1
|
Gao P, Li Z, Gong M, Ma B, Xu H, Wang L, Xie J. Sensitive Detection of Genotoxic Substances in Complex Food Matrices by Multiparametric High-Content Analysis. Molecules 2024; 29:3257. [PMID: 39064836 PMCID: PMC11279142 DOI: 10.3390/molecules29143257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Genotoxic substances widely exist in the environment and the food supply, posing serious health risks due to their potential to induce DNA damage and cancer. Traditional genotoxicity assays, while valuable, are limited by insufficient sensitivity, specificity, and efficiency, particularly when applied to complex food matrices. This study introduces a multiparametric high-content analysis (HCA) for the detection of genotoxic substances in complex food matrices. The developed assay measures three genotoxic biomarkers, including γ-H2AX, p-H3, and RAD51, which enhances the sensitivity and accuracy of genotoxicity screening. Moreover, the assay effectively distinguishes genotoxic compounds with different modes of action, which not only offers a more comprehensive assessment of DNA damage and the cellular response to genotoxic stress but also provides new insights into the exploration of genotoxicity mechanisms. Notably, the five tested food matrices, including coffee, tea, pak choi, spinach, and tomato, were found not to interfere with the detection of these biomarkers under proper dilution ratios, validating the robustness and reliability of the assay for the screening of genotoxic compounds in the food industry. The integration of multiple biomarkers with HCA provides an efficient method for detecting and assessing genotoxic substances in the food supply, with potential applications in toxicology research and food safety.
Collapse
Affiliation(s)
- Pengxia Gao
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
- School of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zhi Li
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Mengqiang Gong
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Bo Ma
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Hua Xu
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Lili Wang
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianwei Xie
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
2
|
Stannard LM, Doherty A, Chapman KE, Doak SH, Jenkins GJ. Multi-endpoint analysis of cadmium chloride-induced genotoxicity shows role for reactive oxygen species and p53 activation in DNA damage induction, cell cycle irregularities, and cell size aberrations. Mutagenesis 2024; 39:13-23. [PMID: 37555614 PMCID: PMC10851103 DOI: 10.1093/mutage/gead025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/12/2023] [Indexed: 08/10/2023] Open
Abstract
Cadmium chloride (CdCl2) is a known genotoxic carcinogen, with a mechanism of action thought to partly involve the generation of reactive oxygen species (ROS). We applied here a multi-endpoint approach in vitro to explore the impact of CdCl2 on both the genome and on wider cell biology pathways relevant to cancer. Multi-endpoint approaches are believed to offer greater promise in terms of understanding the holistic effects of carcinogens in vitro. This richer understanding may help better classification of carcinogens as well as allowing detailed mechanisms of action to be identified. We found that CdCl2 caused DNA damage [micronuclei (MN)] in both TK6 and NH32 cells in a dose-dependent manner after 4 h exposure (plus 23 h recovery), with lowest observable effect levels (LOELs) for MN induction of 1 μM (TK6) and 1.6 μM (NH32). This DNA damage induction in TK6 cells was ROS dependent as pretreatment with the antioxidant N-Acetyl Cysteine (1 mM), abrogated this effect. However, 2',7'-dichlorofluorescin diacetate was not capable of detecting the ROS induced by CdCl2. The use of NH32 cells allowed an investigation of the role of p53 as they are a p53 null cell line derived from TK6. NH32 showed a 10-fold increase in MN in untreated cells and a similar dose-dependent effect after CdCl2 treatment. In TK6 cells, CdCl2 also caused activation of p53 (accumulation of total and phosphorylated p53), imposition of cell cycle checkpoints (G2/M) and intriguingly the production of smaller and more eccentric (elongated) cells. Overall, this multi-endpoint study suggests a carcinogenic mechanism of CdCl2 involving ROS generation, oxidative DNA damage and p53 activation, leading to cell cycle abnormalities and impacts of cell size and shape. This study shows how the integration of multiple cell biology endpoints studied in parallel in vitro can help mechanistic understanding of how carcinogens disrupt normal cell biology.
