1
|
Urbańska M, Sofińska K, Czaja M, Szymoński K, Skirlińska-Nosek K, Seweryn S, Lupa D, Szymoński M, Lipiec E. Molecular alterations in metaphase chromosomes induced by bleomycin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124026. [PMID: 38368817 DOI: 10.1016/j.saa.2024.124026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/22/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Chromosomes are intranuclear structures, their main function is to store and transmit genetic information during cell division. They are composed of tightly packed DNA in the form of chromatin, which is constantly exposed to various damaging factors. The resulting changes in DNA can have serious consequences (e.g. mutations) if they are not repaired or repaired incorrectly. In this article, we studied chromosomes isolated from human cervical cancer cells (HeLa) exposed to a genotoxic drug causing both single- and double-strand breaks. Specifically, we used bleomycin to induce DNA damage. We followed morphological and chemical changes in chromosomes upon damage induction. Atomic force microscopy was used to visualize the morphology of chromosomes, while Raman microspectroscopy enabled the detection of changes in the chemical structure of chromatin with the resolution close to the diffraction limit. Additionally, we extracted spectra corresponding to chromosome I or chromatin from hyperspectral Raman maps with convolutional neural networks (CNN), which were further analysed with the principal component analysis (PCA) algorithm to reveal molecular markers of DNA damage in chromosomes. The applied multimodal approach revealed simultaneous morphological and molecular changes, including chromosomal aberrations, alterations in DNA conformation, methylation pattern, and increased protein expression upon the bleomycin treatment at the level of the single chromosome.
Collapse
Affiliation(s)
- Marta Urbańska
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Kamila Sofińska
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Michał Czaja
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Krzysztof Szymoński
- Jagiellonian University Medical College, Department of Pathomorphology, Grzegorzecka 16, 31-531, Krakow, Poland; University Hospital, Department of Pathomorphology, Krakow, Poland
| | - Katarzyna Skirlińska-Nosek
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Sara Seweryn
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Dawid Lupa
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Marek Szymoński
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Ewelina Lipiec
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
| |
Collapse
|
2
|
Kirsch-Volders M, Pacchierotti F, Parry EM, Russo A, Eichenlaub-Ritter U, Adler ID. Risks of aneuploidy induction from chemical exposure: Twenty years of collaborative research in Europe from basic science to regulatory implications. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 779:126-147. [PMID: 31097149 DOI: 10.1016/j.mrrev.2018.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/26/2018] [Indexed: 12/13/2022]
Abstract
Although Theodor Boveri linked abnormal chromosome numbers and disease more than a century ago, an in-depth understanding of the impact of mitotic and meiotic chromosome segregation errors on cell proliferation and diseases is still lacking. This review reflects on the efforts and results of a large European research network that, from the 1980's until 2004, focused on protection against aneuploidy-inducing factors and tackled the following problems: 1) the origin and consequences of chromosome imbalance in somatic and germ cells; 2) aneuploidy as a result of environmental factors; 3) dose-effect relationships; 4) the need for validated assays to identify aneugenic factors and classify them according to their modes of action; 5) the need for reliable, quantitative data suitable for regulating exposure and preventing aneuploidy induction; 6) the need for mechanistic insight into the consequences of aneuploidy for human health. This activity brought together a consortium of experts from basic science and applied genetic toxicology to prepare the basis for defining guidelines and to encourage regulatory activities for the prevention of induced aneuploidy. Major strengths of the EU research programmes on aneuploidy were having a valuable scientific approach based on well-selected compounds and accurate methods that allow the determination of precise dose-effect relationships, reproducibility and inter-laboratory comparisons. The work was conducted by experienced scientists stimulated by a fascination with the complex scientific issues surrounding aneuploidy; a key strength was asking the right questions at the right time. The strength of the data permitted evaluation at the regulatory level. Finally, the entire enterprise benefited from a solid partnership under the lead of an inspired and stimulating coordinator. The research programme elucidated the major modes of action of aneugens, developed scientifically sound assays to assess aneugens in different tissues, and achieved the international validation of relevant assays with the goal of protecting human populations from aneugenic chemicals. The role of aneuploidy in tumorigenesis will require additional research, and the study of effects of exposure to multiple agents should become a priority. It is hoped that these reflections will stimulate the implementation of aneuploidy testing in national and OECD guidelines.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Faculty of Sciences and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | - Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Ursula Eichenlaub-Ritter
- Institute of Gene Technology/Microbiology, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | | |
Collapse
|
3
|
Bolzán AD, Bianchi MS. DNA and chromosome damage induced by bleomycin in mammalian cells: An update. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 775:51-62. [PMID: 29555029 DOI: 10.1016/j.mrrev.2018.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022]
Abstract
Bleomycin (BLM) is an antibiotic isolated from Streptomyces verticillus. It has radiomimetic actions on DNA thus it has been widely used in clinical chemotherapy for the treatment of different types of cancer, including head and neck tumors, lymphomas, squamous-cell carcinomas and germ-cell tumors. Because of this, the study of BLM genotoxicity is of practical interest. This antibiotic is an S-independent clastogen and an agent that generates free radicals and induces single- and double-strand breaks in DNA. In the present review, we will summarize our current knowledge concerning the DNA and chromosome damage induced by BLM in mammalian cells, with emphasis on new developments published since 1991.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-UNLP-CONICET La Plata), calle 526 y Camino General Belgrano, B1906APO La Plata, Buenos Aires, Argentina; Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo, calle 60 y 122, La Plata, Buenos Aires, Argentina.
