1
|
Iida N, Muranaka Y, Park JW, Sekine S, Copeland NG, Jenkins NA, Shiraishi Y, Oshima M, Takeda H. Sleeping Beauty transposon mutagenesis in mouse intestinal organoids identifies genes involved in tumor progression and metastasis. Cancer Gene Ther 2024; 31:527-536. [PMID: 38177308 DOI: 10.1038/s41417-023-00723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
To identify genes important for colorectal cancer (CRC) development and metastasis, we established a new metastatic mouse organoid model using Sleeping Beauty (SB) transposon mutagenesis. Intestinal organoids derived from mice carrying actively mobilizing SB transposons, an activating KrasG12D, and an inactivating ApcΔ716 allele, were transplanted to immunodeficient mice. While 66.7% of mice developed primary tumors, 7.6% also developed metastatic tumors. Analysis of SB insertion sites in tumors identified numerous candidate cancer genes (CCGs) identified previously in intestinal SB screens performed in vivo, in addition to new CCGs, such as Slit2 and Atxn1. Metastatic tumors from the same mouse were clonally related to each other and to primary tumors, as evidenced by the transposon insertion site. To provide functional validation, we knocked out Slit2, Atxn1, and Cdkn2a in mouse tumor organoids and transplanted to mice. Tumor development was promoted when these gene were knocked out, demonstrating that these are potent tumor suppressors. Cdkn2a knockout cells also metastasized to the liver in 100% of the mice, demonstrating that Cdkn2a loss confers metastatic ability. Our organoid model thus provides a new approach that can be used to understand the evolutionary forces driving CRC metastasis and a rich resource to uncover CCGs promoting CRC.
Collapse
Affiliation(s)
- Naoko Iida
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yukari Muranaka
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kang-won National University, Chuncheon-si, Republic of Korea
| | - Shigeki Sekine
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Neal G Copeland
- Genetics Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy A Jenkins
- Genetics Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
- Nano-Life Science Institute, Kanazawa University, Ishikawa, Japan
| | - Haruna Takeda
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan.
- Cancer genes and genomes unit, Cancer Research Institute, Kanazawa University, Ishikawa, Japan.
| |
Collapse
|
2
|
Myszczyszyn A, Popp O, Kunz S, Sporbert A, Jung S, Penning LC, Fendler A, Mertins P, Birchmeier W. Mice with renal-specific alterations of stem cell-associated signaling develop symptoms of chronic kidney disease but surprisingly no tumors. PLoS One 2024; 19:e0282938. [PMID: 38512983 PMCID: PMC10957084 DOI: 10.1371/journal.pone.0282938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 01/13/2024] [Indexed: 03/23/2024] Open
Abstract
Previously, we found that Wnt and Notch signaling govern stem cells of clear cell kidney cancer (ccRCC) in patients. To mimic stem cell responses in the normal kidney in vitro in a marker-unbiased fashion, we have established tubular organoids (tubuloids) from total single adult mouse kidney epithelial cells in Matrigel and serum-free conditions. Deep proteomic and phosphoproteomic analyses revealed that tubuloids resembled renewal of adult kidney tubular epithelia, since tubuloid cells displayed activity of Wnt and Notch signaling, long-term proliferation and expression of markers of proximal and distal nephron lineages. In our wish to model stem cell-derived human ccRCC, we have generated two types of genetic double kidney mutants in mice: Wnt-β-catenin-GOF together with Notch-GOF and Wnt-β-catenin-GOF together with a most common alteration in ccRCC, Vhl-LOF. An inducible Pax8-rtTA-LC1-Cre was used to drive recombination specifically in adult kidney epithelial cells. We confirmed mutagenesis of β-catenin, Notch and Vhl alleles on DNA, protein and mRNA target gene levels. Surprisingly, we observed symptoms of chronic kidney disease (CKD) in mutant mice, but no increased proliferation and tumorigenesis. Thus, the responses of kidney stem cells in the tubuloid and genetic systems produced different phenotypes, i.e. enhanced renewal versus CKD.
Collapse
Affiliation(s)
- Adam Myszczyszyn
- Cancer Research Program, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Oliver Popp
- Proteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Severine Kunz
- Electron Microscopy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anje Sporbert
- Advanced Light Microscopy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Simone Jung
- Cancer Research Program, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Louis C. Penning
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Annika Fendler
- Cancer Research Program, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Philipp Mertins
- Proteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
3
|
Amodeo V, Davies T, Martinez-Segura A, Clements MP, Ragdale HS, Bailey A, Dos Santos MS, MacRae JI, Mokochinski J, Kramer H, Garcia-Diaz C, Gould AP, Marguerat S, Parrinello S. Diet suppresses glioblastoma initiation in mice by maintaining quiescence of mutation-bearing neural stem cells. Dev Cell 2023; 58:836-846.e6. [PMID: 37084728 PMCID: PMC10618406 DOI: 10.1016/j.devcel.2023.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 12/09/2021] [Accepted: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Glioblastoma is thought to originate from neural stem cells (NSCs) of the subventricular zone that acquire genetic alterations. In the adult brain, NSCs are largely quiescent, suggesting that deregulation of quiescence maintenance may be a prerequisite for tumor initiation. Although inactivation of the tumor suppressor p53 is a frequent event in gliomagenesis, whether or how it affects quiescent NSCs (qNSCs) remains unclear. Here, we show that p53 maintains quiescence by inducing fatty-acid oxidation (FAO) and that acute p53 deletion in qNSCs results in their premature activation to a proliferative state. Mechanistically, this occurs through direct transcriptional induction of PPARGC1a, which in turn activates PPARα to upregulate FAO genes. Dietary supplementation with fish oil containing omega-3 fatty acids, natural PPARα ligands, fully restores quiescence of p53-deficient NSCs and delays tumor initiation in a glioblastoma mouse model. Thus, diet can silence glioblastoma driver mutations, with important implications for cancer prevention.
