1
|
Chen SS, Li L, Yao B, Guo JL, Lu PS, Zhang HL, Zhang KH, Zou YJ, Luo NJ, Sun SC, Hu LL, Ren YP. Mutation of the SUMOylation site of Aurora-B disrupts spindle formation and chromosome alignment in oocytes. Cell Death Discov 2024; 10:447. [PMID: 39438456 PMCID: PMC11496499 DOI: 10.1038/s41420-024-02217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Aurora-B is a kinase that regulates spindle assembly and kinetochore-microtubule (KT-MT) attachment during mitosis and meiosis. SUMOylation is involved in the oocyte meiosis regulation through promoting spindle assembly and chromosome segregation, but its substrates to support this function is still unknown. It is reported that Aurora-B is SUMOylated in somatic cells, and SUMOylated Aurora-B contributes the process of mitosis. However, whether Aurora-B is SUMOylated in oocytes and how SUMOylation of Aurora-B impacts its function in oocyte meiosis remain poorly understood. In this study, we report that Aurora-B is modified by SUMOylation in mouse oocytes. The results show that Aurora-B colocalized and interacted with SUMO-2/3 in mouse oocytes, confirming that Aurora-B is modified by SUMO-2/3 in this system. Compared with that in young mice, the protein expression of SUMO-2/3 decreased in the oocytes of aged mice, indicating that SUMOylation might be related to mouse aging. Overexpression of Aurora-B SUMOylation site mutants, Aurora-BK207R and Aurora-BK292R, inhibited Aurora-B recruitment and first polar body extrusion, disrupting localization of gamma tubulin, spindle formation and chromosome alignment in oocytes. The results show that it was related to decreased recruitment of p-HDAC6 which induces the high stability of whole spindle microtubules including the microtubules of both correct and wrong KT-MT attachments though increased acetylation of microtubules. Therefore, our results corroborate the notion that Aurora-B activity is regulated by SUMO-2/3 in oocytes, and that SUMOylated Aurora B plays an important role in spindle formation and chromosome alignment.
Collapse
Affiliation(s)
- Shan-Shan Chen
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Department of Reproduction, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215000, China
| | - Li Li
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Bo Yao
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jia-Lun Guo
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Ping-Shuang Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Kun-Huan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Nan-Jian Luo
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Yan-Ping Ren
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
2
|
Pan M, Luo X, Zhang Z, Li J, Shahzad K, Danba Z, Caiwang G, Chilie W, Chen X, Zhao W. The expression spectrum of yak epididymal epithelial cells reveals the functional diversity of caput, corpus and cauda regions. Genomics 2024; 116:110912. [PMID: 39117249 DOI: 10.1016/j.ygeno.2024.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
Sperm undergo a series of changes in the epididymis region before acquiring the ability to move and fertilize, and the identification of genes expressed in a region-specific manner in the epididymis provides a valuable insight into functional differences between regions. We collected epididymal tissue from three yaks and cultured epithelial cells from the caput, corpus and cauda regions of the yak epididymis using the tissue block method. RNA sequencing analysis (RNA-seq) technology was used to detect gene expression in yak epididymal caput, corpus and cauda epithelial cells. The results showed that the DEGs were highest in the caput vs. corpus comparison, and lowest in the corpus vs. cauda comparison. Six DEGs were verified by real-time fluorescence quantitative PCR (qRT-PCR), consistent with transcriptome sequencing results. The significantly enriched DNA replication pathway in the caput vs. corpus was coordinated with cell proliferation, while upregulated DEGs such as POLD1 and MCM4 were found in the DNA replication pathway. The AMPK signaling pathway was found significantly enriched in the caput vs cauda, suggesting its involvement in sperm maturation and capacitation. The TGF beta signaling pathway was screened in the corpus vs cauda and is crucial for mammalian reproductive regulation. Upregulated DEGs (TGFB3, INHBA, INHBB) are involved in the TGF beta signaling pathway. This study provides a reference for culturing yak epididymal epithelial cells in vitro, and elucidates the transcriptional profiles of epithelial cells in different segments of the epididymis, revealing the regulatory and functional differences between different segments, providing basic data for exploring the molecular mechanism of yak sperm maturation and improving the reproductive capacity of high-altitude mammals.