| | - Martha S Bianchi
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-UNLP-CONICET La Plata), calle 526 y Camino General Belgrano, B1906APO La Plata, Buenos Aires, Argentina
| |
Collapse
|
4
|
Hovhannisyan G, Aroutiounian R, Babayan N, Harutyunyan T, Liehr T. Comparative analysis of individual chromosome involvement in micronuclei induced by mitomycin C and bleomycin in human leukocytes. Mol Cytogenet 2016; 9:49. [PMID: 27330564 PMCID: PMC4915088 DOI: 10.1186/s13039-016-0258-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/15/2016] [Indexed: 12/18/2022] Open
Abstract
Background Micronucleus (MN) assay is a well standardized approach for evaluation of clastogenic/aneugenic effects of mutagens. Fluorescence in situ hybridization (FISH) is successfully used to characterize the chromosomal content of MN. However, the relationships between nuclear positioning, length, and gene density of individual chromosomes and their involvement in MN induced by different mutagens have not been clearly defined. Results Chromosomal content of MN was characterized in human leukocytes treated with mitomycin C (MMC) and bleomycin (BLM) by FISH using centromeric (cep) and whole-chromosome painting (wcp) probes. Involvement of chromosomes 8, 15 and 20 in MMC-induced and chromosomes 1, 9 and 16 in BLM-induced MN was studied, and correlated with chromosome size, gene density and interphase position. The results obtained were analyzed together with previous own data on the frequencies of inclusion of chromosomes 3, 4, 6, 7, 9, 16, 17, 18, and X in MMC-induced MN. It could be shown that MMC- and BLM-induced MN could contain material derived from all chromosomes investigated. Involvement of whole chromosomes 8, 15 and 20 in MMC-induced MN negatively correlated with gene density; however, analysis together with earlier studied chromosomes did not confirm this correlation. Inclusion of chromosomes 8, 15 and 20 in MMC-induced MN does not depend on their size and interphase position; the same result was found for the twelve overall analyzed chromosomes. In BLM-treated cells significant correlation between frequencies of involvement of chromosomes 1, 9 and 16 in MN and their size was found. Conclusions Our results clearly revealed that BLM differs from MMC with respect to the distribution of induced chromosome damage and MN formation. Thus, DNA-damaging agents with diverse mechanism of action induce qualitatively different MN with regard to their chromosomal composition. Also this study demonstrates the utility of combined sequential application of cep and wcp probes for efficient detection of MN chromosomal content in terms of centric and acentric fragments.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Faculty of Biology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Faculty of Biology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
| | - Nelly Babayan
- Department of Genetics and Cytology, Faculty of Biology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia ; Institute of Molecular Biology, National Academy of Sciences, 7 Hasratyan, 0014 Yerevan, Armenia
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Faculty of Biology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| |
Collapse
|
5
|
Keszenman DJ, Kolodiuk L, Baulch JE. DNA damage in cells exhibiting radiation-induced genomic instability. Mutagenesis 2015; 30:451-8. [PMID: 25711497 DOI: 10.1093/mutage/gev006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cells exhibiting radiation-induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesis that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.
