1
|
Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, Staruchova M, Hoffmann P, Nöthen MM, Dusinska M, Musak L, Vodicka P, Försti A, Hemminki K. DNA repair gene polymorphisms and chromosomal aberrations in healthy, nonsmoking population. DNA Repair (Amst) 2021; 101:103079. [PMID: 33676360 DOI: 10.1016/j.dnarep.2021.103079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 02/05/2023]
Abstract
Nonspecific structural chromosomal aberrations (CAs) can be found at around 1% of circulating lymphocytes from healthy individuals but the frequency may be higher after exposure to carcinogenic chemicals or radiation. The frequency of CAs has been measured in occupational monitoring and an increased frequency of CAs has also been associated with cancer risk. Alterations in DNA damage repair and telomere maintenance are thought to contribute to the formation of CAs, which include chromosome type of aberrations and chromatid type of aberrations. In the present study, we used the result of our published genome-wide association studies to extract data on 153 DNA repair genes from 866 nonsmoking persons who had no known occupational exposure to genotoxic substances. Considering an arbitrary cut-off level of P< 5 × 10-3, single nucleotide polymorphisms (SNPs) tagging 22 DNA repair genes were significantly associated with CAs and they remained significant at P < 0.05 when adjustment for multiple comparisons was done by the Binomial Sequential Goodness of Fit test. Nucleotide excision repair pathway genes showed most associations with 6 genes. Among the associated genes were several in which mutations manifest CA phenotype, including Fanconi anemia, WRN, BLM and genes that are important in maintaining genome stability, as well as PARP2 and mismatch repair genes. RPA2 and RPA3 may participate in telomere maintenance through the synthesis of the C strand of telomeres. Errors in NHEJ1 function may lead to translocations. The present results show associations with some genes with known CA phenotype and suggest other pathways with mechanistic rationale for the formation of CAs in healthy nonsmoking population.
Collapse
Affiliation(s)
- Yasmeen Niazi
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
| | - Hauke Thomsen
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; GeneWerk GmbH, Im Neuenheimer Feld 582, 6910 Heidelberg, Germany
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Soňa Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Katarina Volkovova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany; Division of Medical Genetics, Department of Biomedicine, University of Basel, 4003 Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway
| | - Ludovit Musak
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Malá Hora 4D, 03601 Martin, Slovakia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Asta Försti
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Kari Hemminki
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic; Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, Staruchova M, Hoffmann P, Nöthen MM, Dusinska M, Musak L, Vodicka P, Hemminki K, Försti A. DNA Repair Gene Polymorphisms and Chromosomal Aberrations in Exposed Populations. Front Genet 2021; 12:691947. [PMID: 34220964 PMCID: PMC8242355 DOI: 10.3389/fgene.2021.691947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
DNA damage and unrepaired or insufficiently repaired DNA double-strand breaks as well as telomere shortening contribute to the formation of structural chromosomal aberrations (CAs). Non-specific CAs have been used in the monitoring of individuals exposed to potential carcinogenic chemicals and radiation. The frequency of CAs in peripheral blood lymphocytes (PBLs) has been associated with cancer risk and the association has also been found in incident cancer patients. CAs include chromosome-type aberrations (CSAs) and chromatid-type aberrations (CTAs) and their sum CAtot. In the present study, we used data from our published genome-wide association studies (GWASs) and extracted the results for 153 DNA repair genes for 607 persons who had occupational exposure to diverse harmful substances/radiation and/or personal exposure to tobacco smoking. The analyses were conducted using linear and logistic regression models to study the association of DNA repair gene polymorphisms with CAs. Considering an arbitrary cutoff level of 5 × 10-3, 14 loci passed the threshold, and included 7 repair pathways for CTA, 4 for CSA, and 3 for CAtot; 10 SNPs were eQTLs influencing the expression of the target repair gene. For the base excision repair pathway, the implicated genes PARP1 and PARP2 encode poly(ADP-ribosyl) transferases with multiple regulatory functions. PARP1 and PARP2 have an important role in maintaining genome stability through diverse mechanisms. Other candidate genes with known roles for CSAs included GTF2H (general transcription factor IIH subunits 4 and 5), Fanconi anemia pathway genes, and PMS2, a mismatch repair gene. The present results suggest pathways with mechanistic rationale for the formation of CAs and emphasize the need to further develop techniques for measuring individual sensitivity to genotoxic exposure.