Collapse
Affiliation(s)
- Valeria Amodeo
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Timothy Davies
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Amalia Martinez-Segura
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Melanie P Clements
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | | | - Andrew Bailey
- The Francis Crick Institute, 1 Midland Road, London NW1 1AA, UK
| | | | - James I MacRae
- The Francis Crick Institute, 1 Midland Road, London NW1 1AA, UK
| | - Joao Mokochinski
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Holger Kramer
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Claudia Garcia-Diaz
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Alex P Gould
- The Francis Crick Institute, 1 Midland Road, London NW1 1AA, UK
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|
4
|
Farouk Sait S, Walsh MF, Karajannis MA. Genetic syndromes predisposing to pediatric brain tumors. Neurooncol Pract 2021; 8:375-390. [PMID: 34277017 DOI: 10.1093/nop/npab012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The application of high-throughput sequencing approaches including paired tumor/normal sampling with therapeutic intent has demonstrated that 8%-19% of pediatric CNS tumor patients harbor a germline alteration in a classical tumor predisposition gene (NF1, P53). In addition, large-scale germline sequencing studies in unselected cohorts of pediatric neuro-oncology patients have demonstrated novel candidate tumor predisposition genes (ELP1 alterations in sonic hedgehog medulloblastoma). Therefore, the possibility of an underlying tumor predisposition syndrome (TPS) should be considered in all pediatric patients diagnosed with a CNS tumor which carries critical implications including accurate prognostication, selection of optimal therapy, screening, risk reduction, and family planning. The Pediatric Cancer Working Group of the American Association for Cancer Research (AACR) recently published consensus screening recommendations for children with the most common TPS. In this review, we provide an overview of the most relevant as well as recently identified TPS associated with the most frequently encountered pediatric CNS tumors with an emphasis on pathogenesis, genetic testing, clinical features, and treatment implications.
Collapse
Affiliation(s)
- Sameer Farouk Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael F Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
5
|
Santin Y, Lluel P, Rischmann P, Gamé X, Mialet-Perez J, Parini A. Cellular Senescence in Renal and Urinary Tract Disorders. Cells 2020; 9:cells9112420. [PMID: 33167349 PMCID: PMC7694377 DOI: 10.3390/cells9112420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular senescence is a state of cell cycle arrest induced by repetitive cell mitoses or different stresses, which is implicated in various physiological or pathological processes. The beneficial or adverse effects of senescent cells depend on their transitory or persistent state. Transient senescence has major beneficial roles promoting successful post-injury repair and inhibiting malignant transformation. On the other hand, persistent accumulation of senescent cells has been associated with chronic diseases and age-related illnesses like renal/urinary tract disorders. The deleterious effects of persistent senescent cells have been related, in part, to their senescence-associated secretory phenotype (SASP) characterized by the release of a variety of factors responsible for chronic inflammation, extracellular matrix adverse remodeling, and fibrosis. Recently, an increase in senescent cell burden has been reported in renal, prostate, and bladder disorders. In this review, we will summarize the molecular mechanisms of senescence and their implication in renal and urinary tract diseases. We will also discuss the differential impacts of transient versus persistent status of cellular senescence, as well as the therapeutic potential of senescent cell targeting in these diseases.
Collapse
Affiliation(s)
- Yohan Santin
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1048—I2MC, 31432 Toulouse, France; (Y.S.); (J.M.-P.)
| | - Philippe Lluel
- Urosphere SAS, Rue des Satellites, 31400 Toulouse, France;
| | - Pascal Rischmann
- Department of Urology, Kidney Transplantation and Andrology, Toulouse Rangueil University Hospital, 31432 Toulouse, France; (P.R.); (X.G.)
| | - Xavier Gamé
- Department of Urology, Kidney Transplantation and Andrology, Toulouse Rangueil University Hospital, 31432 Toulouse, France; (P.R.); (X.G.)
| | - Jeanne Mialet-Perez
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1048—I2MC, 31432 Toulouse, France; (Y.S.); (J.M.-P.)
| | - Angelo Parini
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1048—I2MC, 31432 Toulouse, France; (Y.S.); (J.M.-P.)
- Correspondence: ; Tel.: +33-561325601
| |
Collapse
|
6
|
Choi J, Gong JR, Hwang CY, Joung CY, Lee S, Cho KH. A Systems Biology Approach to Identifying a Master Regulator That Can Transform the Fast Growing Cellular State to a Slowly Growing One in Early Colorectal Cancer Development Model. Front Genet 2020; 11:570546. [PMID: 33133158 PMCID: PMC7579420 DOI: 10.3389/fgene.2020.570546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/10/2020] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) has been most extensively studied for characterizing genetic mutations along its development. However, we still have a poor understanding of CRC initiation due to limited measures of its observation and analysis. If we can unveil CRC initiation events, we might identify novel prognostic markers and therapeutic targets for early cancer detection and prevention. To tackle this problem, we establish the early CRC development model and perform transcriptome analysis of its single cell RNA-sequencing data. Interestingly, we find two subtypes, fast growing vs. slowly growing populations of distinct growth rate and gene signatures, and identify CCDC85B as a master regulator that can transform the cellular state of fast growing subtype cells into that of slowly growing subtype cells. We further validate this by in vitro experiments and suggest CCDC85B as a novel potential therapeutic target that may prevent malignant CRC development by suppressing stemness and uncontrolled cell proliferation.