Collapse
Affiliation(s)
- Deborah J Keszenman
- Biosciences Department, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973, USA, Laboratory of Medical and Environmental Radiobiology, Biophysical Chemistry Group, Department of Biological Sciences, CENUR del Noroeste, UdelaR, Rivera 1350, Salto 50000, Uruguay,
| | - Lucia Kolodiuk
- 107-112 CMM/BLL, Stony Brook University, Stony Brook, NY 11794, USA and
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Medical Sciences I, B149, Irvine, CA 92697, USA
| |
Collapse
|
6
|
McDevitt MA, Condon M, Stamberg J, Karp JE, McDiarmid M. Fluorescent in situ hybridization (FISH) in bone marrow and peripheral blood of leukemia patients: implications for occupational surveillance. Mutat Res 2007; 629:24-31. [PMID: 17276720 DOI: 10.1016/j.mrgentox.2007.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/21/2006] [Accepted: 01/02/2007] [Indexed: 11/17/2022]
Abstract
Although there has been a rapid rise in the application of fluorescent in situ hybridization (FISH) analysis of bone marrow tissue for the staging and prognosis determination of hematopoietic malignacies such as the chronic and acute leukemias, it's application as a surveillance tool for leukemogen exposed high risk occupational cohorts is understandably limited by the invasiveness of sample collection. While some small occupational studies have been performed using FISH in peripheral blood with promising results, some of the basic assumptions made in utilizing the FISH technique have not been fully explored. These include selection of the correct hematopoietic cell to assay (myeloid or lymphoid); selection of appropriate chromosomal markers and the sensitivity of peripheral blood FISH in detecting unbalanced genomic abnormalities. In this study, we performed a pilot 'validation' exercise utilizing the FISH technique and standard metaphase cytogenetics, comparing results in tandem pairs of peripheral blood with bone marrow cells, where clonal abnormalities arise. Samples were taken from patients with known chromosomal lesions associated with active leukemia. We carefully chose markers most frequently associated with leukemogen-inducing DNA damage and probes that have been utilized successfully in clinical practice. Ten de novo or therapy-related acute myeloid leukemia (t-AML) patients underwent bone marrow cell karyotyping and fluorescent in situ hybridization (FISH) analysis. Parallel peripheral blood samples were concommitently drawn and evaluated with FISH using the same probes. In six of eight paired samples treated with a 3-day phytohemagglutinin (PHA) stimulation, typically used to assay lymphocytes and their progenitors, we detected abnormal clones. In one of the two remaining cases, we identified an abnormal clone in both bone marrow and PHA-stimulated peripheral blood, although at a level in the peripheral blood sample that would typically be reported as "non-diagnostic" for clinical purposes. These results suggest that use of FISH in PHA stimulated peripheral blood samples with probes commonly employed in t-AML evaluations (chromosomes 5q, 7q, 8, 11q) to detect cytogenetic abnormalities in peripheral blood represents a potentially promising though as yet, under-utilized approach for the occupational surveillance of workers exposed to leukemogens, especially if it could be linked to automated high-throughput assays for increased sensitivity.
Collapse
MESH Headings
- Bone Marrow Cells/pathology
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 5
- Chromosomes, Human, Pair 7
- Chromosomes, Human, Pair 8
- Cohort Studies
- Cytogenetic Analysis/methods
- Humans
- In Situ Hybridization, Fluorescence/methods
- Karyotyping
- Leukemia, Myeloid, Acute/pathology
- Leukocytes, Mononuclear/metabolism
- Occupational Exposure/adverse effects
- Pilot Projects
- Population Surveillance
- Reproducibility of Results
Collapse
Affiliation(s)
- M A McDevitt
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | | | | | | | | |
Collapse
|
7
|
Bolzán AD, Bianchi MS. Detection of incomplete chromosome elements and interstitial fragments induced by bleomycin in hamster cells using a telomeric PNA probe. Mutat Res 2004; 554:1-8. [PMID: 15450398 DOI: 10.1016/j.mrfmmm.2004.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 02/06/2004] [Accepted: 02/24/2004] [Indexed: 10/26/2022]
Abstract
The detection of incomplete chromosome elements (ICE, i.e., elements with telomeric signal at only one terminal end) and interstitial fragments induced by the radiomimetic compound bleomycin (BLM) was carried out in a Chinese hamster embryo (CHE) cell line using FISH with a telomeric peptide nucleic acid (PNA) probe. CHE cells were treated with 0, 1, 2.5, 5, and 7.5 microg/ml of BLM and chromosomal aberrations were analyzed in the first mitosis after treatment using a telomeric PNA probe. The relationship between chromosomal aberrations frequency and bleomycin concentration was of linear type (P < 0.05 for all type of aberrations analyzed, i.e., multicentric chromosomes, centric rings, interstitial fragments and ICE). After BLM treatment, about 20-30% of the analyzed metaphases contained one or more pairs of ICE. Acentric interstitial fragments, lacking telomeric signals, were observed with a frequency of about 4-7 times higher than the dicentric frequency. Acentric interstitial fragments and ICE were induced at similar frequencies, except for the lowest BLM concentration (1 microg/ml), where the latter ones showed a higher frequency than the former ones. Furthermore, it was estimated that about 53% of excess acentric fragments originate from complete exchanges (interstitial deletions) and 47% from incomplete exchanges or terminal deletions. These results show that interstitial fragments and ICE are the most frequent asymmetrical chromosomal aberrations induced by BLM and indicate that true incompleteness is a common event following exposure to BLM. Moreover, the comparable trend of the concentration-response relationship for the different aberrations strongly suggests that all BLM-induced asymmetrical aberrations are formed by a similar underlying mechanism.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular, CC 403, 1900 La Plata, Argentina.
