1
|
Valencia-Quintana R, López-Durán RM, Milić M, Bonassi S, Ochoa-Ocaña MA, Uriostegui-Acosta MO, Pérez-Flores GA, Gómez-Olivares JL, Sánchez-Alarcón J. Assessment of Cytogenetic Damage and Cholinesterases' Activity in Workers Occupationally Exposed to Pesticides in Zamora-Jacona, Michoacan, Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126269. [PMID: 34200547 PMCID: PMC8296030 DOI: 10.3390/ijerph18126269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022]
Abstract
Pesticides have been considered as potential chemical mutagens; however, little is known about toxic and genotoxic effects during pesticide application in Zamora-Jacona, Michoacan State in Mexico. This study sought to determine DNA damage and cholinesterase activities inhibitions in 54 agricultural workers exposed to complex mixtures of pesticides vs. control group (26 individuals) using Comet assay in peripheral whole blood, micronucleus (MN) test in oral mucosa cells, Cytokinesis-blocked MN assay in lymphocytes (L-CBMNcyt) and measuring AChE and BChE activities in whole blood and plasma samples, respectively. Exposed subjects demonstrated significantly elevated levels of primary (Comet assay: tail intensity, tail length, tail moment, Olive tail moment) and permanent DNA damage (MN assay: in blood/buccal cells; frequencies of nuclear buds, binucleated cells, cells with condensed chromatin, karyorrhexis, pyknosis, and karyolysis). However, inhibition of cholinesterase activities (AChE and BChE) was not observed in the workers. Confounding factors including sex, age, BMI, working exposure period, protection level, smoking habit (cigarettes per day units), alcohol consumption (weekly), medication, were considered in the analysis. These combined techniques demonstrated usefulness in the health hazards risks pesticide exposure assessment and suggested the need for periodic monitoring together with the education and the training of occupational workers for the safe application of potentially harmful pesticides.
Collapse
Affiliation(s)
- Rafael Valencia-Quintana
- Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico; (R.V.-Q.); (G.A.P.-F.)
| | - Rosa María López-Durán
- Laboratorio de Biomembranas, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico;
- Correspondence: (R.M.L.-D.); (J.S.-A.)
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia;
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Rafaele University, 00166 Rome, Italy;
- Unit of Clinical and Molecular Epidemiology, IRCCS San Rafaele Pisana, 00166 Rome, Italy
| | - Ma. Antonieta Ochoa-Ocaña
- Unidad Académica de Estudios Regionales, Coordinación de Humanidades, UNAM, Jiquilpan 59510, Mexico;
| | | | - Guillermo Alejandro Pérez-Flores
- Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico; (R.V.-Q.); (G.A.P.-F.)
| | - José Luis Gómez-Olivares
- Laboratorio de Biomembranas, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico;
| | - Juana Sánchez-Alarcón
- Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico; (R.V.-Q.); (G.A.P.-F.)
- Correspondence: (R.M.L.-D.); (J.S.-A.)
| |
Collapse
|
2
|
Çobanoğlu H, Coşkun M, Coşkun M, Çayır A. Different working conditions shift the genetic damage levels of pesticide-exposed agriculture workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31750-31759. [PMID: 32504430 DOI: 10.1007/s11356-020-09463-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
In the current study, we had two main purposes. Firstly, we aimed to compare genetic damages in the agricultural workers of two different types of environmental conditions including the greenhouse and open fields. Secondly, we aimed to compare genetic damages in the total agricultural workers as the exposed group (greenhouse and open field workers) (n = 114) and the non-exposed control group (n = 98) living in the same area in Canakkale, Turkey. For these purposes, we investigated the incidence of micronucleus (MN), nucleoplasmic bridges (NPBs), and nuclear buds (NBUDs) in peripheral blood lymphocytes. We observed that the frequencies of MN, NPB, and NBUD obtained for the greenhouse workers were statistically significantly higher than those obtained for the open field workers. When the results of the control group were compared with those of the total workers, there were statistically significant differences in terms of MN and NBUD frequencies. We found that age and MN were correlated at a significant level in both the agricultural workers and the control group. The MN frequency of the female workers was 1.5 times greater than that of the male workers, and it was a significant level in the agricultural workers.
