1
|
Menz J, Götz ME, Gündel U, Gürtler R, Herrmann K, Hessel-Pras S, Kneuer C, Kolrep F, Nitzsche D, Pabel U, Sachse B, Schmeisser S, Schumacher DM, Schwerdtle T, Tralau T, Zellmer S, Schäfer B. Genotoxicity assessment: opportunities, challenges and perspectives for quantitative evaluations of dose-response data. Arch Toxicol 2023; 97:2303-2328. [PMID: 37402810 PMCID: PMC10404208 DOI: 10.1007/s00204-023-03553-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Genotoxicity data are mainly interpreted in a qualitative way, which typically results in a binary classification of chemical entities. For more than a decade, there has been a discussion about the need for a paradigm shift in this regard. Here, we review current opportunities, challenges and perspectives for a more quantitative approach to genotoxicity assessment. Currently discussed opportunities mainly include the determination of a reference point (e.g., a benchmark dose) from genetic toxicity dose-response data, followed by calculation of a margin of exposure (MOE) or derivation of a health-based guidance value (HBGV). In addition to new opportunities, major challenges emerge with the quantitative interpretation of genotoxicity data. These are mainly rooted in the limited capability of standard in vivo genotoxicity testing methods to detect different types of genetic damage in multiple target tissues and the unknown quantitative relationships between measurable genotoxic effects and the probability of experiencing an adverse health outcome. In addition, with respect to DNA-reactive mutagens, the question arises whether the widely accepted assumption of a non-threshold dose-response relationship is at all compatible with the derivation of a HBGV. Therefore, at present, any quantitative genotoxicity assessment approach remains to be evaluated case-by-case. The quantitative interpretation of in vivo genotoxicity data for prioritization purposes, e.g., in connection with the MOE approach, could be seen as a promising opportunity for routine application. However, additional research is needed to assess whether it is possible to define a genotoxicity-derived MOE that can be considered indicative of a low level of concern. To further advance quantitative genotoxicity assessment, priority should be given to the development of new experimental methods to provide a deeper mechanistic understanding and a more comprehensive basis for the analysis of dose-response relationships.
Collapse
Affiliation(s)
- Jakob Menz
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Mario E Götz
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ulrike Gündel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Rainer Gürtler
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Kristin Herrmann
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Carsten Kneuer
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Franziska Kolrep
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Dana Nitzsche
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ulrike Pabel
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Benjamin Sachse
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sebastian Schmeisser
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - David M Schumacher
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tanja Schwerdtle
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sebastian Zellmer
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Bernd Schäfer
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
2
|
Zhu X, Huo J, Zeng Z, Liu Y, Li R, Chen Y, Zhang L, Chen J. Determination of potential thresholds for N-ethyl-N-nitrosourea and ethyl methanesulfonate based on a multi-endpoint genotoxicity assessment platform in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85128-85142. [PMID: 35793016 PMCID: PMC9646607 DOI: 10.1007/s11356-022-21605-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The main goal of the study was to investigate the genotoxic response of N-ethyl-N-nitrosourea (ENU) and ethyl methanesulfonate (EMS) at low doses in a multi-endpoint genotoxicity assessment platform in rats and to derive potential thresholds and related metrics. Male Sprague-Dawley rats were treated by daily oral gavage for 28 consecutive days with ENU (0.25 ~ 8 mg/kg bw) and EMS (5 ~ 160 mg/kg bw), both with six closely spaced dose levels. Pig-a gene mutation assay, micronucleus test, and comet assay were performed in several timepoints. Then, the dose-response relationships were analyzed for possible points of departure (PoD) using the no observed genotoxic effect level and benchmark dose (BMD) protocols with different critical effect sizes (CES, 0.05, 0.1, 0.5, and 1SD). Overall, dose-dependent increases in all investigated endpoints were found for ENU and EMS. PoDs varied across genetic endpoints, timepoints, and statistical methods, and selecting an appropriate lower 95% confidence limit of BMD needs a comprehensive consideration of the mode of action of chemicals, the characteristics of tests, and the model fitting methods. Under the experimental conditions, the PoDs of ENU and EMS were 0.0036 mg/kg bw and 1.7 mg/kg bw, respectively.
Collapse
Affiliation(s)
- Xuejiao Zhu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jiao Huo
- Department of Nutrition and Food Safety, Chongqing Center for Disease Control and Prevention, Chongqing, China
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Zhu Zeng
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Chengdu Fifth People's Hospital, Chengdu, Sichuan, China
| | - Yunjie Liu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Ruirui Li
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Yiyi Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Lishi Zhang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jinyao Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China.
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Bonetto RM, Castel P, Robert SP, Tassistro VM, Claeys-Bruno M, Sergent M, Delecourt CA, Cowen D, Carcopino X, Orsière TG. Evaluation of PIG-A-mutated granulocytes and ex-vivo binucleated micronucleated lymphocytes frequencies after breast cancer radiotherapy in humans. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:18-28. [PMID: 33169419 DOI: 10.1002/em.22413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Although the PIG-A gene mutation frequency (MF) is considered a good proxy to evaluate the somatic MF in animals, evidence remains scarce in humans. In this study, a granulocyte PIG-A-mutant assay was evaluated in patients undergoing radiation therapy (RT) for breast cancer. Breast cancer patients undergoing adjuvant RT were prospectively enrolled. RT involved the whole breast, with (WBNRT) or without (WBRT) nodal area irradiation. Blood samples were obtained from participants before (T0) RT, and T1, T2, and T3 samples were collected 3 weeks after the initiation of RT, at the end of RT, and at least 10 weeks after RT discontinuation, respectively. The MF was assessed using a flow cytometry protocol identifying PIG-A-mutant granulocytes. Cytokinesis-blocked micronucleated lymphocyte (CBML) frequencies were also evaluated. Thirty patients were included, and five of them had received chemotherapy prior to RT. The mean (±SD) PIG-A MFs were 7.7 (±12.1) per million at T0, 5.2 (±8.6) at T1, 6.4 (±8.0) at T2 and 3.8 (±36.0) at T3. No statistically significant increases were observed between the PIG-A MF at T0 and the MFs at other times. RT significantly increased the CBML frequencies: 7.9 ‰ (±3.1‰) versus 33.6‰ (±17.2‰) (p < .0001). By multivariate analysis, the CBML frequency was correlated with age at RT initiation (p = .043) and irradiation volume at RT discontinuation (p = .0001) but not with chemotherapy. RT for breast cancer therapy failed to induce an increase in the PIG-A MF. The PIG-A assay in humans needs further evaluation, in various genotoxic exposures and including various circulating human cells.