Collapse
Affiliation(s)
- Jihye Choi
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jeong-Ryeol Gong
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Chae Young Hwang
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Chang Young Joung
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Soobeom Lee
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
7
|
Rooney N, Mason SM, McDonald L, Däbritz JHM, Campbell KJ, Hedley A, Howard S, Athineos D, Nixon C, Clark W, Leach JDG, Sansom OJ, Edwards J, Cameron ER, Blyth K. RUNX1 Is a Driver of Renal Cell Carcinoma Correlating with Clinical Outcome. Cancer Res 2020; 80:2325-2339. [PMID: 32156779 DOI: 10.1158/0008-5472.can-19-3870] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 11/16/2022]
Abstract
The recurring association of specific genetic lesions with particular types of cancer is a fascinating and largely unexplained area of cancer biology. This is particularly true of clear cell renal cell carcinoma (ccRCC) where, although key mutations such as loss of VHL is an almost ubiquitous finding, there remains a conspicuous lack of targetable genetic drivers. In this study, we have identified a previously unknown protumorigenic role for the RUNX genes in this disease setting. Analysis of patient tumor biopsies together with loss-of-function studies in preclinical models established the importance of RUNX1 and RUNX2 in ccRCC. Patients with high RUNX1 (and RUNX2) expression exhibited significantly poorer clinical survival compared with patients with low expression. This was functionally relevant, as deletion of RUNX1 in ccRCC cell lines reduced tumor cell growth and viability in vitro and in vivo. Transcriptional profiling of RUNX1-CRISPR-deleted cells revealed a gene signature dominated by extracellular matrix remodeling, notably affecting STMN3, SERPINH1, and EPHRIN signaling. Finally, RUNX1 deletion in a genetic mouse model of kidney cancer improved overall survival and reduced tumor cell proliferation. In summary, these data attest to the validity of targeting a RUNX1-transcriptional program in ccRCC. SIGNIFICANCE: These data reveal a novel unexplored oncogenic role for RUNX genes in kidney cancer and indicate that targeting the effects of RUNX transcriptional activity could be relevant for clinical intervention in ccRCC.
Collapse
Affiliation(s)
- Nicholas Rooney
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Susan M Mason
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Laura McDonald
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - J Henry M Däbritz
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Kirsteen J Campbell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Ann Hedley
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Steven Howard
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Dimitris Athineos
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Colin Nixon
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - William Clark
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Joshua D G Leach
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
| | - Owen J Sansom
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
| | - Ewan R Cameron
- School of Veterinary Medicine, University of Glasgow, Bearsden, Glasgow, United Kingdom
| | - Karen Blyth
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom.
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
| |
Collapse
|
8
|
Fennell LJ, Kane A, Liu C, McKeone D, Fernando W, Su C, Bond C, Jamieson S, Dumenil T, Patch AM, Kazakoff SH, Pearson JV, Waddell N, Leggett B, Whitehall VLJ. APC Mutation Marks an Aggressive Subtype of BRAF Mutant Colorectal Cancers. Cancers (Basel) 2020; 12:E1171. [PMID: 32384699 PMCID: PMC7281581 DOI: 10.3390/cancers12051171] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND WNT activation is a hallmark of colorectal cancer. BRAF mutation is present in 15% of colorectal cancers, and the role of mutations in WNT signaling regulators in this context is unclear. Here, we evaluate the mutational landscape of WNT signaling regulators in BRAF mutant cancers. METHODS we performed exome-sequencing on 24 BRAF mutant colorectal cancers and analyzed these data in combination with 175 publicly available BRAF mutant colorectal cancer exomes. We assessed the somatic mutational landscape of WNT signaling regulators, and performed hotspot and driver mutation analyses to identify potential drivers of WNT signaling. The effects of Apc and Braf mutation were modelled, in vivo, using the Apcmin/+ and BrafV637/Villin-CreERT2/+ mouse, respectively. RESULTS RNF43 was the most frequently mutated WNT signaling regulator (41%). Mutations in the beta-catenin destruction complex occurred in 48% of cancers. Hotspot analyses identified potential cancer driver genes in the WNT signaling cascade, including MEN1, GNG12 and WNT16. Truncating APC mutation was identified in 20.8% of cancers. Truncating APC mutation was associated with early age at diagnosis (p < 2 × 10-5), advanced stage (p < 0.01), and poor survival (p = 0.026). Apcmin/+/BrafV637 animals had more numerous and larger SI and colonic lesions (p < 0.0001 and p < 0.05, respectively), and a markedly reduced survival (median survival: 3.2 months, p = 8.8 × 10-21), compared to animals with Apc or Braf mutation alone. CONCLUSIONS the WNT signaling axis is frequently mutated in BRAF mutant colorectal cancers. WNT16 and MEN1 may be novel drivers of aberrant WNT signaling in colorectal cancer. Co-mutation of BRAF and APC generates an extremely aggressive neoplastic phenotype that is associated with poor patient outcome.