Collapse
Affiliation(s)
- Hayal Çobanoğlu
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey
| | - Münevver Coşkun
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey
| | - Mahmut Coşkun
- Faculty of Medicine, Çanakkale Onsekiz Mart University, Terzioglu Campus, 17100, Çanakkale, Turkey
| | - Akın Çayır
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey.
| |
Collapse
|
3
|
Czajka M, Matysiak-Kucharek M, Jodłowska-Jędrych B, Sawicki K, Fal B, Drop B, Kruszewski M, Kapka-Skrzypczak L. Organophosphorus pesticides can influence the development of obesity and type 2 diabetes with concomitant metabolic changes. ENVIRONMENTAL RESEARCH 2019; 178:108685. [PMID: 31479978 DOI: 10.1016/j.envres.2019.108685] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Widespread use and the bioaccumulation of pesticides in the environment lead to the contamination of air, water, soil and agricultural resources. A huge body of evidence points to the association between the pesticide exposure and increase in the incidence of chronic diseases, e.g. cancer, birth defects, reproductive disorders, neurodegenerative, cardiovascular and respiratory diseases, developmental disorders, metabolic disorders, chronic renal disorders or autoimmune diseases. Organophosphorus compounds are among the most widely used pesticides. A growing body of evidence is suggesting the potential interdependence between the organophosphorus pesticides (OPs) exposure and risk of obesity and type 2 diabetes mellitus (T2DM). This article reviews the current literature to highlight the latest in vitro and in vivo evidences on the possible influence of OPs on obesity and T2DM development, as well as epidemiological evidence for the metabolic toxicity of OPs in humans. The article also draws attention to the influence of maternal OPs exposure on offspring. Summarized studies suggest that OPs exposure is associated with metabolic changes linked with obesity and T2DM indicated that such exposures may increase risk or vulnerability to other contributory components.
Collapse
Affiliation(s)
- Magdalena Czajka
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland.
| | - Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20-080, Lublin, Poland
| | - Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland
| | - Berta Fal
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland
| | - Bartłomiej Drop
- Department of Medical Informatics and Statistics with E-learning Lab, Medical University of Lublin, 20-090, Lublin, Poland
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland; Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland.
| |
Collapse
|
4
|
Perumalla Venkata R, Rahman MF, Mahboob M, Indu Kumari S, Chinde S, M. B, Dumala N, Grover P. Assessment of genotoxicity in female agricultural workers exposed to pesticides. Biomarkers 2016; 22:446-454. [DOI: 10.1080/1354750x.2016.1252954] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - M. F. Rahman
- Toxicology Unit, Biology Division, Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - M. Mahboob
- Toxicology Unit, Biology Division, Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - S. Indu Kumari
- Toxicology Unit, Biology Division, Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Srinivas Chinde
- Toxicology Unit, Biology Division, Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Bhanuramya M.
- Toxicology Unit, Biology Division, Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Naresh Dumala
- Toxicology Unit, Biology Division, Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Paramjit Grover
- Toxicology Unit, Biology Division, Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Stivaktakis PD, Giannakopoulos E, Vlastos D, Matthopoulos DP. Determination of genotoxic effects of methidathion alkaline hydrolysis in human lymphocytes using the micronucleus assay and square-wave voltammetry. Bioelectrochemistry 2016; 113:9-14. [PMID: 27607473 DOI: 10.1016/j.bioelechem.2016.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/23/2016] [Accepted: 08/31/2016] [Indexed: 01/20/2023]
Abstract
The interaction of pesticides with environmental factors, such as pH, may result in alterations of their physicochemical properties and should be taken into consideration in regard to their classification. This study investigates the genotoxicity of methidathion and its alkaline hydrolysis by-products in cultured human lymphocytes, using the square-wave voltammetry (square wave-adsorptive cathodic stripping voltammetry (SW-AdCSV) technique) and the cytokinesis block micronucleus assay (CBMN assay). According to the SW-AdCSV data the alkaline hydrolysis of methidathion results in two new molecules, one non-electro-active and a second electro-active which is more genotoxic than methidathion itself in cultured human lymphocytes, inducing higher micronuclei frequencies. The present study confirms the SW-AdCSV technique as a voltammetric method which can successfully simulates the electrodynamics of the cellular membrane.