Collapse
Affiliation(s)
- Rémi M Bonetto
- Aix Marseille University, APHM, CHU TIMONE, Service de Radiothérapie-Oncologie, Marseille, France
| | - Pierre Castel
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Stéphane P Robert
- Aix Marseille University, INSERM, INRA, C2VN, AMUTICYT Core Facility, Faculté de Pharmacie, Marseille, France
| | - Virginie M Tassistro
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Magalie Claeys-Bruno
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Michelle Sergent
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Camille A Delecourt
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Didier Cowen
- Aix Marseille University, APHM, CHU TIMONE, Service de Radiothérapie-Oncologie, Marseille, France
| | - Xavier Carcopino
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
- Aix Marseille University, APHM, CHU NORD, Service de Gynécologie-Obstétrique, Marseille, France
| | - Thierry G Orsière
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| |
Collapse
|
4
|
Lawrence R, Haboubi H, Williams L, Doak S, Jenkins G. Dietary and lifestyle factors effect erythrocyte PIG-A mutant frequency in humans. Mutagenesis 2020; 35:geaa025. [PMID: 33043963 DOI: 10.1093/mutage/geaa025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023] Open
Abstract
It is well understood that poor diet and lifestyle choices can increase the risk of cancer. It is also well documented that cancer is a disease of DNA mutations, with mutations in key genes driving carcinogenesis. Measuring these mutations in a minimally invasive way may be informative as to which exposures are harmful and thus allow us to introduce primary preventative measures, in a bid to reduce cancer incidences. Here, we have measured mutations in the phosphatidylinositol glycan class A (PIG-A) gene in erythrocytes from healthy volunteers (n = 156) and from non-cancer patients attending the local endoscopy department (n = 144). The X-linked PIG-A gene encodes an enzyme involved in glycosylphosphatidylinositol (GPI) anchor synthesis. A silencing mutation in which leads to the absence of GPI anchors on the extracellular surface which can be rapidly assessed using flow cytometry. The background level of PIG-A mutant erythrocytes was 2.95 (95% CI: 2.59-3.67) mutant cells (10-6). Older age increased mutant cell frequency (P < 0.001). There was no difference in mutant cell levels between males and females (P = 0.463) or smokers and non-smokers (P = 0.186). In the endoscopy group, aspirin users had lower mutant frequencies (P = 0.001). Further information on diet and exercise was available for the endoscopy patient group alone, where those with a higher health promotion index score had lower mutant frequencies (P = 0.011). Higher dietary intake of vegetables reduced mutant cell levels (P = 0.022). Participants who exercised for at least 1 h a week appeared to have reduced mutant frequencies than those who did not exercise, although this was not statistically significant (P = 0.099). This low background level of mutant erythrocytes in a population makes this assay an attractive tool to monitor exposures such as those associated with lifestyles and diet, as demonstrated here.
Collapse
Affiliation(s)
| | | | - Lisa Williams
- Department of Endoscopy, Swansea Bay University Health Board, Swansea, UK
| | | | | |
Collapse
|
5
|
Revollo JR, Pearce MG, Dad A, Petibone DM, Robison TW, Roberts D, Dobrovolsky VN. Analysis of mutation in the rat Pig-a assay: I) studies with bone marrow erythroid cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:722-732. [PMID: 30091272 DOI: 10.1002/em.22211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
We have established a flow cytometry-based Pig-a assay for rat bone marrow erythroid cells (BMEs). The BME Pig-a assay uses a DNA-specific stain and two antibodies: one against the transmembrane transferrin receptor (CD71 marker) and the other against the GPI-anchored complement inhibitory protein (CD59 marker). In F344 male rats treated acutely with a total of 120 mg/kg of N-ethyl-N-nitrosourea (ENU) the frequency of CD59-deficient phenotypically mutant BMEs increased approximately 24-fold compared to the rats concurrently treated with the vehicle. Such an increase of mutant BMEs coincides with increases of CD59-deficient reticulocytes measured in rats treated with similar doses of ENU. Sequence analysis of the endogenous X-linked Pig-a gene of CD59-deficient BMEs revealed that they are Pig-a mutants. The spectrum of ENU-induced Pig-a mutations in these BMEs was consistent with the in vivo mutagenic signature of ENU: 73% of mutations occurred at A:T basepairs, with the mutated T on the nontranscribed strand of the gene. T→A transversion was the most frequent mutation followed by T→C transition; no deletion or insertion mutations were present in the spectrum. Since BMEs are precursors of peripheral red blood cells, our findings suggest that CD59-deficient erythrocytes measured in the flow cytometric erythrocyte Pig-a assay develop from BMEs containing mutations in the Pig-a gene. Thus, the erythrocyte Pig-a assay detects mutation in the Pig-a gene. Environ. Mol. Mutagen. 59:722-732, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Mason G Pearce
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Azra Dad
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Dayton M Petibone
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Timothy W Robison
- Division of Pulmonary, Allergy, and Rheumatology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Daniel Roberts
- Charles River Laboratories, Skokie, Illinois; Joint Graduate Program of Toxicology, Rutgers University, Piscataway, New Jersey
| | - Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
6
|
Igl BW, Dertinger SD, Dobrovolsky VN, Raschke M, Sutter A, Vonk R. A statistical approach for analyzing data from the in vivo Pig-a gene mutation assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:33-44. [PMID: 29875075 DOI: 10.1016/j.mrgentox.2018.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/29/2018] [Accepted: 05/04/2018] [Indexed: 10/17/2022]
Abstract
The in vivo Pig-a gene mutation assay serves to evaluate the genotoxic potential of chemicals. In the rat blood-based assay, the lack of CD59 on the surface of erythrocytes is quantified via fluorophore-labeled antibodies in conjunction with flow cytometric analysis to determine the frequency of Pig-a mutant phenotype cells. The assay has achieved regulatory relevance as it is suggested as an in vivo follow-up test for Ames mutagens in the recent ICH M7 [25] step 4 document. However, very little work exists regarding suitable statistical approaches for analyzing Pig-a data. In the current report, we present a statistical strategy based on a two factor model involving 'treatment' and 'time' incl. their interaction and a baseline covariate for log proportions to compare treatment and vehicle data per time point as well as in time. In doing so, multiple contrast tests allow us to discover time-related changes within and between treatment groups in addition to multiple treatment comparisons to a control group per single time point. We compare our proposed strategy with the results of classical Dunnett and Wilcoxon-Mann-Whitney tests using two data sets describing the mode of action of Chlorambucil and Glycidyl methacrylate both analyzed in a 28-day treatment schedule.