Collapse
Affiliation(s)
- Meilan Pan
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Xiaofeng Luo
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Zhenzhen Zhang
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Jingjing Li
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
| | - Zhaxi Danba
- Science and Technology Research and Promotion Center, Agricultural and Animal Husbandry (Grass Industry), Naqu, Tibet 852200, China
| | - Gongbu Caiwang
- Tibet Naqu Municipal Agriculture and Rural Affairs Bureau, Naqu, Tibet 852000, China
| | - Wangmu Chilie
- Science and Technology Research and Promotion Center, Agricultural and Animal Husbandry (Grass Industry), Naqu, Tibet 852200, China
| | - Xiaoying Chen
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China.
| | - Wangsheng Zhao
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China.
| |
Collapse
|
3
|
Tang F, Hummitzsch K, Rodgers RJ. RNAseq analysis of oocyte maturation from the germinal vesicle stage to metaphase II in pig and human. PLoS One 2024; 19:e0305893. [PMID: 39121087 PMCID: PMC11315340 DOI: 10.1371/journal.pone.0305893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/06/2024] [Indexed: 08/11/2024] Open
Abstract
During maturation oocytes at the germinal vesicle (GV) stage progress to metaphase II (MII). However, during in vitro maturation a proportion often fail to progress. To understand these processes, we employed RNA sequencing to examine the transcriptome profile of these three groups of oocytes from the pig. We compared our findings with similar public oocyte data from humans. The transcriptomes in oocytes that failed to progress was similar to those that did. We found in both species, the most upregulated genes in MII oocytes were associated with chromosome segregation and cell cycle processes, while the most down regulated genes were relevant to ribosomal and mitochondrial pathways. Moreover, those genes involved in chromosome segregation during GV to MII transition were conserved in pig and human. We also compared MII and GV oocyte transcriptomes at the isoform transcript level in both species. Several thousands of genes (including DTNBP1, MAPK1, RAB35, GOLGA7, ATP1A1 and ATP2B1) identified as not different in expression at a gene transcript level were found to have differences in isoform transcript levels. Many of these genes were involved in ATPase-dependent or GTPase-dependent intracellular transport in pig and human, respectively. In conclusion, our study suggests the failure to progress to MII in vitro may not be regulated at the level of the genome and that many genes are differentially regulated at the isoform level, particular those involved ATPase- or GTPase-dependent intracellular transport.
Collapse
Affiliation(s)
- Feng Tang
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Katja Hummitzsch
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Raymond J. Rodgers
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
4
|
Zhang Y, Deng Y, Zhou M, Wu B, Zhou J. Intraglandular dissemination: a special pathological feature. Front Oncol 2024; 14:1428274. [PMID: 39135992 PMCID: PMC11317368 DOI: 10.3389/fonc.2024.1428274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Intraglandular dissemination is an important pathological feature of thyroid cancer, yet the biological characteristics of this phenomenon remain relatively underexplored. This paper aims to provide a comprehensive overview of its biological behaviors, protein expressions, and identification methods. Several retrospective studies have found that thyroid cancers with intraglandular dissemination have higher rates of lymph node metastasis, capsule invasion, and vascular invasion, exhibiting more aggressive biological behavior. Immunohistochemistry results show abnormal expression of proteins such as FKBP5, CENPF, CX26, KIF11, PTK7, which are associated with poor prognosis in thyroid cancers with intraglandular dissemination, offering potential guidance for specific targeted therapy in the future. Moreover, adjunctive techniques including ultrasound, fine-needle aspiration, and genetic testing offer valuable support in accurately identifying these cases, facilitating moreproactive treatment and closer follow-up.
Collapse
Affiliation(s)
- Yubi Zhang
- Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Deng
- Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhou
- Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhou
- Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Thyroid and Breast Surgery, People’s Hospital of Dongxihu District Wuhan City and Union Dongxihu Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Zhao SC, Qiao FX, Sun MX, Liu YC, Wang HL, Xu ZR, Liu Y. Cobalt chloride exposure disturbs spindle assembly and decreases mouse oocyte development potential. Toxicology 2023; 486:153450. [PMID: 36739938 DOI: 10.1016/j.tox.2023.153450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Cobalt is a kind of heavy metal which is widely used in petrochemical and biomedical industries. Animal studies have reported that cobalt would exert systemic toxicity, but its effects on the ovarian function in mammals, especially for oocyte quality remains unknown. In the present study, we report that cobalt chloride treatment affects ovary coefficient and follicular growth. Oocytes in cobalt chloride exposed mice exhibited a decreased development potential, with the evidence of decreased occurrence rate of germ vesicle breakdown and polar body extrusion. Besides, cobalt chloride disorganized meiotic spindle formation and movement, mechanically associated with affecting TACC3 and Ac-a-tubulin levels, and disturbing actin reorganization. In addition, cobalt chloride exposure result in mitochondrial cristae structures disappear, cluster distribution and potential depolarization. Altogether, these findings suggest that cobalt chloride impairs the ovarian follicle growth and affects oocyte development by disrupted spindle assembly and mitochondrial function.