Collapse
Affiliation(s)
- Polychronis D Stivaktakis
- Center of Toxicology Science & Research, Division of Morphology, Medical School, University of Crete, Voutes Campus, Heraklion, 71003, Crete, Greece
| | - Evangelos Giannakopoulos
- School of Science and Technology, Hellenic Open University, Tsamadou 13-15 & Saint Andrea, 262 22 Patras, Greece.
| | - Dimitris Vlastos
- Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, 30100 Agrinio, Greece
| | - Demetrios P Matthopoulos
- Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, 30100 Agrinio, Greece
| |
Collapse
|
6
|
Litvinchuk AV, Vachelová J, Michaelidesová A, Wagner R, Davídková M. Dose-dependent micronuclei formation in normal human fibroblasts exposed to proton radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:327-334. [PMID: 25972267 DOI: 10.1007/s00411-015-0598-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 04/26/2015] [Indexed: 06/04/2023]
Abstract
Micronuclei are small extranuclear bodies resulting from chromosome fragments or the whole chromosomes secluded from daughter nuclei during mitosis. The number of radiation-induced micronuclei reflects the level of chromosomal damage and relates to an absorbed dose and quality of incident ionizing radiation. The aim of the present study was to determine the micronucleus formation as a specific biological marker for acute radiation-induced DNA damage in normal human fibroblasts exposed to 30-MeV protons and Co-60 gamma radiation. We found a linear increase in binuclear cells containing micronuclei for absorbed doses from 1 to 5 Gy for both radiation modalities. However, the total number of micronuclei in binuclear cells follows a linear-quadratic dose dependence. In case of human exposure to mixed radiation fields or high LET radiation, the proportion of binuclear cells containing micronuclei from all binuclear cells can thus serve as a good biomarker of radiation-induced DNA damage.
Collapse
Affiliation(s)
- Alexandra V Litvinchuk
- Department of Radiation Dosimetry, Nuclear Physics Institute CAS, Na Truhlářce 39/64, 180 00, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
7
|
Multidrug resistance 1 gene variants, pesticide exposure, and increased risk of DNA damage. BIOMED RESEARCH INTERNATIONAL 2014; 2014:965729. [PMID: 24791009 PMCID: PMC3984798 DOI: 10.1155/2014/965729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/24/2014] [Indexed: 11/17/2022]
Abstract
The P-glycoprotein, encoded by the multidrug resistance (MDR)1 gene, extrudes fat-soluble compounds to the extracellular environment. However, the DNA damage of pesticides in subjects with genetic variation in MDR1 has not been investigated. In this study, the comet assay was applied to examine the extent of DNA damage in the peripheral blood of 195 fruit growers who had been exposed to pesticides and 141 unexposed controls. The MDR1 polymorphisms were identified. Questionnaires were administered to obtain demographic data and occupational history. Results showed subjects experiencing high (2.14 μm/cell, P < 0.01) or low pesticide exposure (2.18 μm/cell, P < 0.01) had a significantly greater DNA tail moment than controls (1.28 μm/cell). Compared to the MDR1 T-129C (rs3213619) TC/CC carriers, the TT carriers had increased DNA tail moment in controls (1.30 versus 1.12 μm/cell, P < 0.01). Similar results were observed in the high and low pesticide-exposed groups. Combined analysis revealed that pesticide-exposed fruit growers with MDR1 -129 TT genotype had the greatest DNA damage in the subjects with the combinations of pesticide exposure and MDR1 -129 genotypes. In conclusion, pesticide exposed individuals with susceptible MDR1 -129 genotypes may experience increased risk of DNA damage.
Collapse
|
8
|
Yilmaz S, Ünal F, Yüzbaşıoğlu D, Çelik M. DNA damage in human lymphocytes exposed to four food additives in vitro. Toxicol Ind Health 2012. [DOI: 10.1177/0748233712466132] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In vitro genotoxic effects of antioxidant additives, such as citric acid (CA) and phosphoric acid (PA) and their combination, as well as antimicrobial additives, such as benzoic acid (BA) and calcium propionate (CP), on human lymphocytes were determined using alkaline single-cell gel electrophoresis. There was a significant increase in the DNA damage in human lymphocytes after 1 h of in vitro exposure to CA, PA, BA and CP (200, 25–200, 50–500, 50–1000 μg/mL, respectively). The combination of CA and PA significantly increased the mean tail intensity at all the concentrations used (25–200 μg/mL) and significantly increased the mean tail length mainly after higher concentrations (100 and 200 μg/mL). Data in this study showed that the concentrations of food additives used induce DNA damage and PA was the most genotoxic and CA was less genotoxic additives among them.
