1
|
Choy MS, Nguyen HT, Kumar GS, Peti W, Kettenbach AN, Page R. A protein phosphatase 1 specific phosphatase targeting peptide (PhosTAP) to identify the PP1 phosphatome. Proc Natl Acad Sci U S A 2024; 121:e2415383121. [PMID: 39446389 PMCID: PMC11536154 DOI: 10.1073/pnas.2415383121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Phosphoprotein phosphatases (PPPs) are the key serine/threonine phosphatases that regulate all essential signaling cascades. In particular, Protein Phosphatase 1 (PP1) dephosphorylates ~80% of all ser/thr phosphorylation sites. Here, we developed a phosphatase targeting peptide (PhosTAP) that binds all PP1 isoforms and does so with a stronger affinity than any other known PP1 regulator. This PhosTAP can be used as a PP1 recruitment tool for Phosphorylation Targeting Chimera (PhosTAC)-type recruitment in in vitro and cellular experiments, as well as in phosphoproteomics experiments to identify PP1-specific substrates and phosphosites. The latter is especially important to further our understanding of cellular signaling, as the identification of substrates and especially phosphosites that are targeted by specific phosphatases lags behind that of their kinase counterparts. Using PhosTAP-based proteomics, we show that, counter to our current understanding, many PP1 regulators are also substrates, that the number of residues between regulator PP1-binding and phosphosites vary significantly, and that PP1 counteracts the activities of mitotic kinases. Finally, we also found that Haspin kinase is a direct substrate of PP1 and that its PP1-dependent dephosphorylation modulates its activity during anaphase. Together, we show that PP1-specific PhosTAPs are a powerful tool for +studying PP1 activity in vitro and in cells.
Collapse
Affiliation(s)
- Meng S. Choy
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT06030
| | - Hieu T. Nguyen
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Ganesan S. Kumar
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT06030
- National Institute of Immunology, New Delhi110067, India
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT06030
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
- Dartmouth Cancer Center, Lebanon, NH03756
| | - Rebecca Page
- Department of Cell Biology, UConn Health, Farmington, CT06030
| |
Collapse
|
2
|
Li Y, Wu M, Liu Y, Sun L, Mu P, Ma B, Xie J. Haspin mediates H3.3S31 phosphorylation downstream of Aurora B in mouse embryonic stem cells. Protein Sci 2024; 33:e5126. [PMID: 39073155 PMCID: PMC11284449 DOI: 10.1002/pro.5126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Histone phosphorylation is instrumental in regulating diverse cellular processes across eukaryotes. Unraveling the kinases that target specific histone sites is key to deciphering the underlying mechanisms. Among the various sites on histone tails that can undergo phosphorylation, the kinase responsible for H3.3S31 phosphorylation remained elusive. Since both H3.3S31ph and H3T3ph occur specifically during mitosis, and Haspin is the known kinase for H3T3 phosphorylation, we investigated its potential role in H3.3S31 phosphorylation. We employed CRISPR/Cas9, RNA interference, and specific small molecule inhibitors to eliminate Haspin function in various cell types. Our data consistently revealed a link between Haspin and H3.3S31ph. Furthermore, in vitro kinase assays provided evidence supporting Haspin's contribution to H3.3S31ph. Loss- and gain-of-function experiments targeting Haspin and Aurora B further suggested a hierarchical relationship. Haspin acts as a downstream kinase of Aurora B, specifically orchestrating H3.3S31 phosphorylation in mESCs. This study unveils a novel role for Haspin as a kinase in regulating H3.3S31 phosphorylation during mitosis. This discovery holds promise for expanding our understanding of the functional significance of Haspin and H3.3S31ph in mammals.
Collapse
Affiliation(s)
- Yuanyuan Li
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
- The Center for Reproductive Medicine, Shanghai East HospitalTongji UniversityShanghaiChina
| | - Meixian Wu
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yang Liu
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Lihua Sun
- The Center for Reproductive Medicine, Shanghai East HospitalTongji UniversityShanghaiChina
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Binbin Ma
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Present address:
Department of BiologyThe Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Jing Xie
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
- The Center for Reproductive Medicine, Shanghai East HospitalTongji UniversityShanghaiChina
| |
Collapse
|
3
|
Zhang Y, Fong KW, Mao F, Wang R, Allison DB, Napier D, He D, Liu J, Zhang Y, Chen J, Kong Y, Li C, Li G, Liu J, Li Z, Zhu H, Wang C, Liu X. Elevating PLK1 overcomes BETi resistance in prostate cancer via triggering BRD4 phosphorylation-dependent degradation in mitosis. Cell Rep 2024; 43:114431. [PMID: 38968071 PMCID: PMC11334074 DOI: 10.1016/j.celrep.2024.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/20/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024] Open
Abstract
Bromodomain-containing protein 4 (BRD4) has emerged as a promising therapeutic target in prostate cancer (PCa). Understanding the mechanisms of BRD4 stability could enhance the clinical response to BRD4-targeted therapy. In this study, we report that BRD4 protein levels are significantly decreased during mitosis in a PLK1-dependent manner. Mechanistically, we show that BRD4 is primarily phosphorylated at T1186 by the CDK1/cyclin B complex, recruiting PLK1 to phosphorylate BRD4 at S24/S1100, which are recognized by the APC/CCdh1 complex for proteasome pathway degradation. We find that PLK1 overexpression lowers SPOP mutation-stabilized BRD4, consequently rendering PCa cells re-sensitized to BRD4 inhibitors. Intriguingly, we report that sequential treatment of docetaxel and JQ1 resulted in significant inhibition of PCa. Collectively, the results support that PLK1-phosphorylated BRD4 triggers its degradation at M phase. Sequential treatment of docetaxel and JQ1 overcomes BRD4 accumulation-associated bromodomain and extra-terminal inhibitor (BETi) resistance, which may shed light on the development of strategies to treat PCa.
Collapse
Affiliation(s)
- Yanquan Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Ka-Wing Fong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Fengyi Mao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Ruixin Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Derek B Allison
- Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY 40508, USA
| | - Dana Napier
- Biospecimen Procurement & Translational Pathology Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA
| | - Daheng He
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jinpeng Liu
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Yeqing Zhang
- Department of Biology, College of Arts & Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Yifan Kong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Chaohao Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Guangbing Li
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Jinghui Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
4
|
Ding Z, Peng L, Zeng J, Yuan K, Tang Y, Yi Q. Functions of HP1 in preventing chromosomal instability. Cell Biochem Funct 2024; 42:e4017. [PMID: 38603595 DOI: 10.1002/cbf.4017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Chromosomal instability (CIN), caused by errors in the segregation of chromosomes during mitosis, is a hallmark of many types of cancer. The fidelity of chromosome segregation is governed by a sophisticated cellular signaling network, one crucial orchestrator of which is Heterochromatin protein 1 (HP1). HP1 dynamically localizes to distinct sites at various stages of mitosis, where it regulates key mitotic events ranging from chromosome-microtubule attachment to sister chromatid cohesion to cytokinesis. Our evolving comprehension of HP1's multifaceted role has positioned it as a central protein in the orchestration of mitotic processes.
Collapse
Affiliation(s)
- Zexian Ding
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Lei Peng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Jinghua Zeng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Kejia Yuan
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Yan Tang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Qi Yi
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
5
|
Shawky MM, Abdallah M, Khalifa H, Aboushady Y, Abadi AH, Engel M, Abdel-Halim M. Synthesis and evaluation of novel N1-acylated 5-(4-pyridinyl)indazole derivatives as potent and selective haspin inhibitors. Bioorg Chem 2024; 145:107235. [PMID: 38447464 DOI: 10.1016/j.bioorg.2024.107235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
Protein kinase dysregulation was strongly linked to cancer pathogenesis. Moreover, histone alterations were found to be among the most important post-translational modifications that could contribute to cancer growth and development. In this context, haspin, an atypical serine/threonine kinase, phosphorylates histone H3 at threonine-3 and is notably overexpressed in various common cancer types. Herein, we report novel 5-(4-pyridinyl)indazole derivatives as potent and selective haspin inhibitors. Amide coupling at N1 of the indazole ring with m-hydroxyphenyl acetic acid yielded compound 21 with an IC50 value of 78 nM against haspin. This compound showed a meaningful selectivity over 15 of the most common off-targets, including Clk 1-3 and Dyrk1A, 1B, and 2. The most potent haspin inhibitors 5 and 21 effectively inhibited the growth of the NCI-60 cancer cell lines, further emphasizing the success of our scaffold as a new selective lead for the development of anti-cancer therapeutic agents.
Collapse
Affiliation(s)
- Mona M Shawky
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Mennatallah Abdallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Hend Khalifa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Youssef Aboushady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany.
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.
| |
Collapse
|
6
|
Quadri R, Rotondo G, Sertic S, Pozzi S, dell’Oca MC, Guerrini L, Muzi-Falconi M. A Haspin-ARHGAP11A axis regulates epithelial morphogenesis through Rho-ROCK dependent modulation of LIMK1-Cofilin. iScience 2023; 26:108011. [PMID: 37841592 PMCID: PMC10570125 DOI: 10.1016/j.isci.2023.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/20/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Throughout mitosis, a plethora of processes must be efficiently concerted to ensure cell proliferation and tissue functionality. The mitotic spindle does not only mediate chromosome segregation, but also defines the axis of cellular division, thus determining tissue morphology. Functional spindle orientation relies on precise actin dynamics, shaped in mitosis by the LIMK1-Cofilin axis. The kinase Haspin acts as a guardian of faithful chromosome segregation that ensures amphitelic chromosome attachment and prevents unscheduled cohesin cleavage. Here, we report an unprecedented role for Haspin in the determination of spindle orientation in mitosis. We show that, during mitosis, Haspin regulates Rho-ROCK activity through ARHGAP11A, a poorly characterized GAP, and that ROCK is in turn responsible for the mitotic activation of LIMK1 and stabilization of the actin cytoskeleton, thus supporting a functional spindle orientation. By exploiting 3D cell cultures, we show that this pathway is pivotal for the establishment of a morphologically functional tissue.