Collapse
Affiliation(s)
- Si-Cheng Zhao
- Medical College, Guangxi University, Nanning, Guangxi 530004, China; Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Feng-Xin Qiao
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Ming-Xin Sun
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Yue-Cen Liu
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Hai-Long Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhi-Ran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China.
| | - Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
6
|
Murphy C, Gallagher C, Piskareva O. Evaluation of miRNA Expression in 3D In Vitro Scaffold-Based Cancer Models. Methods Mol Biol 2023; 2595:211-224. [PMID: 36441465 DOI: 10.1007/978-1-0716-2823-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accumulating experimental evidence suggests that 3D in vitro cancer models strengthen our understanding of vital processes in the tumor microenvironment (TME) and accelerate the drug discovery pipeline. Previous studies examining the effects of specific miRNAs on cancer cells in vitro have involved ectopic expression of miRNA mimics in 2D in vitro culture. Assessment of cell viability and gene expression ensures that upregulation of the chosen miRNA and repression of its target genes have been achieved. However, this 2D culture is overly simplified and lacks the complex cell to extracellular matrix (ECM) interactions observed in the native TME, yielding results often not reproduced when progressed to in vivo studies. Hence, this chapter describes a novel method of overexpressing the miRNA mimic in cells cultured on 3D collagen-based scaffolds adapted from tissue engineering techniques. Cell growth on scaffolds is sequentially monitored via a DNA quantification assay, and overexpression of the miRNA mimic and repression of its target gene is assessed via reverse transcription quantitative PCR (RT-qPCR).
Collapse
Affiliation(s)
- Catherine Murphy
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ciara Gallagher
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Olga Piskareva
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland. .,School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. .,Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland. .,Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland. .,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.
| |
Collapse
|
7
|
KIF11 Is a Promising Therapeutic Target for Thyroid Cancer Treatment. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6426800. [PMID: 36017147 PMCID: PMC9398805 DOI: 10.1155/2022/6426800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Objective. To assess KIF11 expression in human thyroid tumor tissues and further evaluate its involvement in thyroid cancer. Methods. The expression of KIF11 in 71 cases of thyroid carcinoma as well as corresponding tissues was detected by the immunohistochemical (IHC) method. Patients were divided into the high KIF11 expression as well as low expression groups based on the staining levels. In addition, to study the relationship between the expression of KIF11 as well as clinicopathological features, the effects of KIF11 were detected on the proliferation, apoptosis, and cell cycle of two types of thyroid cancer cells, TPC-1 and KTC-1, through colony formation assays, MTT assays, and FCM assays, respectively. We further assessed the potential effects of KIF11 on tumor growth using an animal model. Results. The significantly high expression of KIF11 in thyroid tumor tissues was revealed, and the correlations between KIF11 expression levels as well as clinical pathological features (T stage and intraglandular dissemination) of patients were revealed. We further noticed that KIF11 knockdown remarkably suppressed thyroid cancer cell proliferation as well as induced cell apoptosis of thyroid cancer cells. Additionally, KIF11 contributed to tumor growth of thyroid cancer cells in mice. Conclusions. We noticed the involvement of KIF11 in the progression of thyroid cancer.