Collapse
Affiliation(s)
- Leanne M Stannard
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA28PP, United Kingdom
| | - Ann Doherty
- Safety Innovation, Astra Zeneca, Cambridge, United Kingdom
| | - Katherine E Chapman
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA28PP, United Kingdom
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA28PP, United Kingdom
| | - Gareth J Jenkins
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA28PP, United Kingdom
| |
Collapse
|
3
|
Scaramboni C, Campos MLAM, Dorta DJ, de Oliveira DP, de Medeiros SRB, de Oliveira Galvão MF, Dreij K. Reactive oxygen species-dependent transient induction of genotoxicity by retene in human liver HepG2 cells. Toxicol In Vitro 2023:105628. [PMID: 37302535 DOI: 10.1016/j.tiv.2023.105628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Retene is a polycyclic aromatic hydrocarbon (PAH) emitted mainly by biomass combustion, and despite its ubiquity in atmospheric particulate matter (PM), studies concerning its potential hazard to human health are still incipient. In this study, the cytotoxicity and genotoxicity of retene were investigated in human HepG2 liver cells. Our data showed that retene had minimal effect on cell viability, but induced DNA strand breaks, micronuclei formation, and reactive oxygen species (ROS) formation in a dose- and time-dependent manner. Stronger effects were observed at earlier time points than at longer, indicating transient genotoxicity. Retene activated phosphorylation of Checkpoint kinase 1 (Chk1), an indicator of replication stress and chromosomal instability, which was in accordance with increased formation of micronuclei. A protective effect of the antioxidant N-acetylcysteine (NAC) towards ROS generation and DNA damage signaling was observed, suggesting oxidative stress as a key mechanism of the observed genotoxic effects of retene in HepG2 cells. Altogether our results suggest that retene may contribute to the harmful effects caused by biomass burning PM and represent a potential hazard to human health.
Collapse
Affiliation(s)
- Caroline Scaramboni
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil; Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | - Maria Lucia Arruda Moura Campos
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Daniel Junqueira Dorta
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP, Brazil
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP, Brazil
| | | | | | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
4
|
Belitsky GA, Kirsanov KI, Lesovaya EA, Yakubovskaya MG. Mechanisms of the carcinogenicity of nanomaterials. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-8-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials become more widespread in the different areas of human life, forming the new technosphere philosophy, in particular, new approaches for development and usage of these materials in everyday life, manufacture, medicine etc.The physicochemical characteristics of nanomaterials differ significantly from the corresponding indicators of aggregate materials and at least some of them are highly reactive and / or highly catalytic. This suggests their aggressiveness towards biological systems, including involvement in carcinogenesis. The review considers the areas of use of modern nanomaterials, with special attention paid to the description of medicine production using nanotechnologies, an analysis of the mechanisms of action of a number of nanomaterials already recognized as carcinogenic, and also presents the available experimental and mechanistic data obtained from the study of the carcinogenic / procarcinogenic effects of various groups of nanomaterials currently not classified as carcinogenic to humans.Preparing the review, information bases of biomedical literature were analysed: Scopus (307), PubMed (461), Web of Science (268), eLibrary.ru (190) were used. To obtain full-text documents, the electronic resources of PubMed Central (PMC), Science Direct, Research Gate, Sci-Hub and eLibrary.ru databases were used.
Collapse
Affiliation(s)
- G. A. Belitsky
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - K. I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| | - E. A. Lesovaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; I.P. Pavlov Ryazan State Medical University
| | - M. G. Yakubovskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| |
Collapse
|
5
|
A review on the epigenetics modifications to nanomaterials in humans and animals: novel epigenetic regulator. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
In the nanotechnology era, nanotechnology applications have been intensifying their prospects to embrace all the vigorous sectors persuading human health and animal. The safety and concerns regarding the widespread use of engineered nanomaterials (NMA) and their potential effect on human health still require further clarification. Literature elucidated that NMA exhibited significant adverse effects on various molecular and cellular alterations. Epigenetics is a complex process resulting in the interactions between an organism’s environment and genome. The epigenetic modifications, including histone modification and DNA methylation, chromatin structure and DNA accessibility alteration, regulate gene expression patterns. Disturbances of epigenetic markers induced by NMA might promote the sensitivity of humans and animals to several diseases. Also, this paper focus on the epigenetic regulators of some dietary nutrients that have been confirmed to stimulate the epigenome and, more exactly, DNA histone modifications and non-histone proteins modulation by acetylation, and phosphorylation inhibition, which counteracts oxidative stress generations. The present review epitomizes the recent evidence of the potential effects of NMA on histone modifications, in addition to in vivo and in vitro cytosine DNA methylation and its toxicity. Furthermore, the part of epigenetic fluctuations as possible translational biomarkers for uncovering untoward properties of NMA is deliberated.