Collapse
Affiliation(s)
- Roberto Quadri
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Giuseppe Rotondo
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Sarah Sertic
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Sara Pozzi
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | | | - Luisa Guerrini
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Marco Muzi-Falconi
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
7
|
Gómez R, Viera A, Moreno-Mármol T, Berenguer I, Guajardo-Grence A, Tóth A, Parra MT, Suja JA. Kinase PLK1 regulates the disassembly of the lateral elements and the assembly of the inner centromere during the diakinesis/metaphase I transition in male mouse meiosis. Front Cell Dev Biol 2023; 10:1069946. [PMID: 36733339 PMCID: PMC9887526 DOI: 10.3389/fcell.2022.1069946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
PLK1 is a serine/threonine kinase with crucial roles during mitosis. However, its involvement during mammalian male meiosis remains largely unexplored. By inhibiting the kinase activity of PLK1 using BI 2536 on organotypic cultures of seminiferous tubules, we found that the disassembly of SYCP3 and HORMAD1 from the lateral elements of the synaptonemal complex during diakinesis is impeded. We also found that the normal recruitment of SYCP3 and HORMAD1 to the inner centromere in prometaphase I spermatocytes did not occur. Additionally, we analyzed the participation of PLK1 in the assembly of the inner centromere by studying its implication in the Bub1-H2AT120ph-dependent recruitment of shugoshin SGO2, and the Haspin-H3T3ph-dependent recruitment of Aurora B/C and Borealin. Our results indicated that both pathways are regulated by PLK1. Altogether, our results demonstrate that PLK1 is a master regulator of the late prophase I/metaphase I transition in mouse spermatocytes.
Collapse
Affiliation(s)
- Rocío Gómez
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain,*Correspondence: Rocío Gómez, ; José A. Suja,
| | - Alberto Viera
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Tania Moreno-Mármol
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Inés Berenguer
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain,Departamento de Neuropatología Molecular, Centro de Biología Molecular Severo Ochoa, Campus de la Universidad Autónoma de Madrid, Madrid, Spain
| | - Andrea Guajardo-Grence
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain,Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Attila Tóth
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - María Teresa Parra
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - José A. Suja
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain,*Correspondence: Rocío Gómez, ; José A. Suja,
| |
Collapse
|
8
|
Liu Y, Yang H, Fang Y, Xing Y, Pang X, Li Y, Zhang Y, Liu Y. Function and inhibition of Haspin kinase: targeting multiple cancer therapies by antimitosis. J Pharm Pharmacol 2022; 75:445-465. [PMID: 36334086 DOI: 10.1093/jpp/rgac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
Abstract
Objectives
Haploid germ cell-specific nuclear protein kinase (Haspin) is a serine/threonine kinase as an atypical kinase, which is structurally distinct from conventional protein kinases.
Key findings
Functionally, Haspin is involved in important cell cycle progression, particularly in critical mitosis regulating centromeric sister chromatid cohesion during prophase and prometaphase, and subsequently ensuring proper chromosome alignment during metaphase and the normal chromosome segregation during anaphase. However, increasing evidence has demonstrated that Haspin is significantly upregulated in a variety of cancer cells in addition to normal proliferating somatic cells. Its knockdown or small molecule inhibition could prevent cancer cell growth and induce apoptosis by disrupting the regular mitotic progression. Given the specificity of its expressed tissues or cells and the uniqueness of its current known substrate, Haspin can be a promising target against cancer. Consequently, selective synthetic and natural inhibitors of Haspin have been widely developed to determine their inhibitory power for various cancer cells in vivo and in vitro.
Summary
Here our perspective includes a comprehensive review of the roles and structure of Haspin, its relatively potent and selective inhibitors and Haspin’s preliminary studies in a variety of cancers.
Collapse
Affiliation(s)
- Yongjian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yongsheng Fang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yantao Xing
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Xinxin Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yuanyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
9
|
Abstract
Virtually all cell types have the same DNA, yet each type exhibits its own cell-specific pattern of gene expression. During the brief period of mitosis, the chromosomes exhibit changes in protein composition and modifications, a marked condensation, and a consequent reduction in transcription. Yet as cells exit mitosis, they reactivate their cell-specific programs with high fidelity. Initially, the field focused on the subset of transcription factors that are selectively retained in, and hence bookmark, chromatin in mitosis. However, recent studies show that many transcription factors can be retained in mitotic chromatin and that, surprisingly, such retention can be due to nonspecific chromatin binding. Here, we review the latest studies focusing on low-level transcription via promoters, rather than enhancers, as contributing to mitotic memory, as well as new insights into chromosome structure dynamics, histone modifications, cell cycle signaling, and nuclear envelope proteins that together ensure the fidelity of gene expression through a round of mitosis.
Collapse
Affiliation(s)
- Kenji Ito
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | | |
Collapse
|
10
|
Dissecting the roles of Haspin and VRK1 in histone H3 phosphorylation during mitosis. Sci Rep 2022; 12:11210. [PMID: 35778595 PMCID: PMC9249732 DOI: 10.1038/s41598-022-15339-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Protein kinases that phosphorylate histones are ideally-placed to influence the behavior of chromosomes during cell division. Indeed, a number of conserved histone phosphorylation events occur prominently during mitosis and meiosis in most eukaryotes, including on histone H3 at threonine-3 (H3T3ph). At least two kinases, Haspin and VRK1 (NHK-1/ballchen in Drosophila), have been proposed to carry out this modification. Phosphorylation of H3 by Haspin has defined roles in mitosis, but the significance of VRK1 activity towards histones in dividing cells has been unclear. Here, using in vitro kinase assays, KiPIK screening, RNA interference, and CRISPR/Cas9 approaches, we were unable to substantiate a direct role for VRK1, or its paralogue VRK2, in the phosphorylation of threonine-3 or serine-10 of Histone H3 in mitosis, although loss of VRK1 did slow cell proliferation. We conclude that the role of VRKs, and their more recently identified association with neuromuscular disease and importance in cancers of the nervous system, are unlikely to involve mitotic histone kinase activity. In contrast, Haspin is required to generate H3T3ph during mitosis.
Collapse
|
11
|
I B, López-Jiménez P, Mena I, Viera A, Page J, González-Martínez J, Maestre C, Malumbres M, Suja JA, Gómez R. Haspin participates in AURKB recruitment to centromeres and contributes to chromosome congression in male mouse meiosis. J Cell Sci 2022; 135:275954. [PMID: 35694956 DOI: 10.1242/jcs.259546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
Chromosome segregation requires that centromeres properly attach to spindle microtubules. This essential step regulates the accuracy of cell division and therefore must be precisely regulated. One of the main centromeric regulatory signaling pathways is the Haspin-H3T3ph-chromosomal passenger complex (CPC) cascade, which is responsible for the recruitment of the CPC to the centromeres. In mitosis, Haspin kinase phosphorylates histone H3 at threonine 3 (H3T3ph), an essential epigenetic mark that recruits the CPC, whose catalytic component is Aurora B kinase. However, the centromeric Haspin-H3T3ph-CPC pathway remains largely uncharacterized in mammalian male meiosis. We have analyzed Haspin functions by either its chemical inhibition in cultured spermatocytes using LDN-192960, or the ablation of Haspin gene in Haspin-/-. Our studies suggest that Haspin kinase activity is required for proper chromosome congression during both meiotic divisions and for the recruitment of Aurora B and kinesin MCAK to meiotic centromeres. However, the absence of H3T3ph histone mark does not alter Borealin and SGO2 centromeric localization. These results add new and relevant information regarding the regulation of the Haspin-H3T3ph-CPC pathway and centromere function during meiosis.
Collapse
Affiliation(s)
- Berenguer I
- Cell Biology Unit, Department of Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - P López-Jiménez
- Cell Biology Unit, Department of Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - I Mena
- Cell Biology Unit, Department of Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - A Viera
- Cell Biology Unit, Department of Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - J Page
- Cell Biology Unit, Department of Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - J González-Martínez
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), 29029 Madrid, Spain
| | - C Maestre
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), 29029 Madrid, Spain
| | - M Malumbres
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), 29029 Madrid, Spain
| | - J A Suja
- Cell Biology Unit, Department of Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - R Gómez
- Cell Biology Unit, Department of Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| |
Collapse
|
12
|
Macaraeg J, Reinhard I, Ward M, Carmeci D, Stanaway M, Moore A, Hagmann E, Brown K, Wynne DJ. Genetic analysis of C. elegans Haspin-like genes shows that hasp-1 plays multiple roles in the germline. Biol Open 2022; 11:275645. [PMID: 35678140 PMCID: PMC9277076 DOI: 10.1242/bio.059277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
Haspin is a histone kinase that promotes error-free chromosome segregation by recruiting the Chromosomal Passenger Complex (CPC) to mitotic and meiotic chromosomes. Haspin remains less well studied than other M-phase kinases and the models explaining Haspin function have been developed primarily in mitotic cells. Here, we generate strains containing new conditional or nonsense mutations in the C. elegans Haspin homologs hasp-1 and hasp-2 and characterize their phenotypes. We show that hasp-1 is responsible for all predicted functions of Haspin and that loss of function of hasp-1 using classical and conditional alleles produces defects in germline stem cell proliferation, spermatogenesis, and confirms its role in oocyte meiosis. Genetic analysis suggests hasp-1 acts downstream of the Polo-like kinase plk-2 and shows synthetic interactions between hasp-1 and two genes expected to promote recruitment of the CPC by a parallel pathway that depends on the kinase Bub1. This work adds to the growing understanding of Haspin function by characterizing a variety of roles in an intact animal.
Collapse
Affiliation(s)
- Jommel Macaraeg
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| | - Isaac Reinhard
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| | - Matthew Ward
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| | - Danielle Carmeci
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| | - Madison Stanaway
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| | - Amy Moore
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| | - Ethan Hagmann
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| | - Katherine Brown
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| | - David J Wynne
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| |
Collapse
|
13
|
Roles and regulation of Haspin kinase and its impact on carcinogenesis. Cell Signal 2022; 93:110303. [DOI: 10.1016/j.cellsig.2022.110303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/15/2023]
|
14
|
Menon DU, Kirsanov O, Geyer CB, Magnuson T. Mammalian SWI/SNF chromatin remodeler is essential for reductional meiosis in males. Nat Commun 2021; 12:6581. [PMID: 34772938 PMCID: PMC8589837 DOI: 10.1038/s41467-021-26828-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
The mammalian SWI/SNF nucleosome remodeler is essential for spermatogenesis. Here, we identify a role for ARID2, a PBAF (Polybromo - Brg1 Associated Factor)-specific subunit, in meiotic division. Arid2cKO spermatocytes arrest at metaphase-I and are deficient in spindle assembly, kinetochore-associated Polo-like kinase1 (PLK1), and centromeric targeting of Histone H3 threonine3 phosphorylation (H3T3P) and Histone H2A threonine120 phosphorylation (H2AT120P). By determining ARID2 and BRG1 genomic associations, we show that PBAF localizes to centromeres and promoters of genes known to govern spindle assembly and nuclear division in spermatocytes. Consistent with gene ontology of target genes, we also identify a role for ARID2 in centrosome stability. Additionally, misexpression of genes such as Aurkc and Ppp1cc (Pp1γ), known to govern chromosome segregation, potentially compromises the function of the chromosome passenger complex (CPC) and deposition of H3T3P, respectively. Our data support a model where-in PBAF activates genes essential for meiotic cell division.