Collapse
|
8
|
Wolff ID, Hollis JA, Wignall SM. Acentrosomal spindle assembly and maintenance in Caenorhabditis elegans oocytes requires a kinesin-12 nonmotor microtubule interaction domain. Mol Biol Cell 2022; 33:ar71. [PMID: 35594182 PMCID: PMC9635285 DOI: 10.1091/mbc.e22-05-0153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During the meiotic divisions in oocytes, microtubules are sorted and organized by motor proteins to generate a bipolar spindle in the absence of centrosomes. In most organisms, kinesin-5 family members crosslink and slide microtubules to generate outward force that promotes acentrosomal spindle bipolarity. However, the mechanistic basis for how other kinesin families act on acentrosomal spindles has not been explored. We investigated this question in Caenorhabditis elegans oocytes, where kinesin-5 is not required to generate outward force and the kinesin-12 family motor KLP-18 instead performs this function. Here we use a combination of in vitro biochemical assays and in vivo mutant analysis to provide insight into the mechanism by which KLP-18 promotes acentrosomal spindle assembly. We identify a microtubule binding site on the C-terminal stalk of KLP-18 and demonstrate that a direct interaction between the KLP-18 stalk and its adaptor protein MESP-1 activates nonmotor microtubule binding. We also provide evidence that this C-terminal domain is required for KLP-18 activity during spindle assembly and show that KLP-18 is continuously required to maintain spindle bipolarity. This study thus provides new insight into the construction and maintenance of the oocyte acentrosomal spindle as well as into kinesin-12 mechanism and regulation.
Collapse
Affiliation(s)
- Ian D Wolff
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Jeremy A Hollis
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
9
|
She ZY, Zhong N, Wei YL. Kinesin-5 Eg5 mediates centrosome separation to control spindle assembly in spermatocytes. Chromosoma 2022; 131:87-105. [PMID: 35437661 DOI: 10.1007/s00412-022-00772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/12/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022]
Abstract
Timely and accurate centrosome separation is critical for bipolar spindle organization and faithful chromosome segregation during cell division. Kinesin-5 Eg5 is essential for centrosome separation and spindle organization in somatic cells; however, the detailed functions and mechanisms of Eg5 in spermatocytes remain unclear. In this study, we show that Eg5 proteins are located at spindle microtubules and centrosomes in spermatocytes both in vivo and in vitro. We reveal that the spermatocytes are arrested at metaphase I in seminiferous tubules after Eg5 inhibition. Eg5 ablation results in cell cycle arrest, the formation of monopolar spindle, and chromosome misalignment in cultured GC-2 spd cells. Importantly, we find that the long-term inhibition of Eg5 results in an increased number of centrosomes and chromosomal instability in spermatocytes. Our findings indicate that Eg5 mediates centrosome separation to control spindle assembly and chromosome alignment in spermatocytes, which finally contribute to chromosome stability and faithful cell division of the spermatocytes.
Collapse
Affiliation(s)
- Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| | - Ning Zhong
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350011, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| |
Collapse
|
10
|
Hatırnaz Ş, Hatırnaz ES, Ellibeş Kaya A, Hatırnaz K, Soyer Çalışkan C, Sezer Ö, Dokuzeylül Güngor N, Demirel C, Baltacı V, Tan S, Dahan M. Oocyte maturation abnormalities - A systematic review of the evidence and mechanisms in a rare but difficult to manage fertility pheneomina. Turk J Obstet Gynecol 2022; 19:60-80. [PMID: 35343221 PMCID: PMC8966321 DOI: 10.4274/tjod.galenos.2022.76329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A small proportion of infertile women experience repeated oocyte maturation abnormalities (OMAS). OMAS include degenerated and dysmorphic oocytes, empty follicle syndrome, oocyte maturation arrest (OMA), resistant ovary syndrome and maturation defects due to primary ovarian insufficiency. Genetic factors play an important role in OMAS but still need specifications. This review documents the spectrum of OMAS and to evaluate the multiple subtypes classified as OMAS. In this review, readers will be able to understand the oocyte maturation mechanism, gene expression and their regulation that lead to different subtypes of OMAs, and it will discuss the animal and human studies related to OMAS and lastly the treatment options for OMAs. Literature searches using PubMed, MEDLINE, Embase, National Institute for Health and Care Excellence were performed to identify articles written in English focusing on Oocyte Maturation Abnormalities by looking for the following relevant keywords. A search was made with the specified keywords and included books and documents, clinical trials, animal studies, human studies, meta-analysis, randomized controlled trials, reviews, systematic reviews and options written in english. The search detected 3,953 sources published from 1961 to 2021. After title and abstract screening for study type, duplicates and relevancy, 2,914 studies were excluded. The remaining 1,039 records were assessed for eligibility by full-text reading and 886 records were then excluded. Two hundred and twenty seven full-text articles and 0 book chapters from the database were selected for inclusion. Overall, 227 articles, one unpublished and one abstract paper were included in this final review. In this review study, OMAS were classified and extensively evaluatedand possible treatment options under the light of current information, present literature and ongoing studies. Either genetic studies or in vitro maturation studies that will be handled in the future will lead more informations to be reached and may make it possible to obtain pregnancies.