Collapse
Affiliation(s)
- Lochlan J. Fennell
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
| | - Alexandra Kane
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston 4006, Australia
| | - Cheng Liu
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
- Envoi Specialist Pathologists, Queensland 4059, Australia
| | - Diane McKeone
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Winnie Fernando
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Chang Su
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
| | - Catherine Bond
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Saara Jamieson
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Troy Dumenil
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Ann-Marie Patch
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Stephen H. Kazakoff
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - John V. Pearson
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
| | - Barbara Leggett
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
- Department of Gastroenterology and Hepatology, The Royal Brisbane and Women’s Hospital, Queensland 4006, Australia
| | - Vicki L. J. Whitehall
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston 4006, Australia
| |
Collapse
|
9
|
Compensation between Wnt-driven tumorigenesis and cellular responses to ribosome biogenesis inhibition in the murine intestinal epithelium. Cell Death Differ 2020; 27:2872-2887. [PMID: 32355182 DOI: 10.1038/s41418-020-0548-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Ribosome biogenesis inhibition causes cell cycle arrest and apoptosis through the activation of tumor suppressor-dependent surveillance pathways. These responses are exacerbated in cancer cells, suggesting that targeting ribosome synthesis may be beneficial to patients. Here, we characterize the effect of the loss-of-function of Notchless (Nle), an essential actor of ribosome biogenesis, on the intestinal epithelium undergoing tumor initiation due to acute Apc loss-of-function. We show that ribosome biogenesis dysfunction strongly alleviates Wnt-driven tumor initiation by restoring cell cycle exit and differentiation in Apc-deficient progenitors. Conversely Wnt hyperactivation attenuates the cellular responses to surveillance pathways activation induced by ribosome biogenesis dysfunction, as proliferation was maintained at control-like levels in the stem cells and progenitors of double mutants. Thus, our data indicate that, while ribosome biogenesis inhibition efficiently reduces cancer cell proliferation in the intestinal epithelium, enhanced resistance of Apc-deficient stem and progenitor cells to ribosome biogenesis defects may be an important concern when using a therapeutic strategy targeting ribosome production for the treatment of Wnt-dependent tumorigenesis.
Collapse
|
10
|
Fletcher JS, Pundavela J, Ratner N. After Nf1 loss in Schwann cells, inflammation drives neurofibroma formation. Neurooncol Adv 2019; 2:i23-i32. [PMID: 32642730 PMCID: PMC7317060 DOI: 10.1093/noajnl/vdz045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Plexiform neurofibromas (PNF) are peripheral nerve tumors caused by bi-allelic loss of NF1 in the Schwann cell (SC) lineage. PNF are common in individuals with Neurofibromatosis type I (NF1) and can cause significant patient morbidity, spurring research into potential therapies. Immune cells are rare in peripheral nerve, whereas in PNF 30% of the cells are monocytes/macrophages. Mast cells, T cells, and dendritic cells (DCs) are also present. NF1 mutant neurofibroma SCs with elevated Ras-GTP signaling resemble injury-induced repair SCs, in producing growth factors and cytokines not normally present in SCs. This provides a cytokine-rich environment facilitating PNF immune cell recruitment and fibrosis. We propose a model based on genetic and pharmacologic evidence in which, after loss of Nf1 in the SC lineage, a lag occurs. Then, mast cells and macrophages are recruited to nerve. Later, T cell/DC recruitment through CXCL10/CXCR3 drives neurofibroma initiation and sustains PNF macrophages and tumor growth. Stat3 signaling is an additional critical mediator of neurofibroma initiation, cytokine production, and PNF growth. At each stage of PNF development therapeutic benefit should be achievable through pharmacologic modulation of leukocyte recruitment and function.
Collapse
Affiliation(s)
- Jonathan S Fletcher
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jay Pundavela
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
11
|
Bird TG, Müller M, Boulter L, Vincent DF, Ridgway RA, Lopez-Guadamillas E, Lu WY, Jamieson T, Govaere O, Campbell AD, Ferreira-Gonzalez S, Cole AM, Hay T, Simpson KJ, Clark W, Hedley A, Clarke M, Gentaz P, Nixon C, Bryce S, Kiourtis C, Sprangers J, Nibbs RJB, Van Rooijen N, Bartholin L, McGreal SR, Apte U, Barry ST, Iredale JP, Clarke AR, Serrano M, Roskams TA, Sansom OJ, Forbes SJ. TGFβ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Sci Transl Med 2018; 10:eaan1230. [PMID: 30111642 PMCID: PMC6420144 DOI: 10.1126/scitranslmed.aan1230] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 10/04/2017] [Accepted: 03/13/2018] [Indexed: 12/16/2022]
Abstract
Liver injury results in rapid regeneration through hepatocyte proliferation and hypertrophy. However, after acute severe injury, such as acetaminophen poisoning, effective regeneration may fail. We investigated how senescence may underlie this regenerative failure. In human acute liver disease, and murine models, p21-dependent hepatocellular senescence was proportionate to disease severity and was associated with impaired regeneration. In an acetaminophen injury mouse model, a transcriptional signature associated with the induction of paracrine senescence was observed within 24 hours and was followed by one of impaired proliferation. In mouse genetic models of hepatocyte injury and senescence, we observed transmission of senescence to local uninjured hepatocytes. Spread of senescence depended on macrophage-derived transforming growth factor-β1 (TGFβ1) ligand. In acetaminophen poisoning, inhibition of TGFβ receptor 1 (TGFβR1) improved mouse survival. TGFβR1 inhibition reduced senescence and enhanced liver regeneration even when delivered beyond the therapeutic window for treating acetaminophen poisoning. This mechanism, in which injury-induced senescence impairs liver regeneration, is an attractive therapeutic target for developing treatments for acute liver failure.