Collapse
Affiliation(s)
- Debashish U Menon
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, USA
| | - Oleksandr Kirsanov
- Department of Anatomy & Cell Biology at the Brody School of Medicine, East Carolina University, Greenville, NC, 27858, USA
| | - Christopher B Geyer
- Department of Anatomy & Cell Biology at the Brody School of Medicine, East Carolina University, Greenville, NC, 27858, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27858, USA
| | - Terry Magnuson
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, USA.
| |
Collapse
|
15
|
Hong J, Gwon D, Jang CY. Ginsenoside Rg1 suppresses cancer cell proliferation through perturbing mitotic progression. J Ginseng Res 2021; 46:481-488. [PMID: 35600766 PMCID: PMC9120780 DOI: 10.1016/j.jgr.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 10/27/2022] Open
|
16
|
Phosphorylation of H3-Thr3 by Haspin Is Required for Primary Cilia Regulation. Int J Mol Sci 2021; 22:ijms22147753. [PMID: 34299370 PMCID: PMC8307231 DOI: 10.3390/ijms22147753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/19/2023] Open
Abstract
Primary cilia are commonly found on most quiescent, terminally differentiated cells and play a major role in the regulation of the cell cycle, cell motility, sensing, and cell–cell communication. Alterations in ciliogenesis and cilia maintenance are causative of several human diseases, collectively known as ciliopathies. A key determinant of primary cilia is the histone deacetylase HDAC6, which regulates their length and resorption and whose distribution is regulated by the death inducer-obliterator 3 (Dido3). Here, we report that the atypical protein kinase Haspin is a key regulator of cilia dynamics. Cells defective in Haspin activity exhibit longer primary cilia and a strong delay in cilia resorption upon cell cycle reentry. We show that Haspin is active in quiescent cells, where it phosphorylates threonine 3 of histone H3, a known mitotic Haspin substrate. Forcing Dido3 detachment from the chromatin prevents Haspin inhibition from impacting cilia dynamics, suggesting that Haspin activity is required for the relocalization of Dido3–HDAC6 to the basal body. Exploiting the zebrafish model, we confirmed the physiological relevance of this mechanism. Our observations shed light on a novel player, Haspin, in the mechanisms that govern the determination of cilia length and the homeostasis of mature cilia.
Collapse
|
17
|
Galli M, Diani L, Quadri R, Nespoli A, Galati E, Panigada D, Plevani P, Muzi-Falconi M. Haspin Modulates the G2/M Transition Delay in Response to Polarization Failures in Budding Yeast. Front Cell Dev Biol 2021; 8:625717. [PMID: 33585466 PMCID: PMC7876276 DOI: 10.3389/fcell.2020.625717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 01/25/2023] Open
Abstract
Symmetry breaking by cellular polarization is an exquisite requirement for the cell-cycle of Saccharomyces cerevisiae cells, as it allows bud emergence and growth. This process is based on the formation of polarity clusters at the incipient bud site, first, and the bud tip later in the cell-cycle, that overall promote bud emission and growth. Given the extreme relevance of this process, a surveillance mechanism, known as the morphogenesis checkpoint, has evolved to coordinate the formation of the bud and cell cycle progression, delaying mitosis in the presence of morphogenetic problems. The atypical protein kinase haspin is responsible for histone H3-T3 phosphorylation and, in yeast, for resolution of polarity clusters in mitosis. Here, we report a novel role for haspin in the regulation of the morphogenesis checkpoint in response to polarity insults. Particularly, we show that cells lacking the haspin ortholog Alk1 fail to achieve sustained checkpoint activation and enter mitosis even in the absence of a bud. In alk1Δ cells, we report a reduced phosphorylation of Cdc28-Y19, which stems from a premature activation of the Mih1 phosphatase. Overall, the data presented in this work define yeast haspin as a novel regulator of the morphogenesis checkpoint in Saccharomyces cerevisiae, where it monitors polarity establishment and it couples bud emergence to the G2/M cell cycle transition.
Collapse
Affiliation(s)
- Martina Galli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Laura Diani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Alessandro Nespoli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Elena Galati
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Davide Panigada
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Paolo Plevani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
18
|
Huang Y, Liu Y, Zhu K, Ma X, Lu R, Zhang M. GSG2 Promotes Development and Predicts Poor Prognosis of Ovarian Cancer. Cancer Manag Res 2021; 13:499-508. [PMID: 33500663 PMCID: PMC7826093 DOI: 10.2147/cmar.s274807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022] Open
Abstract
Purpose Ovarian cancer is one of the most common malignant tumors in gynecology, whose treatment was seriously limited by the unclear understanding of molecular mechanism in disease development. GSG2, also known as Haspin, is a novel molecule found to be involved in human cancers. Materials and Methods In this study, immunohistochemical analysis was used to detect GSG2 expression in ovarian cancer tissues and corresponding normal tissues. Statistical analysis was performed to construct relationship between GSG2 and tumor characteristics as well as prognosis. Ovarian cell model with GSG2 knockdown was constructed through lentivirus-mediated transfection of shRNA, which was used in MTT assay, colony formation assay and flow cytometry for investigating the role of GSG2 in ovarian cancer. A human apoptosis antibody array was used to identify potential downstream apoptosis-related proteins of GSG2. Results The results demonstrated the upregulation of GSG2 in ovarian cancer, whose expression was positively related to tumor grade and AJCC stage, and negatively correlated with patients’ prognosis. Moreover, knockdown of GSG2 inhibited ovarian cancer development through suppressing cell growth and inducing cell apoptosis. Further exploration revealed that a variety of apoptosis-related and PI3K signaling pathway-related proteins may be implicated in the GSG2 induced regulation of ovarian cancer. Conclusion In summary, it was illustrated that GSG2 was involved in the development of ovarian cancer, which has the potential to become therapeutic target and prognostic indicator in ovarian cancer treatment.
Collapse
Affiliation(s)
- Yan Huang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yixuan Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People's Republic of China
| | - Keyu Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People's Republic of China
| | - Xiaolu Ma
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People's Republic of China
| | - Renquan Lu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People's Republic of China
| | - Meiqin Zhang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Cunningham CE, MacAuley MJ, Vizeacoumar FS, Abuhussein O, Freywald A, Vizeacoumar FJ. The CINs of Polo-Like Kinase 1 in Cancer. Cancers (Basel) 2020; 12:cancers12102953. [PMID: 33066048 PMCID: PMC7599805 DOI: 10.3390/cancers12102953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Many alterations specific to cancer cells have been investigated as targets for targeted therapies. Chromosomal instability is a characteristic of nearly all cancers that can limit response to targeted therapies by ensuring the tumor population is not genetically homogenous. Polo-like Kinase 1 (PLK1) is often up regulated in cancers and it regulates chromosomal instability extensively. PLK1 has been the subject of much pre-clinical and clinical studies, but thus far, PLK1 inhibitors have not shown significant improvement in cancer patients. We discuss the numerous roles and interactions of PLK1 in regulating chromosomal instability, and how these may provide an avenue for identifying targets for targeted therapies. As selective inhibitors of PLK1 showed limited clinical success, we also highlight how genetic interactions of PLK1 may be exploited to tackle these challenges. Abstract Polo-like kinase 1 (PLK1) is overexpressed near ubiquitously across all cancer types and dysregulation of this enzyme is closely tied to increased chromosomal instability and tumor heterogeneity. PLK1 is a mitotic kinase with a critical role in maintaining chromosomal integrity through its function in processes ranging from the mitotic checkpoint, centrosome biogenesis, bipolar spindle formation, chromosome segregation, DNA replication licensing, DNA damage repair, and cytokinesis. The relation between dysregulated PLK1 and chromosomal instability (CIN) makes it an attractive target for cancer therapy. However, clinical trials with PLK1 inhibitors as cancer drugs have generally displayed poor responses or adverse side-effects. This is in part because targeting CIN regulators, including PLK1, can elevate CIN to lethal levels in normal cells, affecting normal physiology. Nevertheless, aiming at related genetic interactions, such as synthetic dosage lethal (SDL) interactions of PLK1 instead of PLK1 itself, can help to avoid the detrimental side effects associated with increased levels of CIN. Since PLK1 overexpression contributes to tumor heterogeneity, targeting SDL interactions may also provide an effective strategy to suppressing this malignant phenotype in a personalized fashion.
Collapse
Affiliation(s)
- Chelsea E. Cunningham
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Mackenzie J. MacAuley
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Frederick S. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Omar Abuhussein
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Franco J. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
- Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| |
Collapse
|
20
|
Fresán U, Rodríguez-Sánchez MA, Reina O, Corces VG, Espinàs ML. Haspin kinase modulates nuclear architecture and Polycomb-dependent gene silencing. PLoS Genet 2020; 16:e1008962. [PMID: 32750047 PMCID: PMC7428214 DOI: 10.1371/journal.pgen.1008962] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 08/14/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Haspin, a highly conserved kinase in eukaryotes, has been shown to be responsible for phosphorylation of histone H3 at threonine 3 (H3T3ph) during mitosis, in mammals and yeast. Here we report that haspin is the kinase that phosphorylates H3T3 in Drosophila melanogaster and it is involved in sister chromatid cohesion during mitosis. Our data reveal that haspin also phosphorylates H3T3 in interphase. H3T3ph localizes in broad silenced domains at heterochromatin and lamin-enriched euchromatic regions. Loss of haspin compromises insulator activity in enhancer-blocking assays and triggers a decrease in nuclear size that is accompanied by changes in nuclear envelope morphology. We show that haspin is a suppressor of position-effect variegation involved in heterochromatin organization. Our results also demonstrate that haspin is necessary for pairing-sensitive silencing and it is required for robust Polycomb-dependent homeotic gene silencing. Haspin associates with the cohesin complex in interphase, mediates Pds5 binding to chromatin and cooperates with Pds5-cohesin to modify Polycomb-dependent homeotic transformations. Therefore, this study uncovers an unanticipated role for haspin kinase in genome organization of interphase cells and demonstrates that haspin is required for homeotic gene regulation.