Collapse
Affiliation(s)
| | | | - Vasily N Dobrovolsky
- National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, USA
| | | | | | - Richardus Vonk
- Research and Clinical Sciences Statistics, Bayer AG, Berlin, Germany
| |
Collapse
|
7
|
Avlasevich SL, Labash C, Torous DK, Bemis JC, MacGregor JT, Dertinger SD. In vivo pig-a and micronucleus study of the prototypical aneugen vinblastine sulfate. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:30-37. [PMID: 28833575 PMCID: PMC5773054 DOI: 10.1002/em.22122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/15/2017] [Indexed: 05/05/2023]
Abstract
The Pig-a assay is being used in regulatory studies to evaluate the potential of agents to induce somatic cell gene mutations and an OECD test guideline is under development. A working group involved with establishing the guideline recently noted that representative aneugenic agents had not been evaluated, and to help fill this data gap Pig-a mutant phenotype and micronucleated reticulocyte frequencies were measured in an integrated study design to assess the mutagenic and cytogenetic damage responses to vinblastine sulfate exposure. Male Sprague Dawley rats were treated for twenty-eight consecutive days with vinblastine dose levels from 0.0156 to 0.125 mg/kg/day. Micronucleated reticulocyte frequencies in peripheral blood were determined at Days 4 and 29, and mutant cell frequencies were determined at Days -4, 15, 29, and 46. Vinblastine affected reticulocyte frequencies, with reductions noted during the treatment phase and increases observed following cessation of treatment. Micronucleated reticulocyte frequencies were significantly elevated at Day 4 in the high dose group. Although a statistically significant increase in mutant reticulocyte frequencies were found for one dose group at a single time point (Day 46), it was not deemed biologically relevant because there was no analogous finding in mutant RBCs, it occurred at the lowest dose tested, and only 1 rat exceeded an upper bound tolerance interval established with historical negative control rats. Therefore, whereas micronucleus induction reflects vinblastine's well-established aneugenic effect on hematopoietic cells, the lack of a Pig-a response indicates that this tubulin-binding agent does not cause appreciable mutagenicity in this same cell type. Environ. Mol. Mutagen. 59:30-37, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
|
8
|
Olsen AK, Dertinger SD, Krüger CT, Eide DM, Instanes C, Brunborg G, Hartwig A, Graupner A. The Pig-a Gene Mutation Assay in Mice and Human Cells: A Review. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:78-92. [PMID: 28481423 DOI: 10.1111/bcpt.12806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/01/2017] [Indexed: 01/08/2023]
Abstract
This MiniReview describes the principle of mutation assays based on the endogenous Pig-a gene and summarizes results for two species of toxicological interest, mice and human beings. The work summarized here largely avoids rat-based studies, as are summarized elsewhere. The Pig-a gene mutation assay has emerged as a valuable tool for quantifying in vivo and in vitro mutational events. The Pig-a locus is located at the X-chromosome, giving the advantage that one inactivated allele can give rise to a mutated phenotype, detectable by multicolour flow cytometry. For in vivo studies, only minute blood volumes are required, making it easily incorporated into ongoing studies or experiments with limited biological materials. Low blood volumes also allow individuals to serve as their own controls, providing temporal information of the mutagenic process, and/or outcome of intervention. These characteristics make it a promising exposure marker. To date, the Pig-a gene mutation assay has been most commonly performed in rats, while reports regarding its usefulness in other species are accumulating. Besides its applicability to in vivo studies, it holds promise for genotoxicity testing using cultured cells, as shown in recent studies. In addition to safety assessment roles, it is becoming a valuable tool in basic research to identify mutagenic effects of different interventions or to understand implications of various gene defects by investigating modified mouse models or cell systems. Human blood-based assays are also being developed that may be able to identify genotoxic environmental exposures, treatment- and lifestyle-related factors or endogenous host factors that contribute to mutagenesis.
Collapse
Affiliation(s)
- Ann-Karin Olsen
- Department of Molecular Biology, The Norwegian Institute of Public Health, Oslo, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Norway
| | | | - Christopher T Krüger
- Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Dag M Eide
- Centre for Environmental Radioactivity (CERAD CoE), Norway.,Department of Toxicology and Risk, The Norwegian Institute of Public Health, Oslo, Norway
| | - Christine Instanes
- Department of Molecular Biology, The Norwegian Institute of Public Health, Oslo, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Norway
| | - Gunnar Brunborg
- Department of Molecular Biology, The Norwegian Institute of Public Health, Oslo, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Norway
| | - Andrea Hartwig
- Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anne Graupner
- Department of Molecular Biology, The Norwegian Institute of Public Health, Oslo, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Norway
| |
Collapse
|
9
|
Raschke M, Igl BW, Kenny J, Collins J, Dertinger SD, Labash C, Bhalli JA, Tebbe CCM, McNeil KM, Sutter A. In Vivo Pig-a gene mutation assay: Guidance for 3Rs-friendly implementation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:678-686. [PMID: 27770464 DOI: 10.1002/em.22060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
