known mechanisms of helminth-induced cancer include chronic inflammation, modulation of the host immune system, inhibition of intracellular communication, disruption of proliferation-antiproliferation pathways, induction of genomic instability and stimulation of malignant stem cell progeny. Approximately 16% of all cancer cases worldwide are attributable to pathogenic agents, including schistosomes and liver flukes. This equates to 1,375,000 preventable cancer deaths per year. Means to reduce the incidence of helminth-associated malignancies are discussed.
Collapse
Affiliation(s)
- David A Mayer
- Department of Surgery, New York Medical College, Valhalla, New York 10595, USA
| | | |
Collapse
|
9
|
Silva RMGD, Sousa NCD, Graf U, Spanó MA. Antigenotoxic effects of Mandevilla velutina (Gentianales, Apocynaceae) crude extract on cyclophosphamide-induced micronuclei in Swiss mice and urethane-induced somatic mutation and recombination in Drosophila melanogaster. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000400023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Ulrich Graf
- Swiss Federal Institute of Technology Zurich, Switzerland
| | | |
Collapse
|
10
|
Fragiorge EJ, Rezende AAAD, Graf U, Spanó MA. Comparative genotoxicity evaluation of imidazolinone herbicides in somatic cells of Drosophila melanogaster. Food Chem Toxicol 2008; 46:393-401. [PMID: 17910989 DOI: 10.1016/j.fct.2007.08.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 07/13/2007] [Accepted: 08/13/2007] [Indexed: 11/20/2022]
Abstract
In the present study, five analogous herbicides, namely Imazapyr (IMZR), Imazapic (IMZC), Imazethapyr (IMZT), Imazamox (IMZX) and Imazaquin (IMZQ), were evaluated for genotoxicity (mutagenic and recombinagenic activity) in the wing somatic mutation and recombination test (SMART) of Drosophila melanogaster. They are classified as imidazolinone (IMI) herbicides and their mode of action is to inhibit acetohydroxyacid synthase (AHAS), an enzyme involved in the biosynthesis of the amino acids leucine, isoleucine and valine. Two crosses were used: the standard (ST) cross and the high bioactivation (HB) cross. The latter is characterized by high levels of cytochrome P450 conferring increased sensitivity to promutagens and procarcinogens. Three-day-old larvae were exposed by chronic feeding (48 h) to four different concentrations of these herbicides (2.5, 5.0, 10.0 or 20.0 mM). For the evaluation of genotoxic effects, the frequencies of spots per individual in the treated series were compared to the concurrent negative control series (ultrapure water). Imazapyr, Imazapic and Imazethapyr gave negative results with both crosses of the wing spot test. In the ST cross, Imazamox showed positive results only for large single spots (20.0 mM IMZX) and weak positive results for total spots (10.0 and 20.0 mM IMZX), while Imazaquin showed positive results only for large single spots (5.0 and 20.0mM IMZQ) and a weak positive result for total spots (20.0 mM IMZQ). These positive results are mainly due to induced recombination and to a minor extent to mutations. In the HB cross, only Imazamox (5.0 mM IMZX) showed a weak positive result for small single spots. The positive control urethane, a promutagen, caused an increase in the number of all types of spots in both crosses. In conclusion, the results of chronic treatments performed at high doses (toxicity was observed at higher doses) shows the existence of a genotoxic risk for IMZX and IMZQ exposure under these experimental conditions, and indicate the need for further research to delineate the exact mechanisms involved.
Collapse
Affiliation(s)
- Edson José Fragiorge
- Universidade Federal de Uberlândia, Instituto de Genética e Bioquímica, Laboratório de Mutagênese, Av. Pará 1720, Campus Umuarama, 38400-902 Uberlândia, MG, Brazil
| | | | | | | |
Collapse
|
11
|
de Moraes Pantaleão S, Alcântara AV, Hora Alves JDP, Pavanin LA, Graf U, de Rezende AAA, Bueno Valadares BL, Fragiorge EJ, de Souza NC, Guterres ZDR, Spanó MA. Assessing the impact of pollution on the Japaratuba river in Brazil using the Drosophila wing spot test. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:96-105. [PMID: 17285639 DOI: 10.1002/em.20281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The Drosophila melanogaster somatic mutation and recombination test (SMART) was used to assess the genotoxicity of surface (S) and bottom (B) water and sediment samples collected from Sites 1 and 2 on the Japaratuba River (Sergipe, Brazil), an area impacted by a petrochemical industrial complex that indirectly discharges treated effluent (produced water) into the river. The genotoxicity tests were performed in standard (ST) cross and high bioactivation (HB) cross flies and were conducted on samples taken in March (dry season) and in July (rainy season) of 2003. Mutant spot frequencies found in treatments with unprocessed water and sediment samples from the test sites were compared with the frequencies observed for similar samples taken from a clean reference site (the Jacarecica River in Sergipe, Brazil) and those of negative (ultrapure water) controls. While samples from the Japaratuba River generally produced greater responses than those from the Jacarecica River, positive responses were detected for both the test and reference site samples. All the water samples collected in March 2003 were genotoxic. In July 2003, the positive responses were restricted to water samples collected from Sites 1 B and 2 S in the ST cross. The genotoxicity of the water samples was due to mitotic recombination, and the samples produced similar genotoxic responses in ST and HB flies. The spot frequencies found in the July water samples were considerably lower than those for the March water samples, suggesting a seasonal effect. The only sediment samples that were genotoxic were from Site 1 (March and July) and from the Jacarecica River (March). The genotoxins in these samples produced both somatic mutation (limited to the Site 1 sample in HB flies) and recombination. The results of this study indicate that samples from both the Japaratuba and Jacarecica Rivers were genotoxic, with the most consistently positive responses detected with Site 1 samples, the site closest to the putative pollution source.
Collapse
|