Collapse
Affiliation(s)
- Ujué Fresán
- Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Barcelona, Spain
- Institute for Research in Biomedicine IRB, Barcelona, Spain
| | | | - Oscar Reina
- Bioinformatics and Biostatistics Unit, Institute for Research in Biomedicine IRB, Barcelona, Spain
| | - Victor G. Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - M. Lluisa Espinàs
- Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Barcelona, Spain
- Institute for Research in Biomedicine IRB, Barcelona, Spain
| |
Collapse
|
21
|
Pandey N, Keifenheim D, Yoshida MM, Hassebroek VA, Soroka C, Azuma Y, Clarke DJ. Topoisomerase II SUMOylation activates a metaphase checkpoint via Haspin and Aurora B kinases. J Cell Biol 2020; 219:jcb.201807189. [PMID: 31712254 PMCID: PMC7039214 DOI: 10.1083/jcb.201807189] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 07/17/2019] [Accepted: 10/03/2019] [Indexed: 12/17/2022] Open
Abstract
To prevent chromosome missegregation, a metaphase checkpoint is activated when topoisomerase II is catalytically inhibited and DNA catenations persist. Pandey et al. dissect the key molecular events triggering this regulatory system. Topoisomerase II (Topo II) is essential for mitosis since it resolves sister chromatid catenations. Topo II dysfunction promotes aneuploidy and drives cancer. To protect from aneuploidy, cells possess mechanisms to delay anaphase onset when Topo II is perturbed, providing additional time for decatenation. Molecular insight into this checkpoint is lacking. Here we present evidence that catalytic inhibition of Topo II, which activates the checkpoint, leads to SUMOylation of the Topo II C-terminal domain (CTD). This modification triggers mobilization of Aurora B kinase from inner centromeres to kinetochore proximal centromeres and the core of chromosome arms. Aurora B recruitment accompanies histone H3 threonine-3 phosphorylation and requires Haspin kinase. Strikingly, activation of the checkpoint depends both on Haspin and Aurora B. Moreover, mutation of the conserved CTD SUMOylation sites perturbs Aurora B recruitment and checkpoint activation. The data indicate that SUMOylated Topo II recruits Aurora B to ectopic sites, constituting the molecular trigger of the metaphase checkpoint when Topo II is catalytically inhibited.
Collapse
Affiliation(s)
- Nootan Pandey
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Daniel Keifenheim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN
| | | | | | - Caitlin Soroka
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Duncan J Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN
| |
Collapse
|
22
|
Chen Y, Fu D, Zhao H, Cheng W, Xu F. GSG2 (Haspin) promotes development and progression of bladder cancer through targeting KIF15 (Kinase-12). Aging (Albany NY) 2020; 12:8858-8879. [PMID: 32439830 PMCID: PMC7288960 DOI: 10.18632/aging.103005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/09/2020] [Indexed: 01/22/2023]
Abstract
Bladder cancer is the most commonly diagnosed malignant tumor in urological system worldwide. The relationship between GSG2 and bladder cancer has not been demonstrated and remains unclear. In this study, it was demonstrated that GSG2 was up-regulated in bladder cancer tissues compared with the normal tissues and its high expression was correlated with more advanced malignant grade and lower survival rate. Further investigations indicated that the overexpression/knockdown of GSG2 could promote/inhibit proliferation, colony formation and migration of bladder cancer cells, while inhibiting/promoting cell apoptosis. Moreover, knockdown of GSG2 could also suppress tumorigenicity of bladder cancer cells in vivo. RNA-sequencing followed by Ingenuity pathway analysis (IPA) was performed for exploring downstream of GSG2 and identified KIF15 as the potential target. Furthermore, our study revealed that knockdown of KIF15 could inhibit development of bladder cancer in vitro, and alleviate the GSG2 overexpression induced promotion of bladder cancer. In conclusion, our study showed, as the first time, GSG2 as a prognostic indicator and tumor promotor for bladder cancer, whose function was carried out probably through the regulation of KIF15.
Collapse
Affiliation(s)
- Yuhao Chen
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
| | - Dian Fu
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
| | - Hai Zhao
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
| | - Wen Cheng
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
| | - Feng Xu
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
| |
Collapse
|
23
|
Huang M, Feng X, Su D, Wang G, Wang C, Tang M, Paulucci-Holthauzen A, Hart T, Chen J. Genome-wide CRISPR screen uncovers a synergistic effect of combining Haspin and Aurora kinase B inhibition. Oncogene 2020; 39:4312-4322. [PMID: 32300176 PMCID: PMC7291820 DOI: 10.1038/s41388-020-1296-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022]
Abstract
Aurora kinases are a family of serine/threonine kinases vital for cell division. Because of the overexpression of Aurora kinases in a broad range of cancers and their important roles in mitosis, inhibitors targeting Aurora kinases have attracted attention in cancer therapy. VX-680 is an effective pan-Aurora kinase inhibitor; however, its clinical efficacy was not satisfying. In this study, we performed CRISPR/Cas9 screens to identify genes whose depletion shows synthetic lethality with VX-680. The top hit from these screens was GSG2 (also known as Haspin), a serine/threonine kinase that phosphorylates histone H3 at Thr-3 during mitosis. Moreover, both Haspin knockout and Haspin inhibitor-treated HCT116 cells were hypersensitive to VX-680. Furthermore, we showed that the synthetic lethal interaction between Haspin depletion and VX-680 was mediated by the inhibition of Haspin with Aurora kinase B (AURKB), but not with Aurora kinase A (AURKA). Strikingly, combined inhibition of Haspin and AURKB had a better efficacy than single-agent treatment in both head and neck squamous cell carcinoma and non-small cell lung cancer. Taken together, our findings have uncovered a synthetic lethal interaction between AURKB and Haspin, which provides a strong rationale for this combination therapy for cancer patients.
Collapse
Affiliation(s)
- Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gang Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Feizbakhsh O, Pontheaux F, Glippa V, Morales J, Ruchaud S, Cormier P, Roch F. A Peak of H3T3 Phosphorylation Occurs in Synchrony with Mitosis in Sea Urchin Early Embryos. Cells 2020; 9:cells9040898. [PMID: 32272587 PMCID: PMC7226724 DOI: 10.3390/cells9040898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
The sea urchin embryo provides a valuable system to analyse the molecular mechanisms orchestrating cell cycle progression and mitosis in a developmental context. However, although it is known that the regulation of histone activity by post-translational modification plays an important role during cell division, the dynamics and the impact of these modifications have not been characterised in detail in a developing embryo. Using different immuno-detection techniques, we show that the levels of Histone 3 phosphorylation at Threonine 3 oscillate in synchrony with mitosis in Sphaerechinus granularis early embryos. We present, in addition, the results of a pharmacological study aimed at analysing the role of this key histone post-translational modification during sea urchin early development.
Collapse
|
25
|
Watson NA, Cartwright TN, Lawless C, Cámara-Donoso M, Sen O, Sako K, Hirota T, Kimura H, Higgins JMG. Kinase inhibition profiles as a tool to identify kinases for specific phosphorylation sites. Nat Commun 2020; 11:1684. [PMID: 32245944 PMCID: PMC7125195 DOI: 10.1038/s41467-020-15428-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/06/2020] [Indexed: 01/08/2023] Open
Abstract
There are thousands of known cellular phosphorylation sites, but the paucity of ways to identify kinases for particular phosphorylation events remains a major roadblock for understanding kinase signaling. To address this, we here develop a generally applicable method that exploits the large number of kinase inhibitors that have been profiled on near-kinome-wide panels of protein kinases. The inhibition profile for each kinase provides a fingerprint that allows identification of unknown kinases acting on target phosphosites in cell extracts. We validate the method on diverse known kinase-phosphosite pairs, including histone kinases, EGFR autophosphorylation, and Integrin β1 phosphorylation by Src-family kinases. We also use our approach to identify the previously unknown kinases responsible for phosphorylation of INCENP at a site within a commonly phosphorylated motif in mitosis (a non-canonical target of Cyclin B-Cdk1), and of BCL9L at S915 (PKA). We show that the method has clear advantages over in silico and genetic screening.
Collapse
Affiliation(s)
- Nikolaus A Watson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Tyrell N Cartwright
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Conor Lawless
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Marcos Cámara-Donoso
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Onur Sen
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Kosuke Sako
- The Cancer Institute, Japanese Foundation for Cancer Research, Koto, Tokyo, 135-8550, Japan
| | - Toru Hirota
- The Cancer Institute, Japanese Foundation for Cancer Research, Koto, Tokyo, 135-8550, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
26
|
Kim S, Kim NH, Park JE, Hwang JW, Myung N, Hwang KT, Kim YA, Jang CY, Kim YK. PRMT6-mediated H3R2me2a guides Aurora B to chromosome arms for proper chromosome segregation. Nat Commun 2020; 11:612. [PMID: 32001712 PMCID: PMC6992762 DOI: 10.1038/s41467-020-14511-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/10/2020] [Indexed: 11/09/2022] Open
Abstract
The kinase Aurora B forms the chromosomal passenger complex (CPC) together with Borealin, INCENP, and Survivin to mediate chromosome condensation, the correction of erroneous spindle-kinetochore attachments, and cytokinesis. Phosphorylation of histone H3 Thr3 by Haspin kinase and of histone H2A Thr120 by Bub1 concentrates the CPC at the centromere. However, how the CPC is recruited to chromosome arms upon mitotic entry is unknown. Here, we show that asymmetric dimethylation at Arg2 on histone H3 (H3R2me2a) by protein arginine methyltransferase 6 (PRMT6) recruits the CPC to chromosome arms and facilitates histone H3S10 phosphorylation by Aurora B for chromosome condensation. Furthermore, in vitro assays show that Aurora B preferentially binds to the H3 peptide containing H3R2me2a and phosphorylates H3S10. Our findings indicate that the long-awaited key histone mark for CPC recruitment onto mitotic chromosomes is H3R2me2a, which is indispensable for maintaining appropriate CPC levels in dynamic translocation throughout mitosis. The proteins of the chromosomal passenger complex help chromosomes condense before cell division, but how this complex arrives at chromosomes was not known. Here the authors show that PRMT6 methylates histone H3 to recruit the chromosomal passenger complex.