Collapse
|
6
|
de Oliveira Galvão MF, Sadiktsis I, Marques Pedro T, Dreij K. Determination of whole mixture-based potency factors for cancer risk assessment of complex environmental mixtures by in vitro testing of standard reference materials. ENVIRONMENT INTERNATIONAL 2022; 166:107345. [PMID: 35717713 DOI: 10.1016/j.envint.2022.107345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Whole mixture-based testing using in vitro new approach methodologies (NAMs) has been suggested to facilitate the hazard and risk assessment of complex environmental mixtures. Previous studies have shown that phosphorylation of DNA damage signaling proteins checkpoint kinase 1 (pChk1) and histone 2AX (γH2AX) are sensitive markers that can be used for estimating carcinogenicity potencies in vitro. Here, and with the aim to better validate the applicability, in vitro-based Mixture Potency Factors (MPFs) of Standard Reference Materials (SRMs) from environmental polycyclic aromatic hydrocarbon (PAH)-containing mixtures were determined and compared to published mutagenicity and tumorigenicity data. Also, genotoxicity was assessed by a flow cytometry-based micronucleus (MN) assay which showed that only benzo[a]pyrene (B[a]P) and coal tar SRM (SRM1597a) caused dose-dependent increases of MN formation, while extracts of diesel particulate matter (SRM1650b), diesel particulate extract (SRM1975), and urban dust (SRM1649b) did not. However, a dose-dependent activation of DNA damage signaling was observed for all PAHs and SRMs. The results demonstrated that all SRMs were more potent than B[a]P, at B[a]P-equivalent concentrations, to induce pChk1 and γH2AX, and that western blot was more sensitive than the In-Cell Western assay in detecting their activation in response to these complex mixtures. Relative MPFs, based on dose-response modelling of pChk1 and γH2AX, ranged 113 - 5270 for the SRMs, indicating several orders of magnitude higher genotoxic potential than B[a]P. Moreover, these MPFs were in good agreement with potency values based on published data from Salmonella mutagenicity and in vivo carcinogenicity studies. In conclusion, these comparisons further validate the feasibility of applying in vitro NAMs, such as whole-mixture based MPFs, in cancer risk assessment of complex mixtures.
Collapse
Affiliation(s)
| | - Ioannis Sadiktsis
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Tiago Marques Pedro
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
7
|
Olmedo-Suárez MÁ, Ramírez-Díaz I, Pérez-González A, Molina-Herrera A, Coral-García MÁ, Lobato S, Sarvari P, Barreto G, Rubio K. Epigenetic Regulation in Exposome-Induced Tumorigenesis: Emerging Roles of ncRNAs. Biomolecules 2022; 12:513. [PMID: 35454102 PMCID: PMC9032613 DOI: 10.3390/biom12040513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, including pollutants and lifestyle, constitute a significant role in severe, chronic pathologies with an essential societal, economic burden. The measurement of all environmental exposures and assessing their correlation with effects on individual health is defined as the exposome, which interacts with our unique characteristics such as genetics, physiology, and epigenetics. Epigenetics investigates modifications in the expression of genes that do not depend on the underlying DNA sequence. Some studies have confirmed that environmental factors may promote disease in individuals or subsequent progeny through epigenetic alterations. Variations in the epigenetic machinery cause a spectrum of different disorders since these mechanisms are more sensitive to the environment than the genome, due to the inherent reversible nature of the epigenetic landscape. Several epigenetic mechanisms, including modifications in DNA (e.g., methylation), histones, and noncoding RNAs can change genome expression under the exogenous influence. Notably, the role of long noncoding RNAs in epigenetic processes has not been well explored in the context of exposome-induced tumorigenesis. In the present review, our scope is to provide relevant evidence indicating that epigenetic alterations mediate those detrimental effects caused by exposure to environmental toxicants, focusing mainly on a multi-step regulation by diverse noncoding RNAs subtypes.