Collapse
Affiliation(s)
- Şafak Hatırnaz
- Medicana Samsun International Hospital, In Vitro Fertilization-In Vitro Maturation Unit, Samsun, Turkey
| | - Ebru Saynur Hatırnaz
- Medicana Samsun International Hospital, In Vitro Fertilization-In Vitro Maturation Unit, Samsun, Turkey
| | - Aşkı Ellibeş Kaya
- Private Office, Clinic of Obstetrics and Gynecology Specialist, Samsun, Turkey
| | - Kaan Hatırnaz
- Ondokuz Mayıs University Faculty of Medicine, Department of Molecular Biology and Genetics, Samsun, Turkey
| | - Canan Soyer Çalışkan
- University of Health Sciences Turkey, Samsun Training and Research Hospital, Clinic of Obstetrics and Gynecology, Samsun, Turkey
| | - Özlem Sezer
- University of Health Sciences Turkey, Samsun Training and Research Hospital, Clinic of Genetics, Samsun, Turkey
| | | | - Cem Demirel
- Memorial Ataşehir Hospital, In Vitro Fertilization Unit, İstanbul, Turkey
| | | | - Seang Tan
- James Edmund Dodds Chair in ObGyn, Department of ObGyn, McGill University, OriginElle Fertility Clinic and Women, QC, Canada
| | - Michael Dahan
- McGill Reproductive Centre, Department of ObGyn, McGill University Montreal, Quebec, Canada
| |
Collapse
|
11
|
Shan MM, Zou YJ, Pan ZN, Zhang HL, Xu Y, Ju JQ, Sun SC. Kinesin motor KIFC1 is required for tubulin acetylation and actin-dependent spindle migration in mouse oocyte meiosis. Development 2022; 149:274327. [DOI: 10.1242/dev.200231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mammalian oocyte maturation is a unique asymmetric division, which is mainly because of actin-based spindle migration to the cortex. In the present study, we report that a kinesin motor KIFC1, which is associated with microtubules for the maintenance of spindle poles in mitosis, is also involved in actin dynamics in murine oocyte meiosis, co-localizing with microtubules during mouse oocyte maturation. Depletion of KIFC1 caused the failure of polar body extrusion, and we found that meiotic spindle formation and chromosome alignment were disrupted. This might be because of the effects of KIFC1 on HDAC6 and NAT10-based tubulin acetylation, which further affected microtubule stability. Mass spectroscopy analysis revealed that KIFC1 also associated with several actin nucleation factors and we found that KIFC1 was essential for the distribution of actin filaments, which further affected spindle migration. Depletion of KIFC1 leaded to aberrant expression of formin 2 and the ARP2/3 complex, and endoplasmic reticulum distribution was also disturbed. Exogenous KIFC1 mRNA supplement could rescue these defects. Taken together, as well as its roles in tubulin acetylation, our study reported a previously undescribed role of kinesin KIFC1 on the regulation of actin dynamics for spindle migration in mouse oocytes.
Collapse
Affiliation(s)
- Meng-Meng Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Li XH, Ju JQ, Pan ZN, Wang HH, Wan X, Pan MH, Xu Y, Sun MH, Sun SC. PRC1 is a critical regulator for anaphase spindle midzone assembly and cytokinesis in mouse oocyte meiosis. FEBS J 2020; 288:3055-3067. [PMID: 33206458 DOI: 10.1111/febs.15634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Protein regulator of cytokinesis 1 (PRC1) is a microtubule bundling protein that is involved in the regulation of the central spindle bundle and spindle orientation during mitosis. However, the functions of PRC1 during meiosis have rarely been studied. In this study, we explored the roles of PRC1 during meiosis using an oocyte model. Our results found that PRC1 was expressed at all stages of mouse oocyte meiosis, and PRC1 accumulated in the midzone/midbody during anaphase/telophase I. Moreover, depleting PRC1 caused defects in polar body extrusion during mouse oocyte maturation. Further analysis found that PRC1 knockdown did not affect meiotic spindle formation or chromosome segregation; however, deleting PRC1 prevented formation of the midzone and midbody at the anaphase/telophase stage of meiosis I, which caused cytokinesis defects and further induced the formation of two spindles in the oocytes. PRC1 knockdown increased the level of tubulin acetylation, indicating that microtubule stability was affected. Furthermore, KIF4A and PRC1 showed similar localization in the midzone/midbody of oocytes at anaphase/telophase I, while the depletion of KIF4A affected the expression and localization of PRC1. The PRC1 mRNA injection rescued the defects caused by PRC1 knockdown in oocytes. In summary, our results suggest that PRC1 is critical for midzone/midbody formation and cytokinesis under regulation of KIF4A in mouse oocytes.