The rodent Pig-a assay is an in vivo method for the detection of gene mutation, where lack of glycosylphosphatidylinositol-anchored proteins on the surface of circulating red blood cells (RBCs) serves as a reporter for Pig-a gene mutation. In the case of rats, the frequency of mutant phenotype RBCs is measured via fluorescent anti-CD59 antibodies and flow cytometry. The Pig-a assay meets the growing expectations for novel approaches in animal experimentation not only focusing on the scientific value of the assay but also on animal welfare aspects (3Rs principles), for example, amenable to integration into pivotal rodent 28-day general toxicology studies. However, as recommended in the Organisation for Economic Co-operation and Development Test Guidelines for genotoxicity testing, laboratories are expected to demonstrate their proficiency. While this has historically involved the extensive use of animals, here we describe an alternative approach based on a series of blood dilutions covering a range of mutant frequencies. The experiments described herein utilized either non-fluorescent anti-CD59 antibodies to provide elevated numbers of mutant-like cells, or a low volume blood sample from a single N-ethyl-N-nitrosourea treated animal. Results from these so-called reconstruction experiments from four independent laboratories showed good overall precision (correlation coefficients: 0.9979-0.9999) and accuracy (estimated slope: 0.71-1.09) of mutant cell scoring, which was further confirmed by Bland-Altman analysis. These data strongly support the use of reconstruction experiments for training purposes and demonstrating laboratory proficiency with very few animals, an ideal situation given the typically conflicting goals of demonstrating laboratory proficiency and reducing the use of animals. Environ. Mol. Mutagen. 57:678-686, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marian Raschke
- Bayer Pharma AG, Muellerstrasse 178, Berlin, 13353, Germany
| | - Bernd-W Igl
- Bayer Pharma AG, Muellerstrasse 178, Berlin, 13353, Germany
| | - Julia Kenny
- GlaxoSmithKline, Park Road, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | - Joanne Collins
- GlaxoSmithKline, Park Road, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | | | - Carson Labash
- Litron Laboratories, 3500 Winton Place, Rochester, New York, 14623
| | - Javed A Bhalli
- Covance Laboratories Inc, 671 S. Meridian Rd, Greenfield, Indiana, 46140
| | - Cameron C M Tebbe
- Covance Laboratories Inc, 671 S. Meridian Rd, Greenfield, Indiana, 46140
| | - Kylie M McNeil
- Covance Laboratories Inc, 671 S. Meridian Rd, Greenfield, Indiana, 46140
| | - Andreas Sutter
- Bayer Pharma AG, Muellerstrasse 178, Berlin, 13353, Germany
| |
Collapse
|
10
|
Wickliffe JK, Dertinger SD, Torous DK, Avlasevich SL, Simon-Friedt BR, Wilson MJ. Diet-induced obesity increases the frequency of Pig-a mutant erythrocytes in male C57BL/6J mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:668-677. [PMID: 27739633 PMCID: PMC5118159 DOI: 10.1002/em.22058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 05/10/2023]
Abstract
Obesity increases the risk of a number of chronic diseases in humans including several cancers. Biological mechanisms responsible for such increased risks are not well understood at present. Increases in systemic inflammation and oxidative stress, endogenous production of mutagenic metabolites, altered signaling in proliferative pathways, and increased sensitivity to exogenous mutagens and carcinogens are some of the potential contributing factors. We hypothesize that obesity creates an endogenously mutagenic environment in addition to increasing the sensitivity to environmental mutagens. To test this hypothesis, we examined two in vivo genotoxicity endpoints. Pig-a mutant frequencies and micronucleus frequencies were determined in blood cells in two independent experiments in 30-week old male mice reared on either a high-fat diet (60% calories from fat) that exhibit an obese phenotype or a normal-fat diet (10% calories from fat) that do not exhibit an obese phenotype. Mice were assayed again at 52 weeks of age in one of the experiments. N-ethyl-N-nitrosourea (ENU) was used as a positive mutation control in one experiment. ENU induced a robust Pig-a mutant and micronucleus response in both phenotypes. Obese, otherwise untreated mice, did not differ from non-obese mice with respect to Pig-a mutant frequencies in reticulocytes or micronucleus frequencies. However, such mice, had significantly higher and sustained Pig-a mutant frequencies (increased 2.5-3.7-fold, p < 0.02) in erythrocytes as compared to non-obese mice (based on measurements collected at 30 weeks or 30 and 52 weeks of age). This suggests that obesity, in the absence of exposure to an exogenous mutagen, is itself mutagenic. Environ. Mol. Mutagen. 57:668-677, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jeffrey K. Wickliffe
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112 USA
| | | | | | | | - Bridget R. Simon-Friedt
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112 USA
| | - Mark J. Wilson
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112 USA
| |
Collapse
|
11
|
Maeda A, Takahashi K, Tsuchiyama H, Oshida K. Evaluation of red blood cell Pig-a assay and PIGRET assay in rats using chlorambucil. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:91-96. [DOI: 10.1016/j.mrgentox.2015.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/16/2015] [Indexed: 11/28/2022]
|
12
|
Roberts DJ, McKeon M, Xu Y, Stankowski LF. Comparison of integrated genotoxicity endpoints in rats after acute and subchronic oral doses of 4-nitroquinoline-1-oxide. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:17-27. [PMID: 26407646 PMCID: PMC7362388 DOI: 10.1002/em.21981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/17/2015] [Indexed: 05/16/2023]
Abstract
During interlaboratory validation trials for the Pig-a gene mutation assay we assessed the genotoxicity of 4-nitroquinoline-1-oxide (4NQO) across endpoints in multiple tissues: induction of Pig-a mutant red blood cells (RBCs) and reticulocytes (RETs); micronucleated RETs (MN RETs); and DNA damage in blood and liver via the alkaline Comet assay (%tail intensity [TI]). In a previous subchronic toxicity study with 28 daily doses, biologically meaningful increases were observed only for Pig-a mutant RBCs/RETs while marginal increases in the frequency of MN RET were observed, and other clastogenic endpoints were negative. Follow up acute studies were performed using the same cumulative doses (0, 35, 70, 105, and 140 mg/kg) administered in a bolus, or split over three equal daily doses, with samples collected up to 1 month after the last dose. Both of the acute dosing regimens produced similar results, in that endpoints were either positive or negative, regardless of 1 or 3 daily doses, but the three consecutive daily dose regimen yielded more potent responses in TI (in liver and blood) and Pig-a mutant frequencies. In these acute studies the same cumulative doses of 4NQO induced positive responses in clastogenic endpoints that were negative or inconclusive using a subchronic study design. Additionally, a positive control group using combination doses of cyclophosphamide and ethyl methanesulfonate was employed to assess assay validity and potentially identify a future positive control treatment for integrated genetic toxicity studies.