Collapse
Affiliation(s)
- Seul Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Nam Hyun Kim
- Department of Pharmacology, College of Medicine, Catholic Kwandong University, Gangneung, 25601, Republic of Korea
| | - Ji Eun Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jee Won Hwang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Nayeon Myung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Ki-Tae Hwang
- Department of Surgery, Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Young A Kim
- Department of Pathology, Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Chang-Young Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Yong Kee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
27
|
Manzione MG, Rombouts J, Steklov M, Pasquali L, Sablina A, Gelens L, Qian J, Bollen M. Co-regulation of the antagonistic RepoMan:Aurora-B pair in proliferating cells. Mol Biol Cell 2020; 31:419-438. [PMID: 31967936 PMCID: PMC7185888 DOI: 10.1091/mbc.e19-12-0698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chromosome segregation during mitosis is antagonistically regulated by the Aurora-B kinase and RepoMan (recruits PP1 onto mitotic chromatin at anaphase)-associated phosphatases PP1/PP2A. Aurora B is overexpressed in many cancers but, surprisingly, this only rarely causes lethal aneuploidy. Here we show that RepoMan abundance is regulated by the same mechanisms that control Aurora B, including FOXM1-regulated expression and proteasomal degradation following ubiquitination by APC/C-CDH1 or SCFFBXW7. The deregulation of these mechanisms can account for the balanced co-overexpression of Aurora B and RepoMan in many cancers, which limits chromosome segregation errors. In addition, Aurora B and RepoMan independently promote cancer cell proliferation by reducing checkpoint-induced cell-cycle arrest during interphase. The co–up-regulation of RepoMan and Aurora B in tumors is inversely correlated with patient survival, underscoring its potential importance for tumor progression. Finally, we demonstrate that high RepoMan levels sensitize cancer cells to Aurora-B inhibitors. Hence, the co–up-regulation of RepoMan and Aurora B is associated with tumor aggressiveness but also exposes a vulnerable target for therapeutic intervention.
Collapse
Affiliation(s)
| | - Jan Rombouts
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Mikhail Steklov
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Lorenzo Pasquali
- Dermatology and Venereology Section, Department of Medicine Solna, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Anna Sablina
- Department of Oncology, KU Leuven, B-3000 Leuven, Belgium.,VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Junbin Qian
- Laboratory of Biosignaling & Therapeutics, KU Leuven, B-3000 Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium.,VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
28
|
Wang P, Hua X, Bryner YH, Liu S, Gitter CB, Dai J. Haspin inhibition delays cell cycle progression through interphase in cancer cells. J Cell Physiol 2019; 235:4508-4519. [PMID: 31625162 DOI: 10.1002/jcp.29328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/30/2019] [Indexed: 01/11/2023]
Abstract
Haspin (Haploid Germ Cell-Specific Nuclear Protein Kinase) is a serine/threonine kinase pertinent to normal mitosis progression and mitotic phosphorylation of histone H3 at threonine 3 in mammalian cells. Different classes of small molecule inhibitors of haspin have been developed and utilized to investigate its mitotic functions. We report herein that applying haspin inhibitor CHR-6494 or 5-ITu at the G1/S boundary could delay mitotic entry in synchronized HeLa and U2OS cells, respectively, following an extended G2 or the S phase. Moreover, late application of haspin inhibitors at S/G2 boundary is sufficient to delay mitotic onset in both cell lines, thereby, indicating a direct effect of haspin on G2/M transition. A prolonged interphase duration is also observed with knockdown of haspin expression in synchronized and asynchronous cells. These results suggest that haspin can regulate cell cycle progression at multiple stages at both interphase and mitosis.
Collapse
Affiliation(s)
- Peiling Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| | - Xiangmei Hua
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| | - Yuge Han Bryner
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| | - Sijing Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Christopher B Gitter
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| | - Jun Dai
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
29
|
Hayward D, Alfonso-Pérez T, Gruneberg U. Orchestration of the spindle assembly checkpoint by CDK1-cyclin B1. FEBS Lett 2019; 593:2889-2907. [PMID: 31469407 DOI: 10.1002/1873-3468.13591] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
In mitosis, the spindle assembly checkpoint (SAC) monitors the formation of microtubule-kinetochore attachments during capture of chromosomes by the mitotic spindle. Spindle assembly is complete once there are no longer any unattached kinetochores. Here, we will discuss the mechanism and key components of spindle checkpoint signalling. Unattached kinetochores bind the principal spindle checkpoint kinase monopolar spindle 1 (MPS1). MPS1 triggers the recruitment of other spindle checkpoint proteins and the formation of a soluble inhibitor of anaphase, thus preventing exit from mitosis. On microtubule attachment, kinetochores become checkpoint silent due to the actions of PP2A-B56 and PP1. This SAC responsive period has to be coordinated with mitotic spindle formation to ensure timely mitotic exit and accurate chromosome segregation. We focus on the molecular mechanisms by which the SAC permissive state is created, describing a central role for CDK1-cyclin B1 and its counteracting phosphatase PP2A-B55. Furthermore, we discuss how CDK1-cyclin B1, through its interaction with MAD1, acts as an integral component of the SAC, and actively orchestrates checkpoint signalling and thus contributes to the faithful execution of mitosis.
Collapse
Affiliation(s)
- Daniel Hayward
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | |
Collapse
|
30
|
Hayward D, Alfonso-Pérez T, Cundell MJ, Hopkins M, Holder J, Bancroft J, Hutter LH, Novak B, Barr FA, Gruneberg U. CDK1-CCNB1 creates a spindle checkpoint-permissive state by enabling MPS1 kinetochore localization. J Cell Biol 2019; 218:1182-1199. [PMID: 30674582 PMCID: PMC6446832 DOI: 10.1083/jcb.201808014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/19/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
Spindle checkpoint signaling is initiated by recruitment of the kinase MPS1 to unattached kinetochores during mitosis. We show that CDK1-CCNB1 and a counteracting phosphatase PP2A-B55 regulate the engagement of human MPS1 with unattached kinetochores by controlling the phosphorylation status of S281 in the kinetochore-binding domain. This regulation is essential for checkpoint signaling, since MPS1S281A is not recruited to unattached kinetochores and fails to support the recruitment of other checkpoint proteins. Directly tethering MPS1S281A to the kinetochore protein Mis12 bypasses this regulation and hence the requirement for S281 phosphorylation in checkpoint signaling. At the metaphase-anaphase transition, MPS1 S281 dephosphorylation is delayed because PP2A-B55 is negatively regulated by CDK1-CCNB1 and only becomes fully active once CCNB1 concentration falls below a characteristic threshold. This mechanism prolongs the checkpoint-responsive period when MPS1 can localize to kinetochores and enables a response to late-stage spindle defects. By acting together, CDK1-CCNB1 and PP2A-B55 thus create a spindle checkpoint-permissive state and ensure the fidelity of mitosis.
Collapse
Affiliation(s)
- Daniel Hayward
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, England, UK
| | - Tatiana Alfonso-Pérez
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, England, UK
| | - Michael J Cundell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, England, UK
| | - Michael Hopkins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, England, UK
| | - James Holder
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, England, UK
| | - James Bancroft
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, England, UK
| | - Lukas H Hutter
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, England, UK
| | - Bela Novak
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, England, UK
| | - Francis A Barr
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, England, UK
| | - Ulrike Gruneberg
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, England, UK
| |
Collapse
|
31
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
32
|
Qi F, Chen Q, Chen H, Yan H, Chen B, Xiang X, Liang C, Yi Q, Zhang M, Cheng H, Zhang Z, Huang J, Wang F. WAC Promotes Polo-like Kinase 1 Activation for Timely Mitotic Entry. Cell Rep 2018; 24:546-556. [PMID: 30021153 DOI: 10.1016/j.celrep.2018.06.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/22/2018] [Accepted: 06/20/2018] [Indexed: 12/26/2022] Open
Abstract
The key mitotic regulator Polo-like kinase 1 (Plk1) is activated during G2 phase by Aurora A kinase (AurkA)-mediated phosphorylation of its activation loop, which is important for timely mitotic entry. The mechanism for Plk1 activation remains incompletely understood. Here, we report that the activation of Plk1 requires WAC, a WW domain-containing adaptor protein with a coiled-coil region that predominantly localizes to the nucleus in interphase. Cyclin-dependent kinase 1 (Cdk1) phosphorylates WAC, priming its direct interaction with the polo-box domain of Plk1. Knockdown of WAC compromises Plk1 activity and delays mitotic entry. These defects are rescued by exogenous expression of wild-type WAC, but not the Plk1-binding-deficient mutant. WAC also binds AurkA and can enhance Plk1 phosphorylation by AurkA in vitro. Taken together, these results indicate an important role for WAC in promoting Plk1 activation and the timely entry into mitosis.
Collapse
Affiliation(s)
- Feifei Qi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qinfu Chen
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Hongxia Chen
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Yan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Binbin Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingfeng Xiang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Cai Liang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qi Yi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Miao Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Hankun Cheng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Zhenlei Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Fangwei Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
33
|
Saurin AT. Kinase and Phosphatase Cross-Talk at the Kinetochore. Front Cell Dev Biol 2018; 6:62. [PMID: 29971233 PMCID: PMC6018199 DOI: 10.3389/fcell.2018.00062] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/31/2018] [Indexed: 01/26/2023] Open
Abstract
Multiple kinases and phosphatases act on the kinetochore to control chromosome segregation: Aurora B, Mps1, Bub1, Plk1, Cdk1, PP1, and PP2A-B56, have all been shown to regulate both kinetochore-microtubule attachments and the spindle assembly checkpoint. Given that so many kinases and phosphatases converge onto two key mitotic processes, it is perhaps not surprising to learn that they are, quite literally, entangled in cross-talk. Inhibition of any one of these enzymes produces secondary effects on all the others, which results in a complicated picture that is very difficult to interpret. This review aims to clarify this picture by first collating the direct effects of each enzyme into one overarching schematic of regulation at the Knl1/Mis12/Ndc80 (KMN) network (a major signaling hub at the outer kinetochore). This schematic will then be used to discuss the implications of the cross-talk that connects these enzymes; both in terms of why it may be needed to produce the right type of kinetochore signals and why it nevertheless complicates our interpretations about which enzymes control what processes. Finally, some general experimental approaches will be discussed that could help to characterize kinetochore signaling by dissociating the direct from indirect effect of kinase or phosphatase inhibition in vivo. Together, this review should provide a framework to help understand how a network of kinases and phosphatases cooperate to regulate two key mitotic processes.
Collapse
Affiliation(s)
- Adrian T. Saurin
- Jacqui Wood Cancer Centre, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
34
|
Raab M, Sanhaji M, Matthess Y, Hörlin A, Lorenz I, Dötsch C, Habbe N, Waidmann O, Kurunci-Csacsko E, Firestein R, Becker S, Strebhardt K. PLK1 has tumor-suppressive potential in APC-truncated colon cancer cells. Nat Commun 2018; 9:1106. [PMID: 29549256 PMCID: PMC5856809 DOI: 10.1038/s41467-018-03494-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
The spindle assembly checkpoint (SAC) acts as a molecular safeguard in ensuring faithful chromosome transmission during mitosis, which is regulated by a complex interplay between phosphatases and kinases including PLK1. Adenomatous polyposis coli (APC) germline mutations cause aneuploidy and are responsible for familial adenomatous polyposis (FAP). Here we study the role of PLK1 in colon cancer cells with chromosomal instability promoted by APC truncation (APC-ΔC). The expression of APC-ΔC in colon cells reduces the accumulation of mitotic cells upon PLK1 inhibition, accelerates mitotic exit and increases the survival of cells with enhanced chromosomal abnormalities. The inhibition of PLK1 in mitotic, APC-∆C-expressing cells reduces the kinetochore levels of Aurora B and hampers the recruitment of SAC component suggesting a compromised mitotic checkpoint. Furthermore, Plk1 inhibition (RNAi, pharmacological compounds) promotes the development of adenomatous polyps in two independent Apc Min/+ mouse models. High PLK1 expression increases the survival of colon cancer patients expressing a truncated APC significantly.