Collapse
Affiliation(s)
- Thomas G Bird
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK.
- Medical Research Council (MRC) Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH164TJ, UK
| | - Miryam Müller
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Luke Boulter
- Medical Research Council (MRC) Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK
| | | | | | - Elena Lopez-Guadamillas
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Wei-Yu Lu
- Medical Research Council (MRC) Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | | | - Olivier Govaere
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, B-3000 Leuven, Belgium
| | | | - Sofía Ferreira-Gonzalez
- Medical Research Council (MRC) Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Alicia M Cole
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Trevor Hay
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Kenneth J Simpson
- Medical Research Council (MRC) Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - William Clark
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Mairi Clarke
- Institute for Infection Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Pauline Gentaz
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Steven Bryce
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Christos Kiourtis
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Joep Sprangers
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Robert J B Nibbs
- Institute for Infection Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Nico Van Rooijen
- Vrije Universiteit Medical Center, Department of Molecular Cell Biology, Van der Boechorststraat 7, 1081 BT Amsterdam, Netherlands
| | - Laurent Bartholin
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Lyon I University UMR S 1052, 69373 Lyon Cedex 08, France
| | - Steven R McGreal
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Simon T Barry
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge CB2 0AA, UK
| | - John P Iredale
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH164TJ, UK
- University of Bristol, Senate House, Tyndall Avenue, Bristol BS8 1TH, UK
| | - Alan R Clarke
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| | - Manuel Serrano
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, and Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Tania A Roskams
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Stuart J Forbes
- Medical Research Council (MRC) Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH164TJ, UK
| |
Collapse
|
12
|
The Rac1 splice form Rac1b favors mouse colonic mucosa regeneration and contributes to intestinal cancer progression. Oncogene 2018; 37:6054-6068. [PMID: 29985482 DOI: 10.1038/s41388-018-0389-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/08/2023]
Abstract
We previously have identified the ectopic expression of Rac1b, an activated and novel splice variant of Rac1, in a subset of human colorectal adenocarcinomas, as well as in inflammatory bowel diseases and in colitis mouse model. Rac1b overexpression has been further evidenced in breast, pancreatic, thyroid, ovarian, and lung cancers. In this context, the aim of our study was to investigate the physiopathological implications of Rac1b in intestinal inflammation and carcinogenesis in vivo. The ectopic expression of Rac1b was induced in mouse intestinal epithelial cells after crossing Rosa26-LSL-Rac1b and villin-Cre mice. These animals were let to age or were challenged with dextran sulfate sodium (DSS) to induce experimental colitis, or either received azoxymethane (AOM)/DSS treatment, or were bred with ApcMin/+ or Il10-/- mice to trigger intestinal tumors. Rac1b ectopic expression increased the intestinal epithelial cell proliferation and migration, enhanced the production of reactive oxygen species, and promoted the Paneth cell lineage. Although Rac1b overexpression alone was not sufficient to drive intestinal neoplasia, it enhanced Apc-dependent intestinal tumorigenesis. In the context of Il10 knockout, the Rac1b transgene strengthened colonic inflammation due to induced intestinal mucosa permeability and promoted cecum and proximal colon carcinogenesis. In contrast, Rac1b alleviated carcinogen/acute inflammation-associated colon carcinogenesis (AOM/DSS). This resulted at least partly from the early mucosal repair after resolution of inflammation. Our data highlight the critical role of Rac1b in driving wound-healing after resolution of intestinal inflammation, and in cooperating with Wnt pathway dysregulation and chronic inflammation to promote intestinal carcinogenesis.
Collapse
|
13
|
May S, Owen H, Phesse TJ, Greenow KR, Jones G, Blackwood A, Cook PC, Towers C, Gallimore AM, Williams GT, Stürzl M, Britzen‐Laurent N, Sansom OJ, MacDonald AS, Bird AP, Clarke AR, Parry L. Mbd2 enables tumourigenesis within the intestine while preventing tumour-promoting inflammation. J Pathol 2018; 245:270-282. [PMID: 29603746 PMCID: PMC6032908 DOI: 10.1002/path.5074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 02/22/2018] [Accepted: 03/08/2018] [Indexed: 01/14/2023]
Abstract
Epigenetic regulation plays a key role in the link between inflammation and cancer. Here we examine Mbd2, which mediates epigenetic transcriptional silencing by binding to methylated DNA. In separate studies the Mbd2-/- mouse has been shown (1) to be resistant to intestinal tumourigenesis and (2) to have an enhanced inflammatory/immune response, observations that are inconsistent with the links between inflammation and cancer. To clarify its role in tumourigenesis and inflammation, we used constitutive and conditional models of Mbd2 deletion to explore its epithelial and non-epithelial roles in the intestine. Using a conditional model, we found that suppression of intestinal tumourigenesis is due primarily to the absence of Mbd2 within the epithelia. Next, we demonstrated, using the DSS colitis model, that non-epithelial roles of Mbd2 are key in preventing the transition from acute to tumour-promoting chronic inflammation. Combining models revealed that prior to inflammation the altered Mbd2-/- immune response plays a role in intestinal tumour suppression. However, following inflammation the intestine converts from tumour suppressive to tumour promoting. To summarise, in the intestine the normal function of Mbd2 is exploited by cancer cells to enable tumourigenesis, while in the immune system it plays a key role in preventing tumour-enabling inflammation. Which role is dominant depends on the inflammation status of the intestine. As environmental interactions within the intestine can alter DNA methylation patterns, we propose that Mbd2 plays a key role in determining whether these interactions are anti- or pro-tumourigenic and this makes it a useful new epigenetic model for inflammation-associated carcinogenesis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Stephanie May
- European Cancer Stem Cell Research InstituteCardiff University, School of BiosciencesCardiffUK
| | - Heather Owen
- Wellcome Trust Centre for Cell BiologyUniversity of Edinburgh, Michael Swann BuildingEdinburghUK
| | - Toby J Phesse
- European Cancer Stem Cell Research InstituteCardiff University, School of BiosciencesCardiffUK