Collapse
Affiliation(s)
- Miguel Ángel Olmedo-Suárez
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Decanato de Ciencias de la Salud, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Sagrario Lobato
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
8
|
Rahmanian N, Shokrzadeh M, Eskandani M. Recent advances in γH2AX biomarker-based genotoxicity assays: A marker of DNA damage and repair. DNA Repair (Amst) 2021; 108:103243. [PMID: 34710661 DOI: 10.1016/j.dnarep.2021.103243] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023]
Abstract
The phosphorylation of histone variant H2AX and formation of γH2AX is a primary response to the DNA double-strand breaks (DSBs). Detection of γH2AX is a robust and sensitive tool for diagnosis of DNA damage and repair in pre-clinical drug discovery investigations. In addition, the replication stress also leads to the formation of γH2AX and cell death and so γH2AX can serve as a surrogate marker of drug-induced cytotoxicity. Recent advances in genomic research offer an opportunity to detect γH2AX as a specific biomarker for quantitative analysis of DNA damages and repair using high content screening technology and quantitative imaging analysis. The proposed approaches identify a wide range of genetic disorders and are applied in combination with other assays in drug discovery and also for the evaluation of the efficacy of various developmental drugs. In the current review, we provide recent insights into the potential of γH2AX biomarker as a powerful tool in genotoxicity analyses for the monitoring and managing of cancer diseases.
Collapse
Affiliation(s)
- Nazanin Rahmanian
- Pharmaceutical Sciences Research Center, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Shukla RK, Badiye A, Vajpayee K, Kapoor N. Genotoxic Potential of Nanoparticles: Structural and Functional Modifications in DNA. Front Genet 2021; 12:728250. [PMID: 34659351 PMCID: PMC8511513 DOI: 10.3389/fgene.2021.728250] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
The rapid advancement of nanotechnology enhances the production of different nanoparticles that meet the demand of various fields like biomedical sciences, industrial, material sciences and biotechnology, etc. This technological development increases the chances of nanoparticles exposure to human beings, which can threaten their health. It is well known that various cellular processes (transcription, translation, and replication during cell proliferation, cell cycle, cell differentiation) in which genetic materials (DNA and RNA) are involved play a vital role to maintain any structural and functional modification into it. When nanoparticles come into the vicinity of the cellular system, chances of uptake become high due to their small size. This cellular uptake of nanoparticles enhances its interaction with DNA, leading to structural and functional modification (DNA damage/repair, DNA methylation) into the DNA. These modifications exhibit adverse effects on the cellular system, consequently showing its inadvertent effect on human health. Therefore, in the present study, an attempt has been made to elucidate the genotoxic mechanism of nanoparticles in the context of structural and functional modifications of DNA.
Collapse
Affiliation(s)
- Ritesh K Shukla
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Ashish Badiye
- Department of Forensic Science, Government Institute of Forensic Science, Nagpur, India
| | - Kamayani Vajpayee
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Neeti Kapoor
- Department of Forensic Science, Government Institute of Forensic Science, Nagpur, India
| |
Collapse
|
10
|
Qu M, Xu H, Li W, Chen J, Zhang Y, Xu B, Li Z, Liu T, Guo L, Xie J. Dynamically monitoring cellular γ-H2AX reveals the potential of carcinogenicity evaluation for genotoxic compounds. Arch Toxicol 2021; 95:3559-3573. [PMID: 34510228 DOI: 10.1007/s00204-021-03156-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Amongst all toxicological endpoints, carcinogenicity might pose the greatest concern. Genetic damage has been considered an important underlying mechanism for the carcinogenicity of chemical substances. The demand for in vitro genotoxic tests as alternative approaches is growing rapidly with the implementation of new regulations for compounds. However, currently available in vitro genotoxicity tests are often limited by relatively high false positive rates. Moreover, few studies have explored carcinogenicity potential by in vitro genotoxicity testing due to the shortage of suitable toxicological biomarkers to link gene damage with cancer risk. γ-H2AX is a recently acknowledged attractive endpoint (biomarker) for evaluating DNA damage and can simultaneously reflect the DNA damage response and repair of cells. We previously reported an ultrasensitive and reliable method, namely stable-isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS), for detecting cellular γ-H2AX and evaluating genotoxic chemicals. More importantly, our method can dynamically monitor the specific processes of genotoxic compounds affecting DNA damage and repair reflected by the amount