Collapse
Affiliation(s)
- Daniel J Roberts
- Bristol-Myers Squibb, New Brunswick, NJ, USA
- Joint Graduate Program of Toxicology, Rutgers, NJ, USA
| | | | - Yong Xu
- BioReliance Corporation, Rockville, MD, USA
| | | |
Collapse
|
13
|
Pu J, Deng Y, Tan X, Chen G, Zhu C, Qi N, Wen H, Guo J, Wang X, Qiu Y, Liang J, Fu X, Hu Y, Song J, Geng X, Wang C, Zhang L, Huang Z, Li B, Wang X. The in vivo Pig-a gene mutation assay is applied to study the genotoxicity of procarbazine hydrochloride in Sprague-Dawley rats. ACTA ACUST UNITED AC 2016. [DOI: 10.2131/fts.3.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jiang Pu
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
- Sun Yat-sen University, China
| | - Yuanyuan Deng
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
- National Centre for Safety Evaluation of Drugs, China
| | - Xiaoyan Tan
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
- Sun Yat-sen University, China
| | - Gaofeng Chen
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
- Sun Yat-sen University, China
| | - Cong Zhu
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
- Sun Yat-sen University, China
| | - Naisong Qi
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | - Hairuo Wen
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | - Jun Guo
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | - Xin Wang
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | | | | | | | - Yanping Hu
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | - Jie Song
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | - Xingchao Geng
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | - Chao Wang
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | - Lin Zhang
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | | | - Bo Li
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | - Xue Wang
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| |
Collapse
|
14
|
Gollapudi BB, Lynch AM, Heflich RH, Dertinger SD, Dobrovolsky VN, Froetschl R, Horibata K, Kenyon MO, Kimoto T, Lovell DP, Stankowski LF, White PA, Witt KL, Tanir JY. The in vivo Pig-a assay: A report of the International Workshop On Genotoxicity Testing (IWGT) Workgroup. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 783:23-35. [DOI: 10.1016/j.mrgentox.2014.09.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 12/01/2022]
|
15
|
Stankowski LF, Aardema MJ, Lawlor TE, Pant K, Roy S, Xu Y, Elbekai R. Integration of Pig-a, micronucleus, chromosome aberration and comet assay endpoints in a 28-day rodent toxicity study with urethane. Mutagenesis 2015; 30:335-42. [PMID: 25934985 PMCID: PMC4506322 DOI: 10.1093/mutage/gev013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As part of the international Pig-a validation trials, we examined the induction of Pig-a mutant reticulocytes and red blood cells (RET(CD59-) and RBC(CD59-), respectively) in peripheral blood of male Sprague Dawley(®) rats treated with urethane (25, 100 and 250mg/kg/day) or saline by oral gavage for 29 days. Additional endpoints integrated into this study were: micronucleated reticulocytes (MN-RET) in peripheral blood; chromosome aberrations (CAb) and DNA damage (%tail intensity via the comet assay) in peripheral blood lymphocytes (PBL); micronucleated polychromatic erythrocytes (MN-PCE) in bone marrow; and DNA damage (comet) in various organs at termination (the 29th dose was added for the comet endpoint at sacrifice). Ethyl methanesulfonate (EMS; 200mg/kg/day on Days 3, 4, 13, 14, 15, 27, 28 and 29) was evaluated as the concurrent positive control (PC). All animals survived to termination and none exhibited overt toxicity, but there were significant differences in body weight and body weight gain in the 250-mg/kg/day urethane group, as compared with the saline control animals. Statistically significant, dose-dependent increases were observed for urethane for: RET(CD59-) and RBC(CD59-) (on Days 15 and 29); MN-RET (on Days 4, 15 and 29); and MN-PCE (on Day 29). The comet assay yielded positive results in PBL (Day 15) and liver (Day 29), but negative results for PBL (Days 4 and 29) and brain, kidney and lung (Day 29). No significant increases in PBL CAb were observed at any sample time. Except for PBL CAb (likely due to excessive cytotoxicity), EMS-induced significant increases in all endpoints/tissues. These results compare favorably with earlier in vivo observations and demonstrate the utility and sensitivity of the Pig-a in vivo gene mutation assay, and its ability to be easily integrated, along with other standard genotoxicity endpoints, into 28-day rodent toxicity studies.
Collapse
Affiliation(s)
| | - Marilyn J Aardema
- BioReliance Corporation, Rockville, MD 20850, USA, Marilyn Aardema Consulting LLC, Fairfield, OH 45014, USA
| | | | - Kamala Pant
- BioReliance Corporation, Rockville, MD 20850, USA
| | - Shambhu Roy
- BioReliance Corporation, Rockville, MD 20850, USA
| | - Yong Xu
- BioReliance Corporation, Rockville, MD 20850, USA
| | - Reem Elbekai
- BioReliance Corporation, Rockville, MD 20850, USA
| |
Collapse
|
16
|
Bemis JC, Labash C, Avlasevich SL, Carlson K, Berg A, Torous DK, Barragato M, MacGregor JT, Dertinger SD. Rat Pig-a mutation assay responds to the genotoxic carcinogen ethyl carbamate but not the non-genotoxic carcinogen methyl carbamate. Mutagenesis 2015; 30:343-7. [PMID: 25833916 PMCID: PMC4422867 DOI: 10.1093/mutage/geu084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Determination of the mode of action of carcinogenic agents is an important factor in risk assessment and regulatory practice. To assess the ability of the erythrocyte-based Pig-a mutation assay to discriminate between genotoxic and non-genotoxic modes of action, the mutagenic response of Sprague Dawley rats exposed to methyl carbamate (MC) or ethyl carbamate (EC) was investigated. EC, a potent carcinogen, is believed to induce DNA damage through the formation of a DNA-reactive epoxide group, whereas the closely structurally related compound, MC, cannot form this epoxide and its weaker carcinogenic activity is thought to be secondary to inflammation and promotion of cell proliferation. The frequency of Pig-a mutant phenotype cells was monitored before, during, and after 28 consecutive days of oral gavage exposure to either MC (doses ranging from 125 to 500 mg/kg/day) or EC (250 mg/kg/day). Significant increases in the frequency of mutant reticulocytes were observed from Days 15 through 43, with a peak mean frequency of 19.9×10(-6) on Day 29 (i.e. 24.9-fold increase relative to mean vehicle control across all four sampling times). As expected, mutant erythrocyte responses lagged behind mutant reticulocyte responses, with a maximal mean frequency of 8.2×10(-6) on Day 43 (i.e. 16.4-fold increase). No mutagenic effects were observed with MC. A second indicator of in vivo genotoxicity, peripheral blood micronucleated reticulocytes, was also studied. This endpoint was responsive to EC (3.3-fold mean increase), but not to MC. These results support the hypothesis that genotoxicity contributes to the carcinogenicity of EC but not of MC, and illustrates the value of the Pig-a assay for discriminating between genotoxic and non-genotoxic modes of action.
