1
|
Zhang H, Yang J, Guo Y, Lü P, Gong X, Chen K, Li X, Tang M. Rotenone-induced PINK1/Parkin-mediated mitophagy: establishing a silkworm model for Parkinson's disease potential. Front Mol Neurosci 2024; 17:1359294. [PMID: 38706874 PMCID: PMC11066238 DOI: 10.3389/fnmol.2024.1359294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/22/2024] [Indexed: 05/07/2024] Open
Abstract
Parkinson's disease (PD), ranking as the second most prevalent neurodegenerative disorder globally, presents a pressing need for innovative animal models to deepen our understanding of its pathophysiology and explore potential therapeutic interventions. The development of such animal models plays a pivotal role in unraveling the complexities of PD and investigating promising treatment avenues. In this study, we employed transcriptome sequencing on BmN cells treated with 1 μg/ml rotenone, aiming to elucidate the underlying toxicological mechanisms. The investigation brought to light a significant reduction in mitochondrial membrane potential induced by rotenone, subsequently triggering mitophagy. Notably, the PTEN induced putative kinase 1 (PINK1)/Parkin pathway emerged as a key player in the cascade leading to rotenone-induced mitophagy. Furthermore, our exploration extended to silkworms exposed to 50 μg/ml rotenone, revealing distinctive motor dysfunction as well as inhibition of Tyrosine hydroxylase (TH) gene expression. These observed effects not only contribute valuable insights into the impact and intricate mechanisms of rotenone exposure on mitophagy but also provide robust scientific evidence supporting the utilization of rotenone in establishing a PD model in the silkworm. This comprehensive investigation not only enriches our understanding of the toxicological pathways triggered by rotenone but also highlights the potential of silkworms as a valuable model organism for PD research.
Collapse
Affiliation(s)
- Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jinyue Yang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Yinglu Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xun Gong
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
2
|
Chakraborty A, Tapryal N, Islam A, Mitra S, Hazra T. Transcription coupled base excision repair in mammalian cells: So little is known and so much to uncover. DNA Repair (Amst) 2021; 107:103204. [PMID: 34390916 DOI: 10.1016/j.dnarep.2021.103204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
Oxidized bases in the genome has been implicated in various human pathologies, including cancer, aging and neurological diseases. Their repair is initiated with excision by DNA glycosylases (DGs) in the base excision repair (BER) pathway. Among the five oxidized base-specific human DGs, OGG1 and NTH1 preferentially excise oxidized purines and pyrimidines, respectively, while NEILs remove both oxidized purines and pyrimidines. However, little is known about why cells possess multiple DGs with overlapping substrate specificities. Studies of the past decades revealed that some DGs are involved in repair of oxidized DNA base lesions in the actively transcribed regions. Preferential removal of lesions from the transcribed strands of active genes, called transcription-coupled repair (TCR), was discovered as a distinct sub-pathway of nucleotide excision repair; however, such repair of oxidized DNA bases had not been established until our recent demonstration of NEIL2's role in TC-BER of the nuclear genome. We have shown that NEIL2 forms a distinct transcriptionally active, repair proficient complex. More importantly, we for the first time reconstituted TC-BER using purified components. These studies are important for characterizing critical requirement for the process. However, because NEIL2 cannot remove all types of oxidized bases, it is unlikely to be the only DNA glycosylase involved in TC-BER. Hence, we postulate TC-BER process to be universally involved in maintaining the functional integrity of active genes, especially in post-mitotic, non-growing cells. We further postulate that abnormal bases (e.g., uracil), and alkylated and other small DNA base adducts are also repaired via TC-BER. In this review, we have provided an overview of the various aspects of TC-BER in mammalian cells with the hope of generating significant interest of many researchers in the field. Further studies aimed at better understanding the mechanistic aspects of TC-BER could help elucidate the linkage of TC-BER deficiency to various human pathologies.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nisha Tapryal
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Azharul Islam
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sankar Mitra
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Tapas Hazra
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
3
|
Kedra J, Lin S, Pacheco A, Gallo G, Smith GM. Axotomy Induces Drp1-Dependent Fragmentation of Axonal Mitochondria. Front Mol Neurosci 2021; 14:668670. [PMID: 34149354 PMCID: PMC8209475 DOI: 10.3389/fnmol.2021.668670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/07/2021] [Indexed: 02/02/2023] Open
Abstract
It is well established that CNS axons fail to regenerate, undergo retrograde dieback, and form dystrophic growth cones due to both intrinsic and extrinsic factors. We sought to investigate the role of axonal mitochondria in the axonal response to injury. A viral vector (AAV) containing a mitochondrially targeted fluorescent protein (mitoDsRed) as well as fluorescently tagged LC3 (GFP-LC3), an autophagosomal marker, was injected into the primary motor cortex, to label the corticospinal tract (CST), of adult rats. The axons of the CST were then injured by dorsal column lesion at C4-C5. We found that mitochondria in injured CST axons near the injury site are fragmented and fragmentation of mitochondria persists for 2 weeks before returning to pre-injury lengths. Fragmented mitochondria have consistently been shown to be dysfunctional and detrimental to cellular health. Inhibition of Drp1, the GTPase responsible for mitochondrial fission, using a specific pharmacological inhibitor (mDivi-1) blocked fragmentation. Additionally, it was determined that there is increased mitophagy in CST axons following Spinal cord injury (SCI) based on increased colocalization of mitochondria and LC3. In vitro models revealed that mitochondrial divalent ion uptake is necessary for injury-induced mitochondrial fission, as inhibiting the mitochondrial calcium uniporter (MCU) using RU360 prevented injury-induced fission. This phenomenon was also observed in vivo. These studies indicate that following the injury, both in vivo and in vitro, axonal mitochondria undergo increased fission, which may contribute to the lack of regeneration seen in CNS neurons.