| | | |
Collapse
|
8
|
Bolzán AD, Bianchi MS. Analysis of streptonigrin-induced incomplete chromosome elements and interstitial fragments in Chinese hamster cells using a telomeric PNA probe. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2004; 44:277-282. [PMID: 15472926 DOI: 10.1002/em.20051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We investigated the induction of incomplete chromosome elements (ICEs; i.e., elements with a telomeric signal at only one terminal end) and interstitial fragments induced by the antibiotic streptonigrin (SN) in a Chinese hamster embryo (CHE) cell line using FISH with a telomeric peptide nucleic acid probe. CHE cells were treated with 0-250 ng/ml SN and chromosomal aberrations were analyzed in the first mitosis after treatment using the telomeric probe. Exposure of CHE cells to SN resulted in a linear concentration-related increase in all of the aberration types analyzed (P < 0.05) except ring chromosomes. Depending on the SN concentration employed, 33-68% of the metaphases contained one or more pairs of ICEs (an incomplete chromosome accompanied by a terminal fragment or two incomplete chromosomes accompanied by a compound fragment). Pooled data from all SN concentrations revealed that 77.8% of the acentric fragments were terminal fragments, 18.8% interstitial fragments, and 3.4% compound fragments. Furthermore, it was estimated that about 80% of excess acentric fragments induced by SN originated from incomplete exchanges or terminal deletions and 20% from complete exchanges (interstitial deletions). These results show that incomplete chromosomes and terminal fragments are the most frequent asymmetrical chromosomal aberrations induced by SN and indicate that true incompleteness is a very common event following exposure to SN.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular, 1900 La Plata, Argentina.
| | | |
Collapse
|
9
|
Abstract
Cornforth, M. N. Analyzing Radiation-Induced Complex Chromosome Rearrangements by Combinatorial Painting. Radiat. Res. 155, 643-659 (2001). Prior to the advent of whole-chromosome painting, it was universally assumed that virtually all radiation-induced exchanges represented a simple rejoining between pairs of chromosome breaks. It is now known that a substantial proportion of such exchanges are actually complex, meaning that they involve the interaction of three (or more) breaks distributed among two (or more) chromosomes. The purpose of this review is to discuss some of the implications of aberration analysis using whole-chromosome painting, with emphasis given to newer combinatorial painting schemes that allow for the unambiguous identification of all homologous chromosome pairs. Such analysis requires reconsideration of how resulting information is to be handled for the purposes of tabulating and communicating raw data, quantifying aberration yields, and presenting experimental results in a cogent manner. Facilitating these objectives requires the introduction of certain concepts and terminologies that have no counterpart in conventional cytogenetic analyses.
Collapse
Affiliation(s)
- M N Cornforth
- Department of Radiation Oncology, 344 Gail Borden Bldg. Route F-56, University of Texas Medical Branch, Galveston, TX 77555-0656, USA
| |
Collapse
|
10
|
Abstract
Streptonigrin (SN, CAS no. 3930-19-6) is an aminoquinone antitumor antibiotic isolated from cultures of Streptomyces flocculus. This compound is a member of a group of antitumor agents which possess the aminoquinone moiety and that includes also mitomycin C, porfiromycin, actinomycin, rifamycin and geldanamycin. Because of the potential use of SN in clinical chemotherapy, the study of its genotoxicity has considerable practical significance.SN inhibits the synthesis of DNA and RNA, causes DNA strand breaks after reduction with NADH, induces unscheduled DNA synthesis and DNA adducts and inhibits topoisomerase II. At the chromosome level, this antibiotic causes chromosome damage and increases the frequency of sister-chromatid exchanges.SN cleaves DNA in cell-free systems by a mechanism that involves complexing with metal ions and autoxidation of the quinone moiety to semiquinone in the presence of NADH with production of oxygen-derived reactive species. Recent evidence strongly suggests that the clastogenic action of this compound is partially mediated by free radicals. The present review aims at summarizing past and current knowledge concerning the genotoxic effects of SN.