Collapse
Affiliation(s)
- Jeffrey C Bemis
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Carson Labash
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Svetlana L Avlasevich
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Kristine Carlson
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Ariel Berg
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Dorothea K Torous
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Matthew Barragato
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | | | - Stephen D Dertinger
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| |
Collapse
|
17
|
Cao X, Mittelstaedt RA, Pearce MG, Allen BC, Soeteman-Hernández LG, Johnson GE, Bigger CAH, Heflich RH. Quantitative dose-response analysis of ethyl methanesulfonate genotoxicity in adult gpt-delta transgenic mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:385-99. [PMID: 24535894 DOI: 10.1002/em.21854] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 05/25/2023]
Abstract
The assumption that mutagens have linear dose-responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA-reactive mutagen and carcinogen, exhibited sublinear or thresholded dose-responses for LacZ mutation in transgenic Muta™Mouse and for micronucleus (MN) frequency in CD1 mice (Gocke E and Müller L [2009]: Mutat Res 678:101-107). In order to explore variables in establishing genotoxicity dose-responses, we characterized the genotoxicity of EMS using gene mutation assays anticipated to have lower spontaneous mutant frequencies (MFs) than Muta™Mouse. Male gpt-delta transgenic mice were treated daily for 28 days with 5 to 100 mg/kg EMS, and measurements were made on: (i) gpt MFs in liver, lung, bone marrow, kidney, small intestine, and spleen; and (ii) Pig-a MFs in peripheral blood reticulocytes (RETs) and total red blood cells. MN induction also was measured in peripheral blood RETs. These data were used to calculate Points of Departure (PoDs) for the dose responses, i.e., no-observed-genotoxic-effect-levels (NOGELs), lower confidence limits of threshold effect levels (Td-LCIs), and lower confidence limits of 10% benchmark response rates (BMDL10 s). Similar PoDs were calculated from the published EMS dose-responses for LacZ mutation and CD1 MN induction. Vehicle control gpt and Pig-a MFs were 13-40-fold lower than published vehicle control LacZ MFs. In general, the EMS genotoxicity dose-responses in gpt-delta mice had lower PoDs than those calculated from the Muta™Mouse and CD1 mouse data. Our results indicate that the magnitude and possibly the shape of mutagenicity dose responses differ between in vivo models, with lower PoDs generally detected by gene mutation assays with lower backgrounds.
Collapse
Affiliation(s)
- Xuefei Cao
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dertinger SD, Avlasevich SL, Torous DK, Bemis JC, Phonethepswath S, Labash C, Carlson K, Mereness J, Cottom J, Palis J, MacGregor JT. Persistence of cisplatin-induced mutagenicity in hematopoietic stem cells: implications for secondary cancer risk following chemotherapy. Toxicol Sci 2014; 140:307-14. [PMID: 24798381 DOI: 10.1093/toxsci/kfu078] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cisplatin is a cytostatic agent used in the treatment of many types of cancer, but its use is associated with increased incidences of secondary leukemia. We evaluated cisplatin's in vivo genotoxic potential by analyzing peripheral blood for Pig-a mutant phenotype erythrocytes and for chromosomal damage in the form of micronuclei. Mutant phenotype reticuloyte and erythrocyte frequencies, based on anti-CD59 antibody labeling and flow cytometric analysis, were determined in male Sprague Dawley rats treated for 28 consecutive days (days 1-28) with up to 0.4 mg cisplatin/kg/day, and sampled on days -4, 15, 29, and 56. Vehicle and highest dose groups were evaluated at additional time points post-treatment up to 6 months. Day 4 and 29 blood samples were also analyzed for micronucleated reticulocyte frequency using flow cytometry and anti-CD71-based labeling. Mutant phenotype reticulocytes were significantly elevated at doses ≥0.1 mg/kg/day, and mutant phenotype erythrocytes were elevated at doses ≥0.05 mg/kg/day. In the 0.4 mg/kg/day group, these effects persisted for the 6 month observation period. Cisplatin also induced a modest but statistically significant increase in micronucleus frequency at the highest dose tested. The prolonged persistence in the production of mutant erythrocytes following cisplatin exposure suggests that this drug mutates hematopoietic stem cells and that this damage may ultimately contribute to the increased incidence of secondary leukemias seen in patients cured of primary malignancies with platinum-based regimens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - James Palis
- Department of Pediatrics and Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
19
|
Dertinger SD, Phonethepswath S, Avlasevich SL, Torous DK, Mereness J, Cottom J, Bemis JC, Macgregor JT. Pig-a gene mutation and micronucleated reticulocyte induction in rats exposed to tumorigenic doses of the leukemogenic agents chlorambucil, thiotepa, melphalan, and 1,3-propane sultone. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:299-308. [PMID: 24449360 DOI: 10.1002/em.21846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 06/03/2023]
Abstract
To evaluate whether blood-based genotoxicity endpoints can provide temporal and dose-response data within the low-dose carcinogenic range that could contribute to carcinogenic mode of action (MoA) assessments, we evaluated the sensitivity of flow cytometry-based micronucleus and Pig-a gene mutation assays at and below tumorigenic dose rate 50 (TD50) levels. The incidence of micronucleated reticulocytes (MN-RET) was used to evaluate chromosomal damage, and the frequency of CD59-negative reticulocytes (RET(CD59-) ) and erythrocytes (RBC(CD59-) ) served as phenotypic reporters of mutation at the X-linked Pig-a gene. Several leukemogenic agents with a presumed genotoxic MoA were studied. Specifically, male Sprague Dawley rats were treated via oral gavage for 28 days with chlorambucil, thiotepa, melphalan, and 1,3-propane sultone at doses corresponding to 0.33x, 1x, and 3x TD50, as well as at the maximum tolerated dose. Frequencies of MN-RET were determined at Days 4 and 29, and RET(CD59-) and RBC(CD59-) data were collected pretreatment as well as Days 15/16, 29, and 56/57. Dose-related increases were observed for each endpoint, and time to maximal effect was consistently: MN-RET < RET(CD59-) < RBC(CD59-) . For each of the chemicals studied, the genotoxic events occurred long before tumors or preneoplastic lesions would be expected. Furthermore, in the case of Pig-a gene mutation, the responses were observed at or below the TD50 dose for three out of the four chemicals studied. These data illustrate the potential for quantitative blood-based analyses to provide dose-response and temporality information that relates genetic damage to cancer induction.