Collapse
Affiliation(s)
- Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, China
| |
Collapse
|
13
|
She ZY, Zhong N, Yu KW, Xiao Y, Wei YL, Lin Y, Li YL, Lu MH. Kinesin-5 Eg5 is essential for spindle assembly and chromosome alignment of mouse spermatocytes. Cell Div 2020; 15:6. [PMID: 32165913 PMCID: PMC7060529 DOI: 10.1186/s13008-020-00063-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background Microtubule organization is essential for bipolar spindle assembly and chromosome segregation, which contribute to genome stability. Kinesin-5 Eg5 is known to be a crucial regulator in centrosome separation and spindle assembly in mammalian somatic cells, however, the functions and mechanisms of Eg5 in male meiotic cell division remain largely unknown. Results In this study, we have found that Eg5 proteins are expressed in mouse spermatogonia, spermatocytes and spermatids. After Eg5 inhibition by specific inhibitors Monastrol, STLC and Dimethylenastron, the meiotic spindles of dividing spermatocytes show spindle collapse and the defects in bipolar spindle formation. We demonstrate that Eg5 regulates spindle bipolarity and the maintenance of meiotic spindles in meiosis. Eg5 inhibition leads to monopolar spindles, spindle abnormalities and chromosome misalignment in cultured GC-2 spd cells. Furthermore, Eg5 inhibition results in the decrease of the spermatids and the abnormalities in mature sperms. Conclusions Our results have revealed an important role of kinesin-5 Eg5 in male meiosis and the maintenance of male fertility. We demonstrate that Eg5 is crucial for bipolar spindle assembly and chromosome alignment in dividing spermatocytes. Our data provide insights into the functions of Eg5 in meiotic spindle assembly of dividing spermatocytes.
Collapse
Affiliation(s)
- Zhen-Yu She
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122 Fujian China
| | - Ning Zhong
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| | - Kai-Wei Yu
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| | - Yu Xiao
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001 Fujian China.,4Fujian Provincial Children's Hospital, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001 Fujian China
| | - Yang Lin
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| | - Yue-Ling Li
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| | - Ming-Hui Lu
- 1Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122 Fujian China
| |
Collapse
|
14
|
SIRT2 Inhibition Results in Meiotic Arrest, Mitochondrial Dysfunction, and Disturbance of Redox Homeostasis during Bovine Oocyte Maturation. Int J Mol Sci 2019; 20:ijms20061365. [PMID: 30889926 PMCID: PMC6472277 DOI: 10.3390/ijms20061365] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 01/18/2023] Open
Abstract
SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and its expression gradually decreased until the blastocyst stage. Treatment with SIRT2 inhibitors resulted in the prevention of oocyte maturation and the formation of poor-quality oocytes. By performing confocal scanning and quantitative analysis, the results showed that SIRT2 inhibition induced prominent defects in spindle/chromosome morphology, and led to the hyperacetylation of α-tubulin and H4K16. In particular, SIRT2 inhibition impeded cytoplasmic maturation by disturbing the normal distribution of cortical granules, endoplasmic reticulum, and mitochondria during oocyte meiosis. Meanwhile, exposure to SirReal2 led to elevated intracellular reactive oxygen species (ROS) accumulation, low ATP production, and reduced mitochondrial membrane potential in oocytes. Further analysis revealed that SIRT2 inhibition modulated mitochondrial biogenesis and dynamics via the downregulation of TFAM and Mfn2, and the upregulation of DRP1. Mechanistically, SIRT2 inhibition blocked the nuclear translocation of FoxO3a by increasing FoxO3a acetylation, thereby downregulating the expression of FoxO3a-dependent antioxidant genes SOD2 and Cat. These results provide insights into the potential mechanisms by which SIRT2-dependent deacetylation activity exerts its effects on oocyte quality.
Collapse
|