Collapse
Affiliation(s)
- A D Bolzán
- Laboratory of Cytogenetics and Mutagenesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900, La Plata, Argentina.
| | | |
Collapse
|
11
|
Puerto S, Marcos R, Ramírez MJ, Galofré P, Creus A, Surrallés J. Equal induction and persistence of chromosome aberrations involving chromosomes 1, 4 and 10 in thyroid cancer patients treated with radioactive iodine. Mutat Res 2000; 469:147-58. [PMID: 10946251 DOI: 10.1016/s1383-5718(00)00064-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A number of in vitro studies have questioned the assumption of random distribution of breaks in radiation-induced chromosome aberrations. The therapeutic application of radioactive 131I in thyroid cancer patients offers a good opportunity to study the induction and persistence of cytogenetic damage involving different chromosomes in vivo. Using whole-chromosome painting probes and triple colour painting by fluorescence in situ hybridization (FISH), we have analysed the frequency of chromosomal aberrations (CAs) involving chromosomes 1, 4 and 10 in peripheral blood lymphocytes of 10 thyroid cancer patients sampled before and 1 week, 1 year and 3.5 years after therapeutic application of radioactive iodine in a self-controlled, longitudinal study. A highly significant 3.4-fold increase in the frequency of chromosome breaks was observed 1 week after treatment with a similar representation of all chromosomes analysed. Although a significant decrease in dicentrics was observed during the first year after treatment, the frequency of chromosome aberrations remained over control levels until the last sampling time, 41-47 months post-treatment. The same behaviour, in terms of induction and persistence, was observed for all three chromosomes, confirming our previous results in vitro and rejecting the reported suggestion that chromosome 10 is radiosensitive in vivo. Our finding that the dynamics of radiation-induced CA in vivo is independent on the chromosome of choice suggests that this variable is not important in retrospective studies.
Collapse
Affiliation(s)
- S Puerto
- Grup de Mutagènesi, Unitat de Genet., Departament de Genètica i de Microbiologia, Edifici Cn, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola des Valles), Spain
| | | | | | | | | | | |
Collapse
|
12
|
Keszenman DJ, Carmen Candreva E, Nunes E. Cellular and molecular effects of bleomycin are modulated by heat shock in Saccharomyces cerevisiae. Mutat Res 2000; 459:29-41. [PMID: 10677681 DOI: 10.1016/s0921-8777(99)00056-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To study some mechanisms underlying the stress responses in eukaryotic cells, we investigated the effect of heat shock (HS) on the induction of DNA double strand breaks as well as on potentially lethal and mutagenic events induced by the radiomimetic antibiotic bleomycin (BLM) in Saccharomyces cerevisiae. Haploid wild-type yeast cells in the logarithmic phase of growth were exposed to different concentrations of BLM (0-30 microg/ml, 1.5 h) without and with a previous HS (38 degrees C, 1 h). Immediately after treatments, survival as well as mutation frequency were determined, and quantitative analysis of chromosomal DNA by laser densitometry were performed both immediately after treatments and after incubation of cells during different time intervals in liquid nutrient medium free of BLM. Our results indicate that HS induces resistance to potentially lethal and mutagenic effects of BLM. Quantitative analysis of chromosomal DNA performed immediately after treatments showed the same DNA fragmentation, either upon BLM as single agent or preceded by HS. However, HS pretreated cells incubated during 4 h in liquid nutrient medium free of BLM repaired DNA double strand breaks more efficiently as compared to non-pretreated cells. On this basis, we propose that the observed HS-induced resistance to BLM depends on a regulatory network acting after DNA-induced damage, which includes genes involved in DNA repair, HS response and DNA metabolism.
Collapse
Affiliation(s)
- D J Keszenman
- Dipartamento de Biofisica, LOBBM, Facultad de Medicina, Gral. Flores 2125, Montevideo, Uruguay.