Collapse
|
20
|
Ohtani S, Ushiyama A, Ootsuyama A, Kunugita N. Persistence of red blood cells with Pig-a mutation in p53 knockout mice exposed to X-irradiation. J Toxicol Sci 2014; 39:7-14. [DOI: 10.2131/jts.39.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Shin Ohtani
- Department of Environmental Health, National Institute of Public Health
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health
| | - Akira Ootsuyama
- Department of Radiation Biology and Health, University of Occupational and Environmental Health
| | - Naoki Kunugita
- Department of Environmental Health, National Institute of Public Health
| |
Collapse
|
21
|
Horibata K, Ukai A, Kimoto T, Suzuki T, Kamoshita N, Masumura K, Nohmi T, Honma M. Evaluation of in vivo genotoxicity induced by N-ethyl-N-nitrosourea, benzo[a]pyrene, and 4-nitroquinoline-1-oxide in the Pig-a and gpt assays. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:747-754. [PMID: 24105957 DOI: 10.1002/em.21818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 08/14/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
The recently developed Pig-a mutation assay is based on flow cytometric enumeration of glycosylphosphatidylinositol (GPI) anchor-deficient red blood cells caused by a forward mutation in the Pig-a gene. Because the assay can be conducted in nontransgenic animals and the mutations accumulate with repeat dosing, we believe that the Pig-a assay could be integrated into repeat-dose toxicology studies and provides an alternative to transgenic rodent (TGR) mutation assays. The capacity and characteristics of the Pig-a assay relative to TGR mutation assays, however, are unclear. Here, using transgenic gpt delta mice, we compared the in vivo genotoxicity of single oral doses of N-ethyl-N-nitrosourea (ENU, 40 mg/kg), benzo[a]pyrene (BP, 100 and 200 mg/kg), and 4-nitroquinoline-1-oxide (4NQO, 50 mg/kg) in the Pig-a (peripheral blood) and gpt (bone marrow and liver) gene mutation assays. Pig-a assays were conducted at 2, 4, and 7 weeks after the treatment, while gpt assays were conducted on tissues collected at the 7-week terminal sacrifice. ENU increased both Pig-a and gpt mutant frequencies (MFs) at all sampling times, and BP increased MFs in both assays but the Pig-a MFs peaked at 2 weeks and then decreased. Although 4NQO increased gpt MFs in the liver, only weak, nonsignificant increases (two- or threefold above control) were detected in the bone marrow in both the Pig-a and the gpt assay. These findings suggest that further studies are needed to elucidate the kinetics of the Pig-a mutation assay in order to use it as an alternative to the TGR mutation assay.
Collapse
Affiliation(s)
- Katsuyoshi Horibata
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Li Y, Bhalli JA, Ding W, Yan J, Pearce MG, Sadiq R, Cunningham CK, Jones MY, Monroe WA, Howard PC, Zhou T, Chen T. Cytotoxicity and genotoxicity assessment of silver nanoparticles in mouse. Nanotoxicology 2013; 8 Suppl 1:36-45. [DOI: 10.3109/17435390.2013.855827] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yan Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Javed A. Bhalli
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Wei Ding
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Mason G. Pearce
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Rakhshinda Sadiq
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan,
| | - Candice K. Cunningham
- Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA, and
| | - M. Yvonne Jones
- Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA, and
| | - William A. Monroe
- Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA, and
| | - Paul C. Howard
- Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA, and
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| |
Collapse
|
23
|
Bhalli JA, Shaddock JG, Pearce MG, Dobrovolsky VN. Sensitivity of the Pig-a assay for detecting gene mutation in rats exposed acutely to strong clastogens. Mutagenesis 2013; 28:447-55. [PMID: 23677247 DOI: 10.1093/mutage/get022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clastogens are potential human carcinogens whose detection by genotoxicity assays is important for safety assessment. Although some endogenous genes are sensitive to the mutagenicity of clastogens, many genes that are used as reporters for in vivo mutation (e.g. transgenes) are not. In this study, we have compared responses in the erythrocyte Pig-a gene mutation assay with responses in a gene mutation assay that is relatively sensitive to clastogens, the lymphocyte Hprt assay, and in the reticulocyte micronucleus (MN) assay, which provides a direct measurement of clastogenicity. Male F344 rats were treated acutely with X-rays, cyclophosphamide (CP) and Cis-platin (Cis-Pt), and the frequency of micronucleated reticulocytes (MN RETs) in peripheral blood was measured 1 or 2 days later. The frequencies of CD59-deficient Pig-a mutant erythrocytes and 6-thioguanine-resistant Hprt mutant T-lymphocytes were measured at several times up to 16 weeks after the exposure. All three clastogens induced strong increases in the frequency of MN RETs, with X-rays and Cis-Pt producing near linear dose responses. The three agents also were positive in the two gene mutation assays although the assays detected them with different efficiencies. The Pig-a assay was more efficient in detecting the effect of Cis-Pt treatment, whereas the Hprt assay was more efficient for X-rays and CP. The results indicate that the erythrocyte Pig-a assay can detect the in vivo mutagenicity of clastogens although its sensitivity is variable in comparison with the lymphocyte Hprt assay.
Collapse
Affiliation(s)
- Javed A Bhalli
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, HFT-120, Jefferson, AR 72079, USA
| | | | | | | |
Collapse
|
24
|
Dertinger SD, Phonethepswath S, Avlasevich SL, Torous DK, Mereness J, Bryce SM, Bemis JC, Bell S, Weller P, Macgregor JT. Efficient monitoring of in vivo pig-a gene mutation and chromosomal damage: summary of 7 published studies and results from 11 new reference compounds. Toxicol Sci 2012; 130:328-48. [PMID: 22923490 PMCID: PMC3498746 DOI: 10.1093/toxsci/kfs258] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/17/2012] [Indexed: 11/12/2022] Open
Abstract
The ability to effectively monitor gene mutation and micronucleated reticulocyte (MN-RET) frequency in short-term and repeated dosing schedules was investigated using the recently developed flow cytometric Pig-a mutation assay and flow cytometric micronucleus analysis. Eight reference genotoxicants and three presumed nongenotoxic compounds were studied: chlorambucil, melphalan, thiotepa, cyclophosphamide, azathioprine, 2-acetylaminofluorene, hydroxyurea, methyl methanesulfonate, o-anthranilic acid, sulfisoxazole, and sodium chloride. These experiments extend previously published results with seven other chemicals. Male Sprague Dawley rats were treated via gavage for 3 or 28 consecutive days with several dose levels of each chemical up to the maximum tolerated dose. Blood samples were collected at several time points up to day 45 and were analyzed for Pig-a mutation with a dual-labeling method that facilitates mutant cell frequency measurements in both total erythrocytes and the reticulocyte subpopulation. An immunomagnetic separation technique was used to increase the efficiency of scoring mutant cells. Blood samples collected on day 4, and day 29 for the 28-day study, were evaluated for MN-RET frequency. The three nongenotoxicants did not induce Pig-a or MN-RET responses. All genotoxicants except hydroxyurea increased the frequency of Pig-a mutant reticulocytes and erythrocytes. Significant increases in MN-RET frequency were observed for each of the genotoxicants at both time points. Whereas the highest Pig-a responses tended to occur in the 28-day studies, when total dose was greatest, the highest induction of MN-RET was observed in the 3-day studies, when dose per day was greatest. There was no clear relationship between the maximal Pig-a response of a given chemical and its corresponding maximal MN-RET response, despite the fact that both endpoints were determined in the same cell lineage. Taken with other previously published results, these data demonstrate the value of integrating Pig-a and micronucleus endpoints into in vivo toxicology studies, thereby providing information about mutagenesis and chromosomal damage in the same animals from which toxicity, toxicokinetics, and metabolism data are obtained.