Collapse
Affiliation(s)
- Serkan Yilmaz
- Faculty of Health Sciences, Ankara University, Ankara, Turkey
| | - Fatma Ünal
- Department of Biology, Science Faculty, Gazi University, Ankara, Turkey
| | - Deniz Yüzbaşıoğlu
- Department of Biology, Science Faculty, Gazi University, Ankara, Turkey
| | - Mustafa Çelik
- Department of Medical Biology, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| |
Collapse
|
9
|
Payán-Rentería R, Garibay-Chávez G, Rangel-Ascencio R, Preciado-Martínez V, Muñoz-Islas L, Beltrán-Miranda C, Mena-Munguía S, Jave-Suárez L, Feria-Velasco A, De Celis R. Effect of chronic pesticide exposure in farm workers of a Mexico community. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2012; 67:22-30. [PMID: 22315932 DOI: 10.1080/19338244.2011.564230] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pesticides are frequently used substances worldwide, even when the use of some of them is forbidden due to the recognized adverse effect they have on the health of not only the people who apply the pesticides, but also of those that consume the contaminated products. The objectives of this study were to know the health issues of farm workers chronically exposed to pesticides, to evaluate possible damage at genetic level, as well as to explore some hepatic, renal, and hematological alterations. A transversal comparative study was performed between 2 groups, one composed of 25 farm workers engaged in pesticide spraying, and a control group of 21 workers not exposed to pesticides; both groups belonged to the Nextipac community in Jalisco, Mexico. Each member of both groups underwent a full medical history. Blood samples were taken from all farm workers in order to obtain a complete blood count and chemistry, clinical chemistry, lipid profile, liver and kidney function tests, erythrocyte cholinesterase quantification, lipid peroxidation profile, and free DNA fragment quantification. For the information analysis, central tendency and dispersion measurements were registered. In order to know the differences between groups, a cluster multivariate method was used, as well as prevalence reasons. The most used pesticides were mainly organophosphates, triazines and organochlorine compounds. The exposed group showed acute poisoning (20% of the cases) and diverse alterations of the digestive, neurological, respiratory, circulatory, dermatological, renal, and reproductive system probably associated to pesticide exposure. More importantly, they presented free DNA fragments in plasma (90.8 vs 49.05 ng/mL) as well as a higher level of lipid peroxidation (41.85 vs. 31.91 nmol/mL) in comparison with those data from unexposed farm workers. These results suggest that there exist health hazards for those farm workers exposed to pesticides, at organic and cellular levels.
Collapse
Affiliation(s)
- Rolando Payán-Rentería
- Department of Environmental Health, Biological and Agricultural Sciences Center, University of Guadalajara, Zapopan, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sutiaková I, Kovalkovičová N, Sutiak V. Chromosomal aberrations in ovine lymphocytes exposed in vitro to tolylfluanid. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2012; 47:1-6. [PMID: 22022782 DOI: 10.1080/03601234.2012.601939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chromosomal aberrations have been used as important cytogenetic biomarkers to study the mutagenic effects of different chemicals in vivo and in vitro. Chromosomal aberrations were evaluated in cultures of sheep lymphocytes in vitro exposed to the fungicide tolylfluanid. Lymphocyte cultures from three donors were exposed to four different concentrations of fungicide (1.10(-4) M(.)L; 1.10(-5) M(.)L; 1.10(-6) M(.)L; 1 × 10(-7) M(.)L). Chromosomal analysis showed a significant (P = 0.018 and 0.038 respectively, Anova test, P < 0.05, Tukey test) increase in the frequency of aberrant cells (ABC) in cultures treated with the highest negative experimental concentrations of tolylfluanid (1.10(-4) M(.)L; 1.10(-5) M(.)L) compared to control. Significantly increased numbers of chromatid breaks (7.67 ± 0.58% against 1.67 ± 2.08%, P = 0.009, Anova test, P < 0.05, Tukey test) and chromatid gaps (7.67 ± 1.15% against 2.67 ± 0.58%, P = 0.003, Anova test, P < 0.05, Tukey test) were observed in ovine cultures treated with the highest experimental concentration of tolylfluanid (1.10(-4) M(.)L). Tolylfluanid induced also chromosomal exchanges (P = 0.038, and 0.016 respectively, Anova test, P < 0.05, Tukey test) in ovine cultures treated with the highest experimental concentrations of tolylfluanid (1.10(-4) M(.)L; 1.10(-5) M(.)L). The mitotic index has not shown any statistical differences between the various treatments and control groups. Our results suggest a significant genotoxic effect of tolylfluanid only at the highest concentration in sheep peripheral lymphocytes in vitro.