| | - Kirsty R Greenow
- European Cancer Stem Cell Research InstituteCardiff University, School of BiosciencesCardiffUK
| | - Gareth‐Rhys Jones
- Manchester Collaborative Centre for Inflammation ResearchManchesterUK
| | - Adam Blackwood
- European Cancer Stem Cell Research InstituteCardiff University, School of BiosciencesCardiffUK
| | - Peter C Cook
- Manchester Collaborative Centre for Inflammation ResearchManchesterUK
| | - Christopher Towers
- European Cancer Stem Cell Research InstituteCardiff University, School of BiosciencesCardiffUK
| | - Awen M Gallimore
- Cardiff Institute of Infection and Immunity, Henry Wellcome BuildingCardiffUK
| | - Geraint T Williams
- Institute of Cancer and GeneticsCardiff University School of MedicineCardiffUK
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of SurgeryFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg and Universitätsklinikum ErlangenErlangenGermany
| | - Nathalie Britzen‐Laurent
- Division of Molecular and Experimental Surgery, Department of SurgeryFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg and Universitätsklinikum ErlangenErlangenGermany
| | | | | | - Adrian P Bird
- Wellcome Trust Centre for Cell BiologyUniversity of Edinburgh, Michael Swann BuildingEdinburghUK
| | - Alan R Clarke
- European Cancer Stem Cell Research InstituteCardiff University, School of BiosciencesCardiffUK
| | - Lee Parry
- European Cancer Stem Cell Research InstituteCardiff University, School of BiosciencesCardiffUK
| |
Collapse
|
14
|
Cammareri P, Vincent DF, Hodder MC, Ridgway RA, Murgia C, Nobis M, Campbell AD, Varga J, Huels DJ, Subramani C, Prescott KLH, Nixon C, Hedley A, Barry ST, Greten FR, Inman GJ, Sansom OJ. TGFβ pathway limits dedifferentiation following WNT and MAPK pathway activation to suppress intestinal tumourigenesis. Cell Death Differ 2017; 24:1681-1693. [PMID: 28622298 PMCID: PMC5596428 DOI: 10.1038/cdd.2017.92] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/17/2022] Open
Abstract
Recent studies have suggested increased plasticity of differentiated cells within the intestine to act both as intestinal stem cells (ISCs) and tumour-initiating cells. However, little is known of the processes that regulate this plasticity. Our previous work has shown that activating mutations of Kras or the NF-κB pathway can drive dedifferentiation of intestinal cells lacking Apc. To investigate this process further, we profiled both cells undergoing dedifferentiation in vitro and tumours generated from these cells in vivo by gene expression analysis. Remarkably, no clear differences were observed in the tumours; however, during dedifferentiation in vitro we found a marked upregulation of TGFβ signalling, a pathway commonly mutated in colorectal cancer (CRC). Genetic inactivation of TGFβ type 1 receptor (Tgfbr1/Alk5) enhanced the ability of KrasG12D/+ mutation to drive dedifferentiation and markedly accelerated tumourigenesis. Mechanistically this is associated with a marked activation of MAPK signalling. Tumourigenesis from differentiated compartments is potently inhibited by MEK inhibition. Taken together, we show that tumours arising in differentiated compartments will be exposed to different suppressive signals, for example, TGFβ and blockade of these makes tumourigenesis more efficient from this compartment.
Collapse
Affiliation(s)
- Patrizia Cammareri
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - David F Vincent
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Michael C Hodder
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Rachel A Ridgway
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Claudio Murgia
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Max Nobis
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Andrew D Campbell
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Julia Varga
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt 60596 Germany
| | - David J Huels
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Chithra Subramani
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Katie L H Prescott
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Colin Nixon
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Ann Hedley
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
| | - Simon T Barry
- Oncology IMED, AstraZeneca, Alderley Park SK10 4TG, Cambridge, UK
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt 60596 Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Gareth J Inman
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Owen J Sansom
- Wnt Signaling and Colorectal Cancer Group, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| |
Collapse
|
15
|
Sturmlechner I, Durik M, Sieben CJ, Baker DJ, van Deursen JM. Cellular senescence in renal ageing and disease. Nat Rev Nephrol 2016; 13:77-89. [DOI: 10.1038/nrneph.2016.183] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Mo A, Jackson S, Varma K, Carpino A, Giardina C, Devers TJ, Rosenberg DW. Distinct Transcriptional Changes and Epithelial-Stromal Interactions Are Altered in Early-Stage Colon Cancer Development. Mol Cancer Res 2016; 14:795-804. [PMID: 27353028 DOI: 10.1158/1541-7786.mcr-16-0156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/11/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Although the progression of mutated colonic cells is dependent upon interactions between the initiated epithelium and surrounding stroma, the nature of these interactions is poorly understood. Here, the development of an ultrasensitive laser capture microdissection (LCM)/RNA-seq approach for studying the epithelial and stromal compartments of aberrant crypt foci (ACF) is described. ACF are the earliest identifiable preneoplastic lesion found within the human colon and are detected using high-definition endoscopy with contrast dye spray. The current analysis focused on the epithelium of ACF with somatic mutations to either KRAS, BRAF, or APC, and expression patterns compared with normal mucosa from each patient. By comparing gene expression patterns among groups, an increase in a number of proinflammatory NF-κB target genes was identified that was specific to ACF epithelium, including TIMP1, RELA, and RELB Distinct transcriptional changes associated with each somatic mutation were observed and a subset of ACF display BRAF(V600E)-mediated senescence-associated transcriptome characterized by increased expression of CDKN2A Finally, LCM-captured ACF-associated stroma was found to be transcriptionally distinct from normal-appearing stroma, with an upregulation of genes related to immune cell infiltration and fibroblast activation. Immunofluorescence confirmed increased CD3(+) T cells within the stromal microenvironment of ACF and an abundance of activated fibroblasts. Collectively, these results provide new insight into the cellular interplay that occurs at the earliest stages of colonic neoplasia, highlighting the important role of NF-κB, activated stromal fibroblasts, and lymphocyte infiltration. IMPLICATIONS Fibroblasts and immune cells in the stromal microenvironment play an important role during the earliest stages of colon carcinogenesis. Mol Cancer Res; 14(9); 795-804. ©2016 AACR.