Collapse
|
25
|
Ohtani S, Unno A, Ushiyama A, Kimoto T, Miura D, Kunugita N. The in vivo Pig-a gene mutation assay is useful for evaluating the genotoxicity of ionizing radiation in mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:579-588. [PMID: 22911630 DOI: 10.1002/em.21724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 06/01/2023]
Abstract
The in vivo Pig-a mutation assay has been adapted for measuring mutation in rats, mice, monkeys, and humans. To date, the assay has been used mainly to assess the mutagenicity of chemicals that are known to be powerful point mutagens. The assay has not been used to measure the biological effects associated with ionizing radiation. In this study, we modified the Pig-a gene mutation assay (Kimoto et al. [2011b]: Mutat Res 723:36-42) and used 3-color staining with fluorescently labeled anti-CD24, anti-TER-119, and anti-CD71 to detect the Pig-a mutant frequencies in total red blood cells (RBCs) and in reticulocytes (RETs) from X-irradiated mice. Single exposures to X-irradiation resulted in dose- and time-dependent increases in Pig-a mutant frequencies, and these subsequently declined over time returning to background frequencies. The same total amount of radiation, delivered either as a single dose or as four repeat doses at weekly intervals, increased Pig-a mutant frequencies to comparable levels, reaching maxima 2-3 weeks after the single dose or 2-3 weeks after the last of the repeat doses. These increased frequencies subsequently returned to background levels. Our results indicated that the 3-color Pig-a assay was useful for evaluating the in vivo genotoxicity of radiation.
Collapse
Affiliation(s)
- Shin Ohtani
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Dobrovolsky VN, Heflich RH, Ferguson SA. The frequency of Pig-a mutant red blood cells in rats exposed in utero to N-ethyl-N-nitrosourea. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:440-50. [PMID: 22730214 DOI: 10.1002/em.21704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/21/2012] [Accepted: 05/01/2012] [Indexed: 05/23/2023]
Abstract
The Pig-a assay has been developed as a rapid sensitive measure of gene mutation in adult rats; however, no data exist on its ability to detect mutation following in utero exposures or in neonatal animals. Pregnant Sprague-Dawley rats were treated daily on gestational days 12-18 with oral doses of 0, 6, or 12 mg/kg/day N-ethyl-N-nitrosourea (ENU); following parturition, the offspring and dams were monitored over a period of 5 months for the frequency of CD59-deficient erythrocytes as a marker of Pig-a mutation. Significant dose-related increases in Pig-a mutant red blood cells (RBCs) were observed in ENU-treated dams. However, only very weak increases in RBC Pig-a mutant frequency (MF) were noted in offspring treated in utero with the lower ENU dose. The higher ENU dose produced extremely variable responses in the offspring as a function of age, even among littermates, ranging from a steady low or moderately high Pig-a MF to a rapidly increasing or decreasing Pig-a MF. The manifestation kinetics of Pig-a mutant RBCs in the offspring suggest that the change from predominantly hepatic to predominantly bone marrow erythropoiesis that occurs during early development may have contributed to this variability. Our results indicate that using the RBC Pig-a model for mutation detection in animals treated in utero may require analysis of multiple offspring from the same litter to account for potential "jack pot" effects, and that detection of the earliest treatment effect (i.e., in neonates using the hepatic RBC fraction) may require optimization of blood processing.
Collapse
Affiliation(s)
- Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | | | | |
Collapse
|
27
|
Sadiq R, Bhalli JA, Yan J, Woodruff RS, Pearce MG, Li Y, Mustafa T, Watanabe F, Pack LM, Biris AS, Khan QM, Chen T. Genotoxicity of TiO2 anatase nanoparticles in B6C3F1 male mice evaluated using Pig-a and flow cytometric micronucleus assays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 745:65-72. [DOI: 10.1016/j.mrgentox.2012.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Dertinger SD, Heflich RH. In vivo assessment of Pig-a gene mutation-recent developments and assay validation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:681-684. [PMID: 22167884 DOI: 10.1002/em.20685] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
29
|
Lemieux CL, Douglas GR, Gingerich J, Phonethepswath S, Torous DK, Dertinger SD, Phillips DH, Arlt VM, White PA. Simultaneous measurement of benzo[a]pyrene-induced Pig-a and lacZ mutations, micronuclei and DNA adducts in Muta™ Mouse. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:756-65. [PMID: 21976233 PMCID: PMC3258540 DOI: 10.1002/em.20688] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 05/25/2023]
Abstract
In this study we compared the response of the Pig-a gene mutation assay to that of the lacZ transgenic rodent mutation assay, and demonstrated that multiple endpoints can be measured in a 28-day repeat dose study. Muta™Mouse were dosed daily for 28 days with benzo[a]pyrene (BaP; 0, 25, 50 and 75 mg/kg body weight/day) by oral gavage. Micronucleus (MN) frequency was determined in reticulocytes (RETs) 48 hr following the last dose. 72 h following the last dose, mice were euthanized, and tissues (glandular stomach, small intestine, bone marrow and liver) were collected for lacZ mutation and DNA adduct analysis, and blood was evaluated for Pig-a mutants. BaP-derived DNA adducts were detected in all tissues examined and significant dose-dependent increases in mutant Pig-a phenotypes (i.e., RET(CD24-) and RBC (CD24-)) and lacZ mutants were observed. We estimate that mutagenic efficiency (i.e., rate of conversion of adducts into mutations) was much lower for Pig-a compared to lacZ, and speculate that this difference is likely explained by differences in repair capacity between the gene targets, and differences in the cell populations sampled for Pig-a versus lacZ. The BaP doubling doses for both gene targets, however, were comparable, suggesting that similar mechanisms are involved in the accumulation of gene mutations. Significant dose-related increases in % MN were also observed; however, the doubling dose was considerably higher for this endpoint. The similarity in dose response kinetics of Pig-a and lacZ provides further evidence for the mutational origin of glycosylphosphatidylinositol (GPI)-anchor deficiencies detected in the Pig-a assay.
Collapse
Affiliation(s)
- Christine L Lemieux
- Mechanistic Studies Division, Environmental and Radiation Health Sciences Directorate, HECSB, Health Canada, Ottawa, ON, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|