Collapse
|
11
|
Kasiotis KM, Kyriakopoulou K, Emmanouil C, Tsantila N, Liesivuori J, Souki H, Manakis S, Machera K. Monitoring of systemic exposure to plant protection products and DNA damage in orchard workers. Toxicol Lett 2011; 210:182-8. [PMID: 22115631 DOI: 10.1016/j.toxlet.2011.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/19/2011] [Accepted: 10/11/2011] [Indexed: 10/16/2022]
Abstract
The systemic exposure of plum tree growers and operators to plant protection products (PPPs) and effects on DNA were assessed. Specifically, a GC-MS/MS method was developed and validated for the analysis of serum samples for the presence of seven active substances of PPPs. The analytical results verified the presence of myclobutanil, propargite, cypermethrin and deltamethrin in 7 out of 19 serum samples. The incidence of DNA damage was monitored using the single cell electrophoresis assay (comet assay). A paired Student's t-test revealed a statistically significant increase of SSBs in the blood samples collected at the end of the cropping period as compared to the samples collected from the same subjects before the start of PPPs application period. Moreover, the group of seven subjects with detectable serum pesticides levels revealed statistically significant increase of SSBs as compared to the group of subjects with no detectable PPP levels. The results of the present study demonstrate that the agriculture workers may exhibit detectable level of systemic exposure to the applied PPPs which are correlated to increased DNA damage during the cultivation period.
Collapse
Affiliation(s)
- Konstantinos M Kasiotis
- Benaki Phytopathological Institute, Department of Pesticides Control and Phytopharmacy, Laboratory of Pesticides Toxicology, 8 St. Delta Street, Kifissia, 14561 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gallois J, Pottier D, Houssin M, Le Goff J, André V. DNA adduct variations in non-smoking crop farmers: potential relationship with occupational exposure to pesticides? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 32:1-9. [PMID: 21787723 DOI: 10.1016/j.etap.2010.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/07/2010] [Accepted: 12/23/2010] [Indexed: 05/31/2023]
Abstract
Genotoxic impact of the occupational exposure was measured in farmers from Normandy, France. White blood cell DNA-adduct levels were measured for 116 non-smoking French crop farmers, using the (32)P-postlabelling method. A single blood sample was collected per farmer, at a randomised period of the year. Significantly higher bulky DNA-adduct levels were observed for samples collected from April to July, compared with samples collected during the other months. Agricultural practices were not significantly different between these two groups of farmers, but interestingly, the mean and the median duration without exposure to pesticides were significantly shorter for farmers sampled between April and July. These data, obtained in a homogeneous population of farmers, indicate a genotoxic impact for a sub-group, with a potential association with the use of pesticides. From the rest of the group, this study also gives for the first time additional information on the background fluctuations of this biomarker over the year.
Collapse
Affiliation(s)
- Jérôme Gallois
- Laboratoire Départemental Franck Duncombe (LDFD14), Conseil Général du Calvados, 1, route de Rosel, 14053, Caen Cedex 4, France.
| | | | | | | | | |
Collapse
|
13
|
Decordier I, Loock KV, Kirsch-Volders M. Phenotyping for DNA repair capacity. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2010; 705:107-129. [PMID: 20478396 DOI: 10.1016/j.mrrev.2010.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 12/21/2022]
Affiliation(s)
- Ilse Decordier
- Laboratorium voor Cellulaire Genetica, Vrije Universiteit Brussel, Belgium.
| | - Kim Vande Loock
- Laboratorium voor Cellulaire Genetica, Vrije Universiteit Brussel, Belgium
| | | |
Collapse
|
14
|
The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development. Chem Biol Interact 2010; 188:334-9. [PMID: 20637748 DOI: 10.1016/j.cbi.2010.07.010] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/07/2010] [Accepted: 07/07/2010] [Indexed: 01/16/2023]
Abstract
Although we have greatly benefited from the use of traditional epidemiological approaches in linking environmental exposure to human disease, we are still lacking knowledge in to how such exposure participates in disease development. However, molecular epidemiological studies have provided us with evidence linking oxidative stress with the pathogenesis of human disease and in particular carcinogenesis. To this end, oxidative stress-based biomarkers have proved to be essential in revealing how oxidative stress may be mediating toxicity induced by many known carcinogenic environmental agents. Therefore, throughout this review article, we aim to address the current state of oxidative stress-based biomarker development with major emphasis pertaining to biomarkers of DNA, lipid and protein oxidation.
Collapse
|