| | | | | |
Collapse
|
13
|
Herrera LA, Ramirez T, Rodríguez U, Corona T, Sotelo J, Lorenzo M, Ramos F, Verdorfer I, Gebhart E, Ostrosky-Wegman P. Possible association between Taenia solium cysticercosis and cancer: increased frequency of DNA damage in peripheral lymphocytes from neurocysticercosis patients. Trans R Soc Trop Med Hyg 2000; 94:61-5. [PMID: 10748903 DOI: 10.1016/s0035-9203(00)90441-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Helminths, particularly some Schistosoma species, have been associated with cancer in humans. Neurocysticercosis, produced by cysticerci of the helminth Taenia solium, has been associated with the emergence of brain tumours and haematological malignancies. Local tumours, such as glioblastoma, could be explained by the induction of DNA damage in cells surrounding the cysticercus and chronically exposed to an inflammatory host response. However, systemic effects such as haematological malignancies are not easy to understand. The present work was conducted in Mexico to find out whether DNA damage arises in peripheral lymphocytes in patients with neurocysticercosis. We utilized a highly sensitive technique to analyse chromosomal aberrations, in-situ hybridization with probes against chromosomes 1, 2 and 4, and in addition the blocked-cytokinesis technique was used to determine the formation of micronuclei, a peculiar form of DNA damage. The study was made in lymphocytes from 8 patients before and after the administration of praziquantel, 1 of the 2 drugs used for neurocysticercosis treatment. The frequencies of chromosome aberrations and micronuclei in peripheral blood lymphocytes were higher in the infected patients as compared to those observed both in healthy donors and in the group of patients after praziquantel therapy. Our results suggest that chromosome aberrations induced in peripheral cells during neurocysticercosis could be associated with the development of haematological neoplasias.
Collapse
Affiliation(s)
- L A Herrera
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México, D.F., Mexico.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Puerto S, Surrallés J, Ramírez MJ, Carbonell E, Creus A, Marcos R. Analysis of bleomycin- and cytosine arabinoside-induced chromosome aberrations involving chromosomes 1 and 4 by painting FISH. Mutat Res 1999; 439:3-11. [PMID: 10029666 DOI: 10.1016/s1383-5718(98)00169-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genomic frequency of chromosomal aberrations obtained by chromosome painting is usually extrapolated from the observed frequency of aberrations by correcting for the DNA content of the labelled chromosomes. This extrapolation is based upon the assumption of random distribution of breakpoints from which aberrations are generated. However, the validity of this assumption has been widely questioned. While extensive investigations have been performed with ionizing radiation as chromosome breaking agent, little efforts have been done with chemical clastogens. In order to investigate interchromosomal differences in chemically-induced chromosome damage, we have used multicolour chromosome painting to analyse bleomycin-induced aberrations involving chromosomes 1 and 4, two chromosomes that differ in gene density. In addition, we have measured the effect of cytosine arabinoside upon the repair of bleomycin-induced DNA damage in chromosomes 1 and 4. Our results show that these chromosomes are equally sensitive to the clastogenic effect of bleomycin with a similar linear dose-effect relationship. However, the high gene density chromosome 1 appeared to be more sensitive to repair inhibition by Ara-C than chromosome 4. This enhanced sensitivity to repair inhibition in chromosome 1 could be mediated by preferential repair of open chromatin and actively transcribed regions.
Collapse
Affiliation(s)
- S Puerto
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Edifici Cn, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Hoffmann GR, Sayer AM, Joiner EE, McFee AF, Littlefield LG. Analysis by FISH of the spectrum of chromosome aberrations induced by X-rays in G0 human lymphocytes and their fate through mitotic divisions in culture. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1999; 33:94-110. [PMID: 10217064 DOI: 10.1002/(sici)1098-2280(1999)33:2<94::aid-em2>3.0.co;2-e] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The induction, distribution, and persistence of chromosome aberrations in human lymphocytes exposed to X-rays in G0 were analyzed in 48-, 70-, and 94-hr cultures by conventional metaphase analysis and painting of chromosomes 1, 2, and 4 by FISH. All cells that had been scored by FISH were relocated to determine by differential staining of chromatids whether they had passed through 1, 2, or > or =3 divisions. FISH revealed a dose-dependent induction of stable and unstable aberrations, while chromatid labeling showed mitotic lag caused by irradiation in G0. Relative to their DNA contents, there was a small but significant overrepresentation of chromosome 4 and underrepresentation of chromosome 2 among the aberrations involving chromosomes 1, 2, and 4. FISH slightly underestimated the genomic frequency of unstable aberrations measured by conventional metaphase analysis. There was a slight excess of translocations relative to dicentrics, but the data are compatible with the 1:1 ratio expected from cytogenetic theory. Many of the translocations were apparently incomplete (i.e., nonreciprocal). Incomplete translocations were more frequent at higher X-ray dose and in first division, suggesting that they may be associated with complex damage and are more apt to be lost in mitosis than complete translocations. Among the incomplete translocations, t(Ab) outnumbered t(Ba) -- a difference ascribable to the FISH technique. Aberration frequencies declined as the cells divided in culture. The overall decline in the frequency of aberrant cells (approximately 29% per cell generation) reflects a rapid decline in dicentrics and fragments (approximately 60% per cell generation) and the relative stability of translocations. The frequency of translocation-bearing cells underwent a modest decline in culture (approximately 13% per cell generation).