of γ-H2AX. To clarify the possibility of using this method to assess the potential carcinogenicity of genotoxic chemicals, we applied it to a set of 69 model compounds recommended by the European Center for the Validation of Alternative Methods (ECVAM), with already-characterized genotoxic potential. Compared to conventional in vitro genotoxicity assays, including the Ames test, the γ-H2AX assay by MS has high accuracy (94-96%) due to high sensitivity and specificity (88% and 100%, respectively). The dynamic profiles of model compounds after exposure in HepG2 cells were explored, and a mathematical approach was employed to simulate and quantitatively model the DNA repair kinetics of genotoxic carcinogens (GCs) based on γ-H2AX time-effect curves up to 8 h. Two crucial parameters, i.e., k (rate of γ-H2AX decay) and t50 (time required for γ-H2AX from maximum decrease to half) estimated by the least squares method, were achieved. An open web server to help researchers calculate these two key parameters and profile simulated curves of the tested compound is available online ( http://ccb1.bmi.ac.cn:81/shiny-server/sample-apps/prediction1/ ). We detected a positive association between carcinogenic levels and k and t50 values of γ-H2AX in tested GCs, validating the potential of using this MS-based γ-H2AX in vitro assay to help preliminarily evaluate carcinogenicity and assess genotoxicity. This approach may be used alone or integrated into an existing battery of in vitro genetic toxicity tests.
Collapse
Affiliation(s)
- Minmin Qu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Wuju Li
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Jia Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yajiao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Zhi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Tao Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China.
| |
Collapse
|
11
|
Pogribna M, Hammons G. Epigenetic Effects of Nanomaterials and Nanoparticles. J Nanobiotechnology 2021; 19:2. [PMID: 33407537 PMCID: PMC7789336 DOI: 10.1186/s12951-020-00740-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
The rise of nanotechnology and widespread use of engineered nanomaterials in everyday human life has led to concerns regarding their potential effect on human health. Adverse effects of nanomaterials and nanoparticles on various molecular and cellular alterations have been well-studied. In contrast, the role of epigenetic alterations in their toxicity remains relatively unexplored. This review summarizes current evidence of alterations in cytosine DNA methylation and histone modifications in response to nanomaterials and nanoparticles exposures in vivo and in vitro. This review also highlights existing knowledge gaps regarding the role of epigenetic alterations in nanomaterials and nanoparticles toxicity. Additionally, the role of epigenetic changes as potential translational biomarkers for detecting adverse effects of nanomaterials and nanoparticles is discussed.
Collapse
Affiliation(s)
- Marta Pogribna
- FDA/National Center for Toxicological Research, NCTR, HFT-110, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| | - George Hammons
- FDA/National Center for Toxicological Research, NCTR, HFT-110, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| |
Collapse
|
12
|
Qu M, Xu H, Chen J, Zhang Y, Xu B, Guo L, Xie J. Distinct Orchestration and Dynamic Processes on γ-H2AX and p-H3 for Two Major Types of Genotoxic Chemicals Revealed by Mass Spectrometry Analysis. Chem Res Toxicol 2020; 33:2108-2119. [PMID: 32482060 DOI: 10.1021/acs.chemrestox.0c00104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Genotoxic chemicals act by causing DNA damage, which, if left unrepaired, can have deleterious consequences for cell survival. DNA damage response (DDR) gets activated to repair or mitigate the effects of DNA damage. Histone H2AX and H3 phosphorylation biomarkers (γ-H2AX and p-H3) have attracted great attention as they play pivotal roles in the DDR. Simultaneous quantitation of γ-H2AX and p-H3 in exposed cells may monitor the toxicity of genotoxic chemicals and to some extent reflect the subsequent DDR process. Reported here is the first comprehensive characterization of distinct orchestration and dynamic processes on cellular γ-H2AX and p-H3 for two major types of genotoxic chemicals, clastogens and aneugens, by stable isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS). We find that clastogens significantly induce an increase in γ-H2AX and a decrease in p-H3; aneugens have no obvious effect on γ-H2AX, whereas induce either an increase or a decrease in p-H3. In addition, the specific profiles of clastogens and aneugens affecting DNA damage may be dynamically observed, which in turn provides insights into the processes involving DNA damage repair as well as transcription. Taken together, these results suggest that robust LC-MS/MS analysis of γ-H2AX and p-H3 can not only quantitatively differentiate mechanistic information on clastogens and aneugens but also dynamically present the detail profiles of DNA damage and repair processes.