Collapse
Affiliation(s)
- Yasmeen Niazi
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- *Correspondence: Yasmeen Niazi,
| | - Hauke Thomsen
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- GeneWerk GmbH, Heidelberg, Germany
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Prague, Czecia
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Prague, Czecia
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Prague, Czecia
| | - Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Katarina Volkovova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Per Hoffmann
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus M. Nöthen
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Ludovit Musak
- Jessenius Faculty of Medicine, Biomedical Center Martin, Comenius University in Bratislava, Bratislava, Slovakia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Prague, Czecia
| | - Kari Hemminki
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Prague, Czecia
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Kari Hemminki,
| | - Asta Försti
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
3
|
Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, Staruchova M, Hoffmann P, Nöthen MM, Dusinska M, Musak L, Vodicka P, Hemminki K, Försti A. Impact of genetic polymorphisms in kinetochore and spindle assembly genes on chromosomal aberration frequency in healthy humans. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 858-860:503253. [PMID: 33198934 DOI: 10.1016/j.mrgentox.2020.503253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/24/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Genomic instability is a characteristic of a majority of human malignancies. Chromosomal instability is a common form of genomic instability that can be caused by defects in mitotic checkpoint genes. Chromosomal aberrations in peripheral blood are also indicative of genotoxic exposure and potential cancer risk. We evaluated associations between inherited genetic variants in 33 mitotic checkpoint genes and the frequency of chromosomal aberrations (CAs) in the presence and absence of environmental genotoxic exposure. Associations with both chromosome and chromatid type of aberrations were evaluated in two cohorts of healthy individuals, namely an exposed and a reference group consisting of 607 and 866 individuals, respectively. Binary logistic and linear regression analyses were performed for the association studies. Bonferroni-corrected significant p-value was 5 × 10-4 for 99 tests based on the number of analyzed genes and phenotypes. In the reference group the most prominent associations were found with variants in CCNB1, a master regulator of mitosis, and in genes involved in kinetochore function, including CENPH and TEX14, whereas in the exposed group the main association was found with variants in TTK, also an important gene in kinetochore function. How the identified variants may affect the fidelity of mitotic checkpoint remains to be investigated, however, the present study suggests that genetic variation may partly explain interindividual variation in the formation of CAs.
Collapse
Affiliation(s)
- Yasmeen Niazi
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Hauke Thomsen
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany; GeneWerk GmbH, Im Neuenheimer Feld 582, 6910, Heidelberg, Germany
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605, Pilsen, Czech Republic
| | - Soňa Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605, Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Katarina Volkovova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn School of Medicine and University of Bonn, D-53127, Bonn, Germany; Division of Medical Genetics, Department of Biomedicine, University of Basel, 4003, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn School of Medicine and University of Bonn, D-53127, Bonn, Germany
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007, Kjeller, Norway
| | - Ludovit Musak
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Malá Hora(4D), 03601, Martin, Slovakia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605, Pilsen, Czech Republic
| | - Kari Hemminki
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605, Pilsen, Czech Republic; Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Asta Försti
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
4
|
Sestakova Z, Kalavska K, Smolkova B, Miskovska V, Rejlekova K, Sycova-Mila Z, Palacka P, Obertova J, Holickova A, Hurbanova L, Jurkovicova D, Roska J, Goffa E, Svetlovska D, Chovanec M, Mardiak J, Mego M, Chovanec M. DNA damage measured in blood cells predicts overall and progression-free survival in germ cell tumour patients. Mutat Res 2020; 854-855:503200. [PMID: 32660824 DOI: 10.1016/j.mrgentox.2020.503200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/15/2022]
Abstract
Germ cell tumour (GCT) patients who fail to respond to chemotherapy or who relapse have a poor prognosis. Timely and accurately stratifying such patients could optimise their therapy. We identified endogenous DNA damage levels as a prognostic marker for progression-free (PFS) and overall (OS) survival in chemotherapy-naïve GCT patients. In the present study, we have extended our previous results and reviewed the prognostic power of DNA damage level in GCTs. Endogenous DNA damage levels were measured with the comet assay. Receiver operator characteristic analysis was applied to determine the optimal cut-off value and to evaluate its prognostic accuracy. PFS and OS were estimated by the Kaplan-Meier method and compared using the log-rank test. Hazard ratio (HR) estimates were calculated by Cox regression analysis. A cut-off value of 6.34 provided the highest sensitivity and specificity, with area under curve values of 0.813 and 0.814 for disease progression and mortality, respectively. A % DNA in tail > 6.34 was significantly associated with shorter PFS (HR = 9.54, 95 % confidence interval [CI]: 3.43-26.55, p < 0.001) and OS (HR = 14.62, 95 % CI: 3.14-67.95, p = 0.001) by univariate analysis. The prognostic value of DNA damage measurement was confirmed by multivariate models (HR = 6.45, 95 % CI: 2.22-18.75, p = 0.001 for PFS and HR = 9.40, 95 % CI: 1.70-52.09, p = 0.010 for OS), when HR was adjusted for relevant clinical categories. The added prognostic value of DNA damage in combination with International Germ Cell Cancer Collaborative Group (IGCCCG) risk groups has been revealed. Endogenous DNA damage is an independent prognosticator for PFS and OS in GCT patients and its clinical use, particularly in combination with IGCCCG risk groups, may help in stratifying these patients.