Collapse
Affiliation(s)
- Allen Mo
- Center for Molecular Medicine, School of Medicine, UConn Health, Farmington, Connecticut. Colon Cancer Prevention Program, Neag Comprehensive Cancer Center, School of Medicine, UConn Health, Farmington, Connecticut
| | | | - Kamini Varma
- Thermo Fisher Scientific, South San Francisco, California
| | - Alan Carpino
- Thermo Fisher Scientific, South San Francisco, California
| | - Charles Giardina
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Thomas J Devers
- Division of Gastroenterology, School of Medicine, UConn Health, Farmington, Connecticut
| | - Daniel W Rosenberg
- Center for Molecular Medicine, School of Medicine, UConn Health, Farmington, Connecticut. Colon Cancer Prevention Program, Neag Comprehensive Cancer Center, School of Medicine, UConn Health, Farmington, Connecticut.
| |
Collapse
|
17
|
Ueberham E, Glöckner P, Göhler C, Straub BK, Teupser D, Schönig K, Braeuning A, Höhn AK, Jerchow B, Birchmeier W, Gaunitz F, Arendt T, Sansom O, Gebhardt R, Ueberham U. Global increase of p16INK4a in APC-deficient mouse liver drives clonal growth of p16INK4a-negative tumors. Mol Cancer Res 2015; 13:239-49. [PMID: 25270420 DOI: 10.1158/1541-7786.mcr-14-0278-t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Reduction of β-catenin (CTNNB1) destroying complex components, for example, adenomatous polyposis coli (APC), induces β-catenin signaling and subsequently triggers activation of genes involved in proliferation and tumorigenesis. Though diminished expression of APC has organ-specific and threshold-dependent influence on the development of liver tumors in mice, the molecular basis is poorly understood. Therefore, a detailed investigation was conducted to determine the underlying mechanism in the development of liver tumors under reduced APC levels. Mouse liver at different developmental stages was analyzed in terms of β-catenin target genes including Cyp2e1, Glul, and Ihh using real-time RT-PCR, reporter gene assays, and immunohistologic methods with consideration of liver zonation. Data from human livers with mutations in APC derived from patients with familial adenomatous polyposis (FAP) were also included. Hepatocyte senescence was investigated by determining p16(INK4a) expression level, presence of senescence-associated β-galactosidase activity, and assessing ploidy. A β-catenin activation of hepatocytes does not always result in β-catenin positive but unexpectedly also in mixed and β-catenin-negative tumors. In summary, a senescence-inducing program was found in hepatocytes with increased β-catenin levels and a positive selection of hepatocytes lacking p16(INK4a), by epigenetic silencing, drives the development of liver tumors in mice with reduced APC expression (Apc(580S) mice). The lack of p16(INK4a) was also detected in liver tumors of mice with triggers other than APC reduction. IMPLICATIONS Epigenetic silencing of p16(Ink4a) in selected liver cells bypassing senescence is a general principle for development of liver tumors with β-catenin involvement in mice independent of the initial stimulus.
Collapse
Affiliation(s)
- Elke Ueberham
- Faculty of Medicine, Institute of Biochemistry, University of Leipzig, Leipzig, Germany. Department of Cell Engineering/GLP, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Pia Glöckner
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, University of Leipzig, Paul Flechsig Institute of Brain Research, Leipzig, Germany
| | - Claudia Göhler
- Faculty of Medicine, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Beate K Straub
- Institute of Pathology, University Clinic, University Heidelberg, Heidelberg, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany. Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kai Schönig
- Central Institute of Mental Health, Department of Molecular Biology, University of Heidelberg, Mannheim, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Tübingen, Germany
| | | | - Boris Jerchow
- Max-Delbrueck-Center for Molecular Medicine, Berlin-Buch, Germany
| | | | - Frank Gaunitz
- Department of Neurosurgery, University of Leipzig, Leipzig, Germany
| | - Thomas Arendt
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, University of Leipzig, Paul Flechsig Institute of Brain Research, Leipzig, Germany
| | - Owen Sansom
- The Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Rolf Gebhardt
- Faculty of Medicine, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Uwe Ueberham
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, University of Leipzig, Paul Flechsig Institute of Brain Research, Leipzig, Germany.