Collapse
Affiliation(s)
- Minmin Qu
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Jia Chen
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Yajiao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, China
| |
Collapse
|
13
|
Kopp B, Khoury L, Audebert M. Validation of the γH2AX biomarker for genotoxicity assessment: a review. Arch Toxicol 2019; 93:2103-2114. [DOI: 10.1007/s00204-019-02511-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
|
14
|
Hsieh JH, Smith-Roe SL, Huang R, Sedykh A, Shockley KR, Auerbach SS, Merrick BA, Xia M, Tice RR, Witt KL. Identifying Compounds with Genotoxicity Potential Using Tox21 High-Throughput Screening Assays. Chem Res Toxicol 2019; 32:1384-1401. [PMID: 31243984 DOI: 10.1021/acs.chemrestox.9b00053] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genotoxicity is a critical component of a comprehensive toxicological profile. The Tox21 Program used five quantitative high-throughput screening (qHTS) assays measuring some aspect of DNA damage/repair to provide information on the genotoxic potential of over 10 000 compounds. Included were assays detecting activation of p53, increases in the DNA repair protein ATAD5, phosphorylation of H2AX, and enhanced cytotoxicity in DT40 cells deficient in DNA-repair proteins REV3 or KU70/RAD54. Each assay measures a distinct component of the DNA damage response signaling network; >70% of active compounds were detected in only one of the five assays. When qHTS results were compared with results from three standard genotoxicity assays (bacterial mutation, in vitro chromosomal aberration, and in vivo micronucleus), a maximum of 40% of known, direct-acting genotoxicants were active in one or more of the qHTS genotoxicity assays, indicating low sensitivity. This suggests that these qHTS assays cannot in their current form be used to replace traditional genotoxicity assays. However, despite the low sensitivity, ranking chemicals by potency of response in the qHTS assays revealed an enrichment for genotoxicants up to 12-fold compared with random selection, when allowing a 1% false positive rate. This finding indicates these qHTS assays can be used to prioritize chemicals for further investigation, allowing resources to focus on compounds most likely to induce genotoxic effects. To refine this prioritization process, models for predicting the genotoxicity potential of chemicals that were active in Tox21 genotoxicity assays were constructed using all Tox21 assay data, yielding a prediction accuracy up to 0.83. Data from qHTS assays related to stress-response pathway signaling (including genotoxicity) were the most informative for model construction. By using the results from qHTS genotoxicity assays, predictions from models based on qHTS data, and predictions from commercial bacterial mutagenicity QSAR models, we prioritized Tox21 chemicals for genotoxicity characterization.