Collapse
Affiliation(s)
- Monika Raab
- Department of Gynecology, Goethe-University, 60590, Frankfurt, Germany
| | - Mourad Sanhaji
- Department of Gynecology, Goethe-University, 60590, Frankfurt, Germany
| | - Yves Matthess
- Department of Gynecology, Goethe-University, 60590, Frankfurt, Germany
- German Cancer Consortium (DKTK)/ German Cancer Research Center, 69120, Heidelberg, Germany
| | - Albrecht Hörlin
- Institute of Pathology at the Department of Pathology, Goethe-University, 60590, Frankfurt, Germany
| | - Ioana Lorenz
- Department of Gynecology, Goethe-University, 60590, Frankfurt, Germany
| | - Christina Dötsch
- Department of Gynecology, Goethe-University, 60590, Frankfurt, Germany
| | - Nils Habbe
- Department of General and Visceral Surgery, Goethe-University, 60590, Frankfurt, Germany
| | - Oliver Waidmann
- Department of Gastroenterology and Hepatology, Goethe-University, 60590, Frankfurt, Germany
| | | | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, AU 31681, Australia
- Department of Molecular Translational Medicine, Monash University, Clayton, VIC, 3800, Australia
| | - Sven Becker
- Department of Gynecology, Goethe-University, 60590, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, 60590, Frankfurt, Germany.
- German Cancer Consortium (DKTK)/ German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
35
|
Hindriksen S, Lens SMA, Hadders MA. The Ins and Outs of Aurora B Inner Centromere Localization. Front Cell Dev Biol 2017; 5:112. [PMID: 29312936 PMCID: PMC5743930 DOI: 10.3389/fcell.2017.00112] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/04/2017] [Indexed: 01/12/2023] Open
Abstract
Error-free chromosome segregation is essential for the maintenance of genomic integrity during cell division. Aurora B, the enzymatic subunit of the Chromosomal Passenger Complex (CPC), plays a crucial role in this process. In early mitosis Aurora B localizes predominantly to the inner centromere, a specialized region of chromatin that lies at the crossroads between the inter-kinetochore and inter-sister chromatid axes. Two evolutionarily conserved histone kinases, Haspin and Bub1, control the positioning of the CPC at the inner centromere and this location is thought to be crucial for the CPC to function. However, recent studies sketch a subtler picture, in which not all functions of the CPC require strict confinement to the inner centromere. In this review we discuss the molecular pathways that direct Aurora B to the inner centromere and deliberate if and why this specific localization is important for Aurora B function.
Collapse
Affiliation(s)
- Sanne Hindriksen
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Susanne M A Lens
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Michael A Hadders
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
36
|
Dumitru AMG, Rusin SF, Clark AEM, Kettenbach AN, Compton DA. Cyclin A/Cdk1 modulates Plk1 activity in prometaphase to regulate kinetochore-microtubule attachment stability. eLife 2017; 6:e29303. [PMID: 29154753 PMCID: PMC5706962 DOI: 10.7554/elife.29303] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022] Open
Abstract
The fidelity of chromosome segregation in mitosis is safeguarded by the precise regulation of kinetochore microtubule (k-MT) attachment stability. Previously, we demonstrated that Cyclin A/Cdk1 destabilizes k-MT attachments to promote faithful chromosome segregation. Here, we use quantitative phosphoproteomics to identify 156 Cyclin A/Cdk1 substrates in prometaphase. One Cyclin A/Cdk1 substrate is myosin phosphatase targeting subunit 1 (MYPT1), and we show that MYPT1 localization to kinetochores depends on Cyclin A/Cdk1 activity and that MYPT1 destabilizes k-MT attachments by negatively regulating Plk1 at kinetochores. Thus, Cyclin A/Cdk1 phosphorylation primes MYPT1 for Plk1 binding. Interestingly, priming of PBIP1 by Plk1 itself (self-priming) increased in MYPT1-depleted cells showing that MYPT1 provides a molecular link between the processes of Cdk1-dependent priming and self-priming of Plk1 substrates. These data demonstrate cross-regulation between Cyclin A/Cdk1-dependent and Plk1-dependent phosphorylation of substrates during mitosis to ensure efficient correction of k-MT attachment errors necessary for high mitotic fidelity.
Collapse
Affiliation(s)
- Ana Maria G Dumitru
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Scott F Rusin
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Amber E M Clark
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Duane A Compton
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| |
Collapse
|
37
|
Li X, Nai S, Ding Y, Geng Q, Zhu B, Yu K, Zhu WG, Dong MQ, Su XD, Xu X, Li J. Polo-like kinase 1 (PLK1)-dependent phosphorylation of methylenetetrahydrofolate reductase (MTHFR) regulates replication via histone methylation. Cell Cycle 2017; 16:1933-1942. [PMID: 28820331 PMCID: PMC5638376 DOI: 10.1080/15384101.2017.1363942] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/30/2017] [Indexed: 01/12/2023] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme regulating the folate cycle and its genetic variations have been associated with various human diseases. Previously we identified that MTHFR is phosphorylated by cyclin-dependent kinase 1 (CDK1) at T34 and MTHFR underlies heterochromatin maintenance marked by H3K9me3 levels. Herein we demonstrate that pT34 creates a binding motif that docks MTHFR to the polo-binding domain (PBD) of polo-like kinase 1 (PLK1), a fundamental kinase that orchestrates many cell cycle events. We show that PLK1 phosphorylates MTHFR at T549 in vitro and in vivo. Further, we uncovered a role of MTHFR in replication. First, MTHFR depletion increased the fraction of cells in S phase. This defect could not be rescued by siRNA resistant plasmids harboring T549A, but could be restored by overproduction of Suv4-20H2, the H4K20 methyltransferase. Moreover, siMTHFR attenuated H4K20me3 levels, which could be rescued by Suv4-20H2 overproduction. More importantly, we also investigated MTHFR-E429A, the protein product of an MTHFR single nucleotide variant. MTHFR-E429A overexpression also increased S phase cells and decreased H4K20me3 levels, and it is linked to a poor glioma prognosis in the Chinese population. Collectively, we have unveiled a vital role of PLK1-dependent phosphorylation of MTHFR in replication via histone methylation, and implicate folate metabolism with glioma.
Collapse
Affiliation(s)
- Xueyan Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Shanshan Nai
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Yuehe Ding
- National Institute of Biological Sciences, Beijing, China
| | - Qizhi Geng
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Bingtao Zhu
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Kai Yu
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Xiao-Dong Su
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
38
|
Combes G, Alharbi I, Braga LG, Elowe S. Playing polo during mitosis: PLK1 takes the lead. Oncogene 2017; 36:4819-4827. [PMID: 28436952 DOI: 10.1038/onc.2017.113] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/18/2022]
Abstract
Polo-like kinase 1 (PLK1), the prototypical member of the polo-like family of serine/threonine kinases, is a pivotal regulator of mitosis and cytokinesis in eukaryotes. Many layers of regulation have evolved to target PLK1 to different subcellular structures and to its various mitotic substrates in line with its numerous functions during mitosis. Collective work is starting to illuminate an important set of substrates for PLK1: the mitotic kinases that together ensure the fidelity of the cell division process. Amongst these, recent developments argue that PLK1 regulates the activity of the histone kinases Aurora B and Haspin to define centromere identity, of MPS1 to initiate spindle checkpoint signaling, and of BUB1 and its pseudokinase paralog BUBR1 to coordinate spindle checkpoint activation and inactivation. Here, we review the recent work describing the regulation of these kinases by PLK1. We highlight common themes throughout and argue that a major mitotic function of PLK1 is as a master regulator of these key kinases.
Collapse
Affiliation(s)
- G Combes
- Program in Molecular and Cellular biology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Axe of Reproduction, Mother and Youth Health, CHU de Québec Research Centre, Quebec City, Quebec, Canada
| | - I Alharbi
- Program in Molecular and Cellular biology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Axe of Reproduction, Mother and Youth Health, CHU de Québec Research Centre, Quebec City, Quebec, Canada
| | - L G Braga
- Program in Molecular and Cellular biology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Axe of Reproduction, Mother and Youth Health, CHU de Québec Research Centre, Quebec City, Quebec, Canada
| | - S Elowe
- Program in Molecular and Cellular biology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Axe of Reproduction, Mother and Youth Health, CHU de Québec Research Centre, Quebec City, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
39
|
TH2A is phosphorylated at meiotic centromere by Haspin. Chromosoma 2017; 126:769-780. [PMID: 28803373 DOI: 10.1007/s00412-017-0638-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/26/2017] [Accepted: 07/17/2017] [Indexed: 01/06/2023]
Abstract
Histone phosphorylation is sometimes associated with mitosis and meiosis. We have recently identified a phosphorylation of the 127th threonine on TH2A (pTH2A), a germ cell-specific H2A variant, in condensed spermatids and mitotic early preimplantation embryos of mice. Here, we further report the existence of pTH2A at the centromeres in metaphase I spermatocytes and oocytes. Moreover, we identified Haspin, a known kinase for the 3rd threonine on H3, is responsible for pTH2A in vivo. In contrast to the severe meiotic defect in oocytes treated with a Haspin inhibitor, pTH2A-deficient mice, in which the 127th threonine was replaced by alanine, maintained the fertility and exhibited no obvious defect in both oocytes and spermatogenesis. Interestingly, pTH2A was significantly decreased in aged oocytes, suggesting that its accumulation is regulated by centromeric cohesins. Collectively, our study proposes a new set of kinase-histone pair at meiotic centromere, which is highly coordinated during meiosis.