Collapse
Affiliation(s)
- G R Hoffmann
- Department of Biology, College of the Holy Cross, Worcester, Massachusetts 01610, USA
| | | | | | | | | |
Collapse
|
16
|
Zhang L, Wang Y, Shang N, Smith MT. Benzene metabolites induce the loss and long arm deletion of chromosomes 5 and 7 in human lymphocytes. Leuk Res 1998; 22:105-13. [PMID: 9593466 DOI: 10.1016/s0145-2126(97)00157-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two of the most common cytogenetic changes in therapy- and chemically-related leukemia are the loss and long (q) arm deletions of chromosomes 5 and 7 (i.e. -5, -7, del(5q) and del(7q)). We have used a novel fluorescence in situ hybridization (FISH) procedure to determine if the benzene metabolites hydroquinone (HQ) and 1,2,4-benzenetriol (BT) can induce these specific changes in human lymphocytes cultured as whole blood. Metaphase spreads were prepared and hybridized with centromeric probes for chromosomes 1, 5 and 7 and sequence specific probes for 5q31 and 7q36-qter. HQ and BT significantly increased monosomy 5 and 7 by 3-5 fold (p < 0.0001). Both HQ and BT also significantly increased the rate of del(5q) and del(7q) by 8-12 fold (p < 0.0001). Chromosome 7 was especially susceptible to aneusomy induction by HQ and BT at low doses. These results show that metabolites of benzene are highly effective in inducing changes in chromosomes 5 and 7 that are involved in the development of myeloid leukemia.
Collapse
Affiliation(s)
- L Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720-7360, USA
| | | | | | | |
Collapse
|
17
|
Mosesso P, Schuber M, Seibt D, Schatz A, Fosci A, Fonti E, Palitti F. Evaluation of bleomycin-induced chromosome aberrations under simulated microgravity conditions in human lymphocytes using "FISH" techniques. ACTA ASTRONAUTICA 1998; 42:473-488. [PMID: 11541629 DOI: 10.1016/s0094-5765(98)00140-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the present investigation we report the effects of simulated microgravity conditions (clinostat) on the induction of chromosomal aberrations in human lymphocytes in vitro by (R) Bleomycin. Chromosomal aberrations have been analysed by means of fluorescent in situ hybridisation (FISH) and chromosome-specific composite DNA probes (chromosome painting). The results obtained show that, under simulated microgravity conditions, the levels of both symmetrical and asymmetrical (dicentrics, rings), the number of cells bearing "complex" aberrations and hence the total numbers of aberrations were significantly elevated at any of the dose-levels assayed, compared to the parallel treatments performed as 1g control ("ground"). Furthermore, the ratio symmetrical:asymmetrical translocations was markedly elevated under simulated microgravity conditions, compared to the findings usually observed under "normal" 1g conditions. On these bases, we are much inclined to believe that simulated microgravity, rather than limiting the resealing of DNA double strand breaks (DSB's) induced by genotoxic agents is influencing in terms of enhancement the misrejoining of DSB's which is actually responsible for the fixation of the original lesions to DNA into chromosomal aberrations. In addition, the possible different misrepair processes leading to the formation of symmetrical and asymmetrical translocations might be differentially influenced by microgravity being the symmetrical translocations significantly more represented.
Collapse
Affiliation(s)
- P Mosesso
- University of Tuscia, Dept. of Agrobiology and Agrochemistry, Viterbo, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Marshall R, Obe G. Application of chromosome painting to clastogenicity testing in vitro. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1998; 32:212-22. [PMID: 9814435 DOI: 10.1002/(sici)1098-2280(1998)32:3<212::aid-em3>3.0.co;2-g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To maximise sensitivity, protocols for testing chemicals in chromosomal aberration assays in vitro are designed so that cells are sampled when the peak frequency of aberrations might be expected to occur. They are not designed to measure the frequency of aberrations in cells which survive. Only chromosomal aberrations which are heritable, however, can have any relevance to human health, but the detection of those aberrations most likely to be tolerated (inversions, reciprocal translocations) is notoriously difficult with conventional light microscopy. Current protocol design is justified by arguing that the presence of structural aberrations of any type at early times after treatment indicates a risk that a proportion of aberrations will persist and be maintained in the population. Chromosome painting allows reciprocal exchanges to be relatively easily measured and permits the validity of these assumptions to be tested. To date, the kinetics of induction and dose-response relationships of reciprocal translocations induced by chemicals have been little investigated. We compared the frequency of chromosome-type aberrations in human lymphocytes following treatment with two powerful clastogens, streptonigrin and Trenimon, using conventional staining techniques and chromosome painting. The results show that although reciprocal translocations can be shown to arise and persist in treated populations of human lymphocytes for several days following treatment, their frequency is very low, even at concentrations where large amounts of chromosomal damage are induced, indicating that, at present, the value of using chromosome painting as an adjunct to traditional clastogenicity testing is limited.