Collapse
Affiliation(s)
- Jui-Hua Hsieh
- Kelly Government Solutions , Research Triangle Park , North Carolina 27709 , United States
| | - Stephanie L Smith-Roe
- Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Ruili Huang
- National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland 20850 , United States
| | - Alexander Sedykh
- Sciome, LLC , Research Triangle Park , North Carolina 27709 , United States
| | - Keith R Shockley
- Division of Intramural Research , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Scott S Auerbach
- Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - B Alex Merrick
- Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Menghang Xia
- National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland 20850 , United States
| | - Raymond R Tice
- RTice Consulting , Hillsborough , North Carolina 27278 , United States
| | - Kristine L Witt
- Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| |
Collapse
|
15
|
Wilde S, Queisser N, Holz C, Raschke M, Sutter A. Differentiation of Aneugens and Clastogens in the In Vitro Micronucleus Test by Kinetochore Scoring Using Automated Image Analysis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:227-242. [PMID: 30561837 DOI: 10.1002/em.22259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/30/2018] [Accepted: 10/06/2018] [Indexed: 06/09/2023]
Abstract
The in vitro micronucleus test according to OECD Test Guideline 487 (TG 487) is widely used to investigate the genotoxic potential of drugs. Besides the identification of in vitro genotoxicants, the assay can be complemented with kinetochore staining for the differentiation between clastogens and aneugens. This differentiation constitutes a major contribution to risk assessment as especially aneugens show a threshold response. Thus, a novel method for automated MN plus kinetochore (k+) scoring by image analysis was developed based on the OECD TG 487. Compound-induced increases in MN frequency can be detected using the cytokinesis-block (cytochalasin B) method in V79 cells after 24 h in a 96-well format. Nuclei, MN, and kinetochores were labeled with nuclear counterstain and anti-kinetochore antibodies, respectively, to score MN in binuclear or multinuclear cells and to differentiate compound-induced MN by the presence of kinetochores. First, a reference data set was created by manual scoring using two clastogens and aneugens. After developing the automated scoring process, a set of 14 reference genotoxicants were studied. The automated image analysis yielded the expected results: 5/5 clastogens and 6/6 aneugens (sensitivity: 100%) as well as 3/3 non-genotoxicants (specificity: 100%) were correctly identified. Further, a threshold was determined for identifying aneugens. Based on the data for our internally characterized reference compounds, unknown compounds that induce ≥53.8% k+ MN are classified as aneugens. The current data demonstrate excellent specificity and sensitivity and the methodology is superior to manual microscopic analysis in terms of speed and throughput as well as the absence of human bias. Environ. Mol. Mutagen. 60:227-242, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sabrina Wilde
- Bayer AG, Investigational Toxicology, Berlin, Germany
- Fraunhofer ITEM, Preclinical Pharmacology and In Vitro Toxicology, Hannover, Germany
| | - Nina Queisser
- Bayer AG, Investigational Toxicology, Berlin, Germany
| | | | | | | |
Collapse
|
16
|
Kopp B, Vignard J, Mirey G, Fessard V, Zalko D, Le Hgarat L, Audebert M. Genotoxicity and mutagenicity assessment of food contaminant mixtures present in the French diet. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:742-754. [PMID: 30230031 DOI: 10.1002/em.22214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Through diet, people are exposed simultaneously to a variety of contaminants (e.g. heavy metals, mycotoxins, pesticides) that could have combined adverse effects on human health. A previous study identified six main mixtures of food contaminants to which French adult consumers are exposed. These complex mixtures are comprised of 11 to 19 chemicals that have numerous toxic properties. In the present study, we investigated the genotoxic effects of these food contaminants, as single molecules and in mixtures that reflect their occurrence in the French diet, using the γH2AX assay in two human cell lines (HepG2, LS-174 T). Results of detailed analysis of the 49 individual contaminants (including 21 tested in this study) demonstrated a positive genotoxic response to 14 contaminants in HepG2 and 12 in LS-174 T cells. Next, our results indicated that two mixtures out of six triggered significant γH2AX induction after 24 hr of treatment, at concentrations for which individual compounds did not induce any DNA damage, suggesting more than additive interactions between chemicals. γH2AX positive mixtures were then tested for mutagenicity with the innovative in vitro PIG-A assay in HepG2 cells coupled with the soft agar colony formation assay. The two γH2AX positive mixtures led to a significant increase in the frequency of PIG-A GPI-deficient cells and in the number of colonies formed in soft agar. In conclusion, our study demonstrates that two mixtures of contaminants present in the French diet induce genotoxicity and mutagenicity, and that the combined effects of single molecules present in these mixtures are likely not additive, highlighting potential problems for hazard assessment of mixtures. Environ. Mol. Mutagen. 59:742-754, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- B Kopp
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Toxicology of Contaminants Unit, Fougères, France
| | - J Vignard
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - G Mirey
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - V Fessard
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Toxicology of Contaminants Unit, Fougères, France
| | - D Zalko
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - L Le Hgarat
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Toxicology of Contaminants Unit, Fougères, France
| | - M Audebert
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| |
Collapse
|