Collapse
|
40
|
Zhou L, Liang C, Chen Q, Zhang Z, Zhang B, Yan H, Qi F, Zhang M, Yi Q, Guan Y, Xiang X, Zhang X, Ye S, Wang F. The N-Terminal Non-Kinase-Domain-Mediated Binding of Haspin to Pds5B Protects Centromeric Cohesion in Mitosis. Curr Biol 2017; 27:992-1004. [PMID: 28343965 DOI: 10.1016/j.cub.2017.02.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 12/18/2022]
Abstract
Sister-chromatid cohesion, mediated by the multi-subunit cohesin complex, must be precisely regulated to prevent chromosome mis-segregation. In prophase and prometaphase, whereas the bulk of cohesin on chromosome arms is removed by its antagonist Wapl, cohesin at centromeres is retained to ensure chromosome biorientation until anaphase onset. It remains incompletely understood how centromeric cohesin is protected against Wapl in mitosis. Here we show that the mitotic histone kinase Haspin binds to the cohesin regulatory subunit Pds5B through a conserved YGA/R motif in its non-catalytic N terminus, which is similar to the recently reported YSR-motif-dependent binding of Wapl to Pds5B. Knockout of Haspin or disruption of Haspin-Pds5B interaction causes weakened centromeric cohesion and premature chromatid separation, which can be reverted by centromeric targeting of a N-terminal short fragment of Haspin containing the Pds5B-binding motif or by prevention of Wapl-dependent cohesin removal. Conversely, excessive Haspin capable of binding Pds5B displaces Wapl from Pds5B and suppresses Wapl activity, and it largely bypasses the Wapl antagonist Sgo1 for cohesion protection. Taken together, these data indicate that the Haspin-Pds5B interaction is required to ensure proper sister-chromatid cohesion, most likely through antagonizing Wapl-mediated cohesin release from mitotic centromeres.
Collapse
Affiliation(s)
- Linli Zhou
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Cai Liang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qinfu Chen
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Zhenlei Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Bo Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Yan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Feifei Qi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Miao Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qi Yi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Youchen Guan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xingfeng Xiang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Sheng Ye
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Fangwei Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
41
|
Abstract
The mitotic spindle has a crucial role in ensuring the accurate segregation of chromosomes into the two daughter cells during cell division, which is paramount for maintaining genome integrity. It is a self-organized and dynamic macromolecular structure that is constructed from microtubules, microtubule-associated proteins and motor proteins. Thirty years of research have led to the identification of centrosome-, chromatin- and microtubule-mediated microtubule nucleation pathways that each contribute to mitotic spindle assembly. Far from being redundant pathways, data are now emerging regarding how they function together to ensure the timely completion of mitosis. We are also beginning to comprehend the multiple mechanisms by which cells regulate spindle scaling. Together, this research has increased our understanding of how cells coordinate hundreds of proteins to assemble the dynamic, precise and robust structure that is the mitotic spindle.
Collapse
|
42
|
Aurora-A promotes the establishment of spindle assembly checkpoint by priming the Haspin-Aurora-B feedback loop in late G2 phase. Cell Discov 2017; 3:16049. [PMID: 28101375 PMCID: PMC5223110 DOI: 10.1038/celldisc.2016.49] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
Aurora-A kinase functions mainly in centrosome maturation, separation and spindle formation. It has also been found to be amplified or overexpressed in a range of solid tumors, which is linked with tumor progression and poor prognosis. Importantly, Aurora-A inhibitors are being studied in a number of ongoing clinical trials. However, whether and how Aurora-A has a role in the regulation of the mitotic checkpoint is controversial. Additionally, the function of nuclear-accumulated Aurora-A in late G2 phase is not clear. Here we show that knockout, inhibition or blockade of the nuclear entry of Aurora-A severely decreased the centromere localization of Aurora-B and the phosphorylation of histone H3 threonine 3 (H3T3-ph) mediated by the kinase Haspin in late G2 phase. We further reveal that nuclear-accumulated Aurora-A phosphorylates Haspin at multiple sites at its N-terminus and that this promotes H3T3-ph and the rapid recruitment to the centromere of the chromosomal passenger complex. In addition, Aurora-A facilitates the association of Aurora-B with their common substrates: Haspin and Plk1. Notably, these functions of Aurora-A are mostly independent of Plk1. Thus we demonstrate that, in late G2 and prophase, Aurora-A phosphorylates Haspin to trigger the Haspin-H3T3-ph-Aurora-B positive feedback loop that supports the timely establishment of the chromosomal passenger complex and the mitotic checkpoint before spindle assembly.
Collapse
|
43
|
Manic G, Corradi F, Sistigu A, Siteni S, Vitale I. Molecular Regulation of the Spindle Assembly Checkpoint by Kinases and Phosphatases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:105-161. [PMID: 28069132 DOI: 10.1016/bs.ircmb.2016.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism contributing to the preservation of genomic stability by monitoring the microtubule attachment to, and/or the tension status of, each kinetochore during mitosis. The SAC halts metaphase to anaphase transition in the presence of unattached and/or untensed kinetochore(s) by releasing the mitotic checkpoint complex (MCC) from these improperly-oriented kinetochores to inhibit the anaphase-promoting complex/cyclosome (APC/C). The reversible phosphorylation of a variety of substrates at the kinetochore by antagonistic kinases and phosphatases is one major signaling mechanism for promptly turning on or turning off the SAC. In such a complex network, some kinases act at the apex of the SAC cascade by either generating (monopolar spindle 1, MPS1/TTK and likely polo-like kinase 1, PLK1), or contributing to generate (Aurora kinase B) kinetochore phospho-docking sites for the hierarchical recruitment of the SAC proteins. Aurora kinase B, MPS1 and budding uninhibited by benzimidazoles 1 (BUB1) also promote sister chromatid biorientation by modulating kinetochore microtubule stability. Moreover, MPS1, BUB1, and PLK1 seem to play key roles in APC/C inhibition by mechanisms dependent and/or independent on MCC assembly. The protein phosphatase 1 and 2A (PP1 and PP2A) are recruited to kinetochores to oppose kinase activity. These phosphatases reverse the phosphorylation of kinetochore targets promoting the microtubule attachment stabilization, sister kinetochore biorientation and SAC silencing. The kinase-phosphatase network is crucial as it renders the SAC a dynamic, graded-signaling, high responsive, and robust process thereby ensuring timely anaphase onset and preventing the generation of proneoplastic aneuploidy.
Collapse
Affiliation(s)
- G Manic
- Regina Elena National Cancer Institute, Rome, Italy.
| | - F Corradi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - A Sistigu
- Regina Elena National Cancer Institute, Rome, Italy
| | - S Siteni
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Roma Tre", Rome, Italy
| | - I Vitale
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
44
|
Duan H, Wang C, Wang M, Gao X, Yan M, Akram S, Peng W, Zou H, Wang D, Zhou J, Chu Y, Dou Z, Barrett G, Green HN, Wang F, Tian R, He P, Wang W, Liu X, Yao X. Phosphorylation of PP1 Regulator Sds22 by PLK1 Ensures Accurate Chromosome Segregation. J Biol Chem 2016; 291:21123-21136. [PMID: 27557660 PMCID: PMC5076521 DOI: 10.1074/jbc.m116.745372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/22/2016] [Indexed: 11/06/2022] Open
Abstract
During cell division, accurate chromosome segregation is tightly regulated by Polo-like kinase 1 (PLK1) and opposing activities of Aurora B kinase and protein phosphatase 1 (PP1). However, the regulatory mechanisms underlying the aforementioned hierarchical signaling cascade during mitotic chromosome segregation have remained elusive. Sds22 is a conserved regulator of PP1 activity, but how it regulates PP1 activity in space and time during mitosis remains elusive. Here we show that Sds22 is a novel and cognate substrate of PLK1 in mitosis, and the phosphorylation of Sds22 by PLK1 elicited an inhibition of PP1-mediated dephosphorylation of Aurora B at threonine 232 (Thr232) in a dose-dependent manner. Overexpression of a phosphomimetic mutant of Sds22 causes a dramatic increase in mitotic delay, whereas overexpression of a non-phosphorylatable mutant of Sds22 results in mitotic arrest. Mechanistically, the phosphorylation of Sds22 by PLK1 strengthens the binding of Sds22 to PP1 and inhibits the dephosphorylation of Thr232 of Aurora B to ensure a robust, error-free metaphase-anaphase transition. These findings delineate a conserved signaling hierarchy that orchestrates dynamic protein phosphorylation and dephosphorylation of critical mitotic regulators during chromosome segregation to guard chromosome stability.
Collapse
Affiliation(s)
- Hequan Duan
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China, the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310
| | - Chunli Wang
- the National Chromatographic Research and Analysis Center, Chinesse Academy of Sciences, Dalian 116023, China
| | - Ming Wang
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Xinjiao Gao
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Maomao Yan
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Saima Akram
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Wei Peng
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Hanfa Zou
- the National Chromatographic Research and Analysis Center, Chinesse Academy of Sciences, Dalian 116023, China
| | - Dong Wang
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Jiajia Zhou
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Youjun Chu
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China, the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310
| | - Zhen Dou
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Gregory Barrett
- the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310
| | - Hadiyah-Nicole Green
- the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310
| | - Fangjun Wang
- the National Chromatographic Research and Analysis Center, Chinesse Academy of Sciences, Dalian 116023, China
| | - Ruijun Tian
- the Guangzhou Women and Children's Medical Center, Guangzhou 510623, China, and the Center of Molecular Proteomics, South University of Science & Technology of China, Shenzhen 518055, China
| | - Ping He
- the Guangzhou Women and Children's Medical Center, Guangzhou 510623, China, and the Center of Molecular Proteomics, South University of Science & Technology of China, Shenzhen 518055, China
| | - Wenwen Wang
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China, the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310,
| | - Xing Liu
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China, the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310,
| | - Xuebiao Yao
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China,
| |
Collapse
|
45
|
Shandilya J, Medler KF, Roberts SGE. Regulation of AURORA B function by mitotic checkpoint protein MAD2. Cell Cycle 2016; 15:2196-2201. [PMID: 27341405 DOI: 10.1080/15384101.2016.1200773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Cell cycle checkpoint signaling stringently regulates chromosome segregation during cell division. MAD2 is one of the key components of the spindle and mitotic checkpoint complex that regulates the fidelity of cell division along with MAD1, CDC20, BUBR1, BUB3 and MAD3. MAD2 ablation leads to erroneous attachment of kinetochore-spindle fibers and defective chromosome separation. A potential role for MAD2 in the regulation of events beyond the spindle and mitotic checkpoints is not clear. Together with active spindle assembly checkpoint signaling, AURORA B kinase activity is essential for chromosome condensation as cells enter mitosis. AURORA B phosphorylates histone H3 at serine 10 and serine 28 to facilitate the formation of condensed metaphase chromosomes. In the absence of functional AURORA B cells escape mitosis despite the presence of misaligned chromosomes. In this study we report that silencing of MAD2 results in a drastic reduction of metaphase-specific histone H3 phosphorylation at serine 10 and serine 28. We demonstrate that this is due to mislocalization of AURORA B in the absence of MAD2. Conversely, overexpression of MAD2 concentrated the localization of AURORA B at the metaphase plate and caused hyper-phosphorylation of histone H3. We find that MAD1 plays a minor role in influencing the MAD2-dependent regulation of AURORA B suggesting that the effects of MAD2 on AURORA B are independent of the spindle checkpoint complex. Our findings reveal that, in addition to its role in checkpoint signaling, MAD2 ensures chromosome stability through the regulation of AURORA B.