Collapse
Affiliation(s)
- Joseph Kedra
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Shen Lin
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Almudena Pacheco
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Gianluca Gallo
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Pourhanifeh MH, Shafabakhsh R, Reiter RJ, Asemi Z. The Effect of Resveratrol on Neurodegenerative Disorders: Possible Protective Actions Against Autophagy, Apoptosis, Inflammation and Oxidative Stress. Curr Pharm Des 2019; 25:2178-2191. [DOI: 10.2174/1381612825666190717110932] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of neurodegenerative disorders characterized by the loss of neuronal function is rapidly
increasing. The pathogenesis of the majority of these diseases is not entirely clear, but current evidence has
shown the possibility that autophagy, apoptosis, inflammation and oxidative stress are involved. The present
review summarizes the therapeutic effects of resveratrol on neurodegenerative disorders, based on the especially
molecular biology of these diseases. The PubMed, Cochrane, Web of Science and Scopus databases were
searched for studies published in English until March 30th, 2019 that contained data for the role of inflammation,
oxidative stress, angiogenesis and apoptosis in the neurodegenerative disorders. There are also studies documenting
the role of molecular processes in the progression of central nervous system diseases. Based on current evidence,
resveratrol has potential properties that may reduce cell damage due to inflammation. This polyphenol
affects cellular processes, including autophagy and the apoptosis cascade under stressful conditions. Current
evidence supports the beneficial effects of resveratrol on the therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohammad H. Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Abeti R, Zeitlberger A, Peelo C, Fassihi H, Sarkany RPE, Lehmann AR, Giunti P. Xeroderma pigmentosum: overview of pharmacology and novel therapeutic strategies for neurological symptoms. Br J Pharmacol 2019; 176:4293-4301. [PMID: 30499105 DOI: 10.1111/bph.14557] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/06/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022] Open
Abstract
Xeroderma pigmentosum (XP) encompasses a group of rare diseases characterized in most cases by malfunction of nucleotide excision repair (NER), which results in an increased sensitivity to UV radiation in affected individuals. Approximately 25-30% of XP patients present with neurological symptoms, such as sensorineural deafness, mental deterioration and ataxia. Although it is known that dysfunctional DNA repair is the primary pathogenesis in XP, growing evidence suggests that mitochondrial pathophysiology may also occur. This appears to be secondary to dysfunctional NER but may contribute to the neurodegenerative process in these patients. The available pharmacological treatments in XP mostly target the dermal manifestations of the disease. In the present review, we outline how current understanding of the pathophysiology of XP could be used to develop novel therapies to counteract the neurological symptoms. Moreover, the coexistence of cancer and neurodegeneration present in XP led us to focus on possible new avenues targeting mitochondrial pathophysiology. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Rosella Abeti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology London, London, UK
| | - Anna Zeitlberger
- Ataxia Centre, Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology London, London, UK
| | - Colm Peelo
- Ataxia Centre, Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology London, London, UK
| | - Hiva Fassihi
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology Guy's and St Thomas' Foundation Trust, London, UK
| | - Robert P E Sarkany
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology Guy's and St Thomas' Foundation Trust, London, UK
| | - Alan R Lehmann
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology London, London, UK.,National Xeroderma Pigmentosum Service, St John's Institute of Dermatology Guy's and St Thomas' Foundation Trust, London, UK
| |
Collapse
|
6
|
Wang H, Dong X, Liu Z, Zhu S, Liu H, Fan W, Hu Y, Hu T, Yu Y, Li Y, Liu T, Xie C, Gao Q, Li G, Zhang J, Ding Z, Sun J. Resveratrol Suppresses Rotenone-induced Neurotoxicity Through Activation of SIRT1/Akt1 Signaling Pathway. Anat Rec (Hoboken) 2018; 301:1115-1125. [PMID: 29350822 DOI: 10.1002/ar.23781] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/20/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Hui Wang
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Xiaoguang Dong
- Department of Orthopedic; Osteological Hospital of Yishengjian; Qingdao Shandong 266100 China
| | - Zengxun Liu
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Shaowei Zhu
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Haili Liu
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Wenchuang Fan
- Department of Traumatic Orthopaedics; Yantaishan Hospital; Yantai Shandong 264025 China
| | - Yanlai Hu
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Tao Hu
- Department of Orthopedic; Osteological Hospital of Yishengjian; Qingdao Shandong 266100 China
| | - Yonghui Yu
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Yizhao Li
- Department of Rehabilitation; Laiwu Rehabilitation Hospital; Laiwu Shandong 271100 China
| | - Tianwei Liu
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Chengjia Xie
- Department of Periodontics; Stomatological Hospital of Shandong University; Shandong 250012 China
| | - Qing Gao
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Guibao Li
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Jing Zhang
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Zhaoxi Ding
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Jinhao Sun
- Department of Anatomy, School of Basic Medical Sciences; Shandong University; Jinan Shandong 250012 China
| |
Collapse
|
7
|
Limoli CL. Understanding and targeting dynamic stress responses of the brain: What we have learned and how to improve neurocognitive outcome following neurotoxic insult. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:319-321. [PMID: 27208487 DOI: 10.1002/em.22022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California
| |
Collapse
|