Collapse
Affiliation(s)
- Zuzana Sestakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic
| | - Katarina Kalavska
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic; Translational Research Unit, Faculty of Medicine, Comenius University, National Cancer Institute, Bratislava, Slovak Republic
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic
| | - Vera Miskovska
- 1(st)Department of Oncology, Faculty of Medicine, Comenius University, St. Elisabeth Cancer Institute, Bratislava, Slovak Republic
| | - Katarina Rejlekova
- Department of Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Zuzana Sycova-Mila
- Department of Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Patrik Palacka
- Department of Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Jana Obertova
- Department of Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Andrea Holickova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic
| | - Lenka Hurbanova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic
| | - Jan Roska
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic
| | - Eduard Goffa
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic
| | - Daniela Svetlovska
- Translational Research Unit, Faculty of Medicine, Comenius University, National Cancer Institute, Bratislava, Slovak Republic
| | - Michal Chovanec
- Department of Oncology, National Cancer Institute, Bratislava, Slovak Republic; 2(nd)Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute, Bratislava, Slovak Republic
| | - Jozef Mardiak
- Department of Oncology, National Cancer Institute, Bratislava, Slovak Republic; 2(nd)Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute, Bratislava, Slovak Republic
| | - Michal Mego
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic; Translational Research Unit, Faculty of Medicine, Comenius University, National Cancer Institute, Bratislava, Slovak Republic; Department of Oncology, National Cancer Institute, Bratislava, Slovak Republic; 2(nd)Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute, Bratislava, Slovak Republic
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
5
|
Minina VI, Savchenko YA, Bakanova ML, Ryzhkova AV, Sokolova AO, Meyer AV, Tolochko TA, Voronina EN, Druzhinin VG, Glushkov AN. Chromosomal Instability and Genetic Polymorphism in Miners and Workers of Coal Thermal Power Plants. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, Staruchova M, Hoffmann P, Nöthen MM, Dusinska M, Musak L, Vodicka P, Hemminki K, Försti A. Distinct pathways associated with chromosomal aberration frequency in a cohort exposed to genotoxic compounds compared to general population. Mutagenesis 2019; 34:323-330. [PMID: 31586183 DOI: 10.1093/mutage/gez024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/20/2019] [Indexed: 02/05/2023] Open
Abstract
Non-specific structural chromosomal aberrations (CAs) observed in peripheral blood lymphocytes of healthy individuals can be either chromosome-type aberrations (CSAs) or chromatid-type aberrations (CTAs) depending on the stage of cell division they are induced in and mechanism of formation. It is important to study the genetic basis of chromosomal instability as it is a marker of genotoxic exposure and a predictor of cancer risk. For that purpose, we conducted two genome-wide association studies (GWASs) on healthy individuals in the presence and absence of apparent genotoxic exposure from the Czech Republic and Slovakia. The pre-GWAS cytogenetic analysis reported the frequencies of CSA, CTA and total CA (CAtot). We performed both linear and binary logistic regression analysis with an arbitrary cut-off point of 2% for CAtot and 1% for CSA and CTA. Using the statistical threshold of 1.0 × 10-5, we identified five loci with in silico predicted functionality in the reference group and four loci in the exposed group, with no overlap between the associated regions. A meta-analysis on the two GWASs identified further four loci with moderate associations in each of the studies. From the reference group mainly loci within genes related to DNA damage response/repair were identified. Other loci identified from both the reference and exposed groups were found to be involved in the segregation of chromosomes and chromatin modification. Some of the discovered regions in each group were implicated in tumourigenesis and autism.
Collapse
Affiliation(s)
- Yasmeen Niazi
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medizinische Fakultät, Universität Heidelberg, Heidelberg, Germany
| | - Hauke Thomsen
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Soňa Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Katarina Volkovova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Ludovit Musak
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Kari Hemminki
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Asta Försti
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Chromosomal Aberration Test in Human Lymphocytes. Methods Mol Biol 2019. [PMID: 31473957 DOI: 10.1007/978-1-4939-9646-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Human peripheral lymphocytes (HPL) are non-cycling primary cells (G0 cells). They are easily collectable by venipuncture. In the presence of suitable culture media and stimulants in vitro HPL enter the cell cycle and divide mitotically. Metaphase-like stages can be arrested using the spindle fiber poison colcemid and prepared on microscopic slides. Following appropriate staining, chromosomal aberrations can be analyzed in the microscope. These aberrations may either be induced in vivo by environmental or occupational influences or in vitro after experimentally controlled manipulations in order to detect or to test the mutagenic potency of various agents.
Collapse
|