Collapse
Affiliation(s)
- Jayasha Shandilya
- a Department of Biological Sciences , University at Buffalo , Buffalo , NY , USA
| | - Kathryn F Medler
- a Department of Biological Sciences , University at Buffalo , Buffalo , NY , USA
| | - Stefan G E Roberts
- a Department of Biological Sciences , University at Buffalo , Buffalo , NY , USA.,b School of Cellular and Molecular Medicine, University of Bristol , Bristol , UK
| |
Collapse
|
46
|
Yoshida MM, Ting L, Gygi SP, Azuma Y. SUMOylation of DNA topoisomerase IIα regulates histone H3 kinase Haspin and H3 phosphorylation in mitosis. J Cell Biol 2016; 213:665-78. [PMID: 27325792 PMCID: PMC4915188 DOI: 10.1083/jcb.201511079] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/06/2016] [Indexed: 01/31/2023] Open
Abstract
DNA topoisomerase II (TOP2) plays a pivotal role in faithful chromosome separation through its strand-passaging activity that resolves tangled genomic DNA during mitosis. Additionally, TOP2 controls progression of mitosis by activating cell cycle checkpoints. Recent work showed that the enzymatically inert C-terminal domain (CTD) of TOP2 and its posttranslational modification are critical to this checkpoint regulation. However, the molecular mechanism has not yet been determined. By using Xenopus laevis egg extract, we found that SUMOylation of DNA topoisomerase IIα (TOP2A) CTD regulates the localization of the histone H3 kinase Haspin and phosphorylation of histone H3 at threonine 3 at the centromere, two steps known to be involved in the recruitment of the chromosomal passenger complex (CPC) to kinetochores in mitosis. Robust centromeric Haspin localization requires SUMOylated TOP2A CTD binding activity through SUMO-interaction motifs and the phosphorylation of Haspin. We propose a novel mechanism through which the TOP2 CTD regulates the CPC via direct interaction with Haspin at mitotic centromeres.
Collapse
Affiliation(s)
- Makoto M Yoshida
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Lily Ting
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
47
|
Kozgunova E, Suzuki T, Ito M, Higashiyama T, Kurihara D. Haspin has Multiple Functions in the Plant Cell Division Regulatory Network. PLANT & CELL PHYSIOLOGY 2016; 57:848-61. [PMID: 26872832 DOI: 10.1093/pcp/pcw030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 02/03/2016] [Indexed: 05/22/2023]
Abstract
Progression of cell division is controlled by various mitotic kinases. In animal cells, phosphorylation of histone H3 at Thr3 by the kinase Haspin (haploid germ cell-specific nuclear protein kinase) promotes centromeric Aurora B localization to regulate chromosome segregation. However, less is known about the function of Haspin in regulatory networks in plant cells. Here, we show that inhibition of Haspin with 5-iodotubercidin (5-ITu) in Bright Yellow-2 (BY-2) cells delayed chromosome alignment. Haspin inhibition also prevented the centromeric localization of Aurora3 kinase (AUR3) and disrupted its function. This suggested that Haspin plays a role in the specific positioning of AUR3 on chromosomes in plant cells, a function conserved in animals. The results also indicated that Haspin and AUR3 are involved in the same pathway, which regulates chromosome alignment during prometaphase/metaphase. Remarkably, Haspin inhibition by 5-ITu also led to a severe cytokinesis defect, resulting in binuclear cells with a partially formed cell plate. The 5-ITu treatment did not affect microtubules, AUR1/2 or the NACK-PQR pathway; however, it did alter the distribution of actin filaments on the cell plate. Together, these results suggested that Haspin has several functions in regulating cell division in plant cells: in the localization of AUR3 on centromeres and in regulating late cell plate expansion during cytokinesis.
Collapse
Affiliation(s)
- Elena Kozgunova
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Matsumoto-cho, Kasugai, Aichi, 478-8501 Japan Higashiyama Live-Holonics Project, ERATO, JST, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Masaki Ito
- Division of Biological Science, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan JST, CREST, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan Higashiyama Live-Holonics Project, ERATO, JST, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Daisuke Kurihara
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan Higashiyama Live-Holonics Project, ERATO, JST, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| |
Collapse
|
48
|
Wynne DJ, Funabiki H. Kinetochore function is controlled by a phospho-dependent coexpansion of inner and outer components. J Cell Biol 2015; 210:899-916. [PMID: 26347137 PMCID: PMC4576862 DOI: 10.1083/jcb.201506020] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is widely accepted that the kinetochore is built on CENP-A-marked centromeric chromatin in a hierarchical order from inner to outer kinetochore. Recruitment of many kinetochore proteins depends on microtubule attachment status, but it remains unclear how their assembly/disassembly is orchestrated. Applying 3D structured illumination microscopy to Xenopus laevis egg extracts, here we reveal that in the absence of microtubule attachment, proteins responsible for lateral attachment and spindle checkpoint signaling expand to form micrometer-scale fibrous structures over CENP-A-free chromatin, whereas a core module responsible for end-on attachment (CENP-A, CENP-T, and Ndc80) does not. Both outer kinetochore proteins (Bub1, BubR1, Mad1, and CENP-E) and the inner kinetochore component CENP-C are integral components of the expandable module, whose assembly depends on multiple mitotic kinases (Aurora B, Mps1, and Plx1) and is suppressed by protein phosphatase 1. We propose that phospho-dependent coexpansion of CENP-C and outer kinetochore proteins promotes checkpoint signal amplification and lateral attachment, whereas their selective disassembly enables the transition to end-on attachment.
Collapse
|
49
|
O'Connor A, Maffini S, Rainey MD, Kaczmarczyk A, Gaboriau D, Musacchio A, Santocanale C. Requirement for PLK1 kinase activity in the maintenance of a robust spindle assembly checkpoint. Biol Open 2015; 5:11-9. [PMID: 26685311 PMCID: PMC4728306 DOI: 10.1242/bio.014969] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During mitotic arrest induced by microtubule targeting drugs, the weakening of the spindle assembly checkpoint (SAC) allows cells to progress through the cell cycle without chromosome segregation occurring. PLK1 kinase plays a major role in mitosis and emerging evidence indicates that PLK1 is also involved in establishing the checkpoint and maintaining SAC signalling. However, mechanistically, the role of PLK1 in the SAC is not fully understood, with several recent reports indicating that it can cooperate with either one of the major checkpoint kinases, Aurora B or MPS1. In this study, we assess the role of PLK1 in SAC maintenance. We find that in nocodazole-arrested U2OS cells, PLK1 activity is continuously required for maintaining Aurora B protein localisation and activity at kinetochores. Consistent with published data we find that upon PLK1 inhibition, phosphoThr3-H3, a marker of Haspin activity, is reduced. Intriguingly, Aurora B inhibition causes PLK1 to relocalise from kinetochores into fewer and much larger foci, possibly due to incomplete recruitment of outer kinetochore proteins. Importantly, PLK1 inhibition, together with partial inhibition of Aurora B, allows efficient SAC override to occur. This phenotype is more pronounced than the phenotype observed by combining the same PLK1 inhibitors with partial MPS1 inhibition. We also find that PLK1 inhibition does not obviously cooperate with Haspin inhibition to promote SAC override. These results indicate that PLK1 is directly involved in maintaining efficient SAC signalling, possibly by cooperating in a positive feedback loop with Aurora B, and that partially redundant mechanisms exist which reinforce the SAC.
Collapse
Affiliation(s)
- Aisling O'Connor
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Stefano Maffini
- Max-Planck Institute of Molecular Physiology, Department of Mechanistic Cell Biology, Dortmund 44227, Germany
| | - Michael D Rainey
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Agnieszka Kaczmarczyk
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - David Gaboriau
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Andrea Musacchio
- Max-Planck Institute of Molecular Physiology, Department of Mechanistic Cell Biology, Dortmund 44227, Germany Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, Essen 45141, Germany
| | - Corrado Santocanale
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
50
|
Qian J, Beullens M, Huang J, De Munter S, Lesage B, Bollen M. Cdk1 orders mitotic events through coordination of a chromosome-associated phosphatase switch. Nat Commun 2015; 6:10215. [PMID: 26674376 PMCID: PMC4703885 DOI: 10.1038/ncomms10215] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/13/2015] [Indexed: 02/08/2023] Open
Abstract
RepoMan is a scaffold for signalling by mitotic phosphatases at the chromosomes. During (pro)metaphase, RepoMan-associated protein phosphatases PP1 and PP2A-B56 regulate the chromosome targeting of Aurora-B kinase and RepoMan, respectively. Here we show that this task division is critically dependent on the phosphorylation of RepoMan by protein kinase Cyclin-dependent kinase 1 (Cdk1), which reduces the binding of PP1 but facilitates the recruitment of PP2A-B56. The inactivation of Cdk1 in early anaphase reverses this phosphatase switch, resulting in the accumulation of PP1-RepoMan to a level that is sufficient to catalyse its own chromosome targeting in a PP2A-independent and irreversible manner. Bulk-targeted PP1-RepoMan also inactivates Aurora B and initiates nuclear-envelope reassembly through dephosphorylation-mediated recruitment of Importin β. Bypassing the Cdk1 regulation of PP1-RepoMan causes the premature dephosphorylation of its mitotic-exit substrates in prometaphase. Hence, the regulation of RepoMan-associated phosphatases by Cdk1 is essential for the timely dephosphorylation of their mitotic substrates. RepoMan is a signalling scaffold for mitotic phosphatases PP1 and PP2A-B56, which regulate targeting of Aurora B and RepoMan respectively, to the chromosomes. Here Qian et al. show that Cdk1 phosphorylates RepoMan to modulate the binding of PP1 and PP2A-B56, contributing to orderly mitotic progression.
Collapse
Affiliation(s)
- Junbin Qian
- Laboratory of Biosignaling &Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 901, Leuven B-3000, Belgium
| | - Monique Beullens
- Laboratory of Biosignaling &Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 901, Leuven B-3000, Belgium
| | - Jin Huang
- Laboratory of Biosignaling &Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 901, Leuven B-3000, Belgium.,Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Sofie De Munter
- Laboratory of Biosignaling &Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 901, Leuven B-3000, Belgium
| | - Bart Lesage
- Laboratory of Biosignaling &Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 901, Leuven B-3000, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling &Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 901, Leuven B-3000, Belgium
| |
Collapse
|