Collapse
Affiliation(s)
- R Marshall
- Covance Laboratories Ltd., Harrogate, North Yorkshire, UK
| | | |
Collapse
|
19
|
Anderson D, Yu TW, Browne MA. The use of the same image analysis system to detect genetic damage in human lymphocytes treated with doxorubicin in the Comet and fluoresence in situ hybridisation (FISH) assays. Mutat Res 1997; 390:69-77. [PMID: 9150754 DOI: 10.1016/s0165-1218(96)00167-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two assays, the alkaline single cell gel electrophoresis (Comet) assay and the fluorescence in situ hybridisation (FISH) of a whole chromosome or 'chromosome painting' assay have gained importance in recent years as witnessed by the increasing yield of scientific literature using these techniques. Thus, it would be useful to have one system to measure both endpoints. In the present communication, a cost-effective electronic imaging system developed by Kinetic Imaging Ltd., UK, has been used to measure, after treatment of human lymphocytes with doxorubicin, DNA damage in the Comet assay (using software package KOMET) and chromosome damage with the FISH technique (using software package KROMASCAN). The chromosome damage has been detected using chromoprobe-M for chromosome 1 and compared with chromosome damage measured using the conventional Giemsa staining technique. In all three assays, cycling cells were treated, after phytohaemagglutinin stimulation, at 48 h for about 20 h, which resulted in statistically significant dose-related responses in each assay. In non-cycling cells there was no increase in damage in the Comet assay, but there was in the chromosome assays. The FISH assay was only conducted in cycling cells, since the probe used was metaphase-specific. At the highest doses of doxorubicin used, FISH and conventional chromosome assays had similar sensitivities.
Collapse
Affiliation(s)
- D Anderson
- BIBRA international, Carshalton, Surrey, UK.
| | | | | |
Collapse
|
20
|
van Diemen PC, Maasdam D, Darroudi F, Natarajan AT. X-ray-sensitivity of lymphocytes of aplastic- and Diamond-Blackfan-anemia patients as detected by conventional cytogenetic and chromosome painting techniques. Mutat Res 1997; 373:225-35. [PMID: 9042404 DOI: 10.1016/s0027-5107(96)00201-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Frequencies of spontaneously occurring and X-ray induced, stable and unstable types of chromosome aberrations in peripheral blood lymphocytes from two groups of radiosensitive patients, i.e., aplastic anemia (AA) and Diamond-Blackfan anemia (DBA), were determined. Two types of staining methods, i.e., chromosome painting with two cocktails of chromosome-specific DNA libraries (Nos. 1, 3, X and Nos. 2, 4 and 8), as well as conventional Giemsa staining, were employed. Chromosome painting was done with single and multicolor fluorescence in situ hybridization (FISH). The frequencies of spontaneously occurring chromosome aberrations in AA and DBA patients were not significantly different from healthy individuals. Hypersensitivity to X-rays was seen both in G0 as well as in G2 phase of the cell cycle in lymphocytes from AA and DBA patients, confirming our earlier findings using micronucleus (DBA) and G2 radiosensitivity (AA) assays.
Collapse
Affiliation(s)
- P C van Diemen
- MGC, Department of Radiation Genetics and Chemical Mutagenesis, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
21
|
McFee AF, Sayer AM, Salomaa SI, Lindholm C, Littlefield LG. Methods for improving the yield and quality of metaphase preparations for FISH probing of human lymphocyte chromosomes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1997; 29:98-104. [PMID: 9020313 DOI: 10.1002/(sici)1098-2280(1997)29:1<98::aid-em13>3.0.co;2-c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Procedures are described for the in vitro culture of human lymphocytes, which have been concentrated by density gradient centrifugation, and for a modified slide-making technique for the fixed cells. The method yields improved percentages of mitotic cells which are largely synchronized at harvest. Controlled placement of fixed cells on slides produces well-spread metaphase preparations with little background material to interfere with fluorescence in situ hybridization (FISH) probe procedures. The FISH reagents and microscope scanning time required are minimized by concentrating cells in a defined area of the slide.
Collapse
Affiliation(s)
- A F McFee
- Environmental and Health Sciences Division, Oak Ridge Institute for Science and Education, Tennessee 37831-0117, USA
| | | | | | | | | |
Collapse
|