| |
Collapse
|
18
|
Speidel D. The role of DNA damage responses in p53 biology. Arch Toxicol 2015; 89:501-17. [PMID: 25618545 DOI: 10.1007/s00204-015-1459-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/08/2015] [Indexed: 12/16/2022]
Abstract
The tumour suppressor p53 is a central player in cellular DNA damage responses. P53 is upregulated and activated by genotoxic stress and induces a transcriptional programme with effectors promoting apoptosis, cell cycle arrest, senescence and DNA repair. For the best part of the last three decades, these DNA damage-related programmes triggered by p53 were unequivocally regarded as the major if not sole mechanism by which p53 exerts its tumour suppressor function. However, this interpretation has been challenged by a number of recent in vivo studies, demonstrating that mice which are defective in inducing p53-dependent apoptosis, cell cycle arrest and senescence suppress thymic lymphoma as well as wild-type p53 expressing animals. Consequently, the importance of DNA damage responses for p53-mediated tumour suppression has been questioned. In this review, I summarize current knowledge on p53-controlled DNA damage responses and argue that these activities, while their role has certainly changed, remain an important feature of p53 biology with relevance for cancer therapy and tumour suppression.
Collapse
Affiliation(s)
- Daniel Speidel
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia,
| |
Collapse
|
19
|
Phesse TJ, Buchert M, Stuart E, Flanagan DJ, Faux M, Afshar-Sterle S, Walker F, Zhang HH, Nowell CJ, Jorissen R, Tan CW, Hirokawa Y, Eissmann MF, Poh AR, Malaterre J, Pearson HB, Kirsch DG, Provero P, Poli V, Ramsay RG, Sieber O, Burgess AW, Huszar D, Vincan E, Ernst M. Partial inhibition of gp130-Jak-Stat3 signaling prevents Wnt-β-catenin-mediated intestinal tumor growth and regeneration. Sci Signal 2014; 7:ra92. [PMID: 25270258 DOI: 10.1126/scisignal.2005411] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most colon cancers arise from somatic mutations in the tumor suppressor gene APC (adenomatous polyposis coli), and these mutations cause constitutive activation of the Wnt-to-β-catenin pathway in the intestinal epithelium. Because Wnt-β-catenin signaling is required for homeostasis and regeneration of the adult intestinal epithelium, therapeutic targeting of this pathway is challenging. We found that genetic activation of the cytokine-stimulated pathway mediated by the receptor gp130, the associated Jak (Janus kinase) kinases, and the transcription factor Stat3 (signal transducer and activator of transcription 3) was required for intestinal regeneration in response to irradiation-induced damage in wild-type mice and for tumorigenesis in Apc-mutant mice. Systemic pharmacological or partial genetic inhibition of gp130-Jak-Stat3 signaling suppressed intestinal regeneration, the growth of tumors in Apc-mutant mice, and the growth of colon cancer xenografts. The growth of Apc-mutant tumors depended on gp130-Jak-Stat3 signaling for induction of the polycomb repressor Bmi-1, and the associated repression of genes encoding the cell cycle inhibitors p16 and p21. However, suppression of gp130-Jak-Stat3 signaling did not affect Wnt-β-catenin signaling or homeostasis in the intestine. Thus, these data not only suggest a molecular mechanism for how the gp130-Jak-Stat3 pathway can promote cancer but also provide a rationale for therapeutic inhibition of Jak in colon cancer.
Collapse
Affiliation(s)
- Toby J Phesse
- Ludwig Institute for Cancer Research, Melbourne, Victoria 3052, Australia. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Michael Buchert
- Ludwig Institute for Cancer Research, Melbourne, Victoria 3052, Australia. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Emma Stuart
- Ludwig Institute for Cancer Research, Melbourne, Victoria 3052, Australia. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Dustin J Flanagan
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, Victoria 3052, Australia. Victorian Infectious Diseases Reference Laboratories, North Melbourne, Victoria 3051, Australia. School of Biomedical Sciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Maree Faux
- Ludwig Institute for Cancer Research, Melbourne, Victoria 3052, Australia. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Shoukat Afshar-Sterle
- Ludwig Institute for Cancer Research, Melbourne, Victoria 3052, Australia. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Francesca Walker
- Ludwig Institute for Cancer Research, Melbourne, Victoria 3052, Australia. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Hui-Hua Zhang
- Ludwig Institute for Cancer Research, Melbourne, Victoria 3052, Australia. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Cameron J Nowell
- Ludwig Institute for Cancer Research, Melbourne, Victoria 3052, Australia. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Robert Jorissen
- Ludwig Institute for Cancer Research, Melbourne, Victoria 3052, Australia. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Chin Wee Tan
- Ludwig Institute for Cancer Research, Melbourne, Victoria 3052, Australia. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Yumiko Hirokawa
- Ludwig Institute for Cancer Research, Melbourne, Victoria 3052, Australia. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Moritz F Eissmann
- Ludwig Institute for Cancer Research, Melbourne, Victoria 3052, Australia. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Ashleigh R Poh
- Ludwig Institute for Cancer Research, Melbourne, Victoria 3052, Australia. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Jordane Malaterre
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne, Victoria 3052, Australia
| | - Helen B Pearson
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne, Victoria 3052, Australia
| | - David G Kirsch
- Departments of Radiation Oncology, Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Paolo Provero
- Department of Genetics, Biology and Biochemistry, University of Turin, 10126 Torino, Italy
| | - Valeria Poli
- Department of Genetics, Biology and Biochemistry, University of Turin, 10126 Torino, Italy
| | - Robert G Ramsay
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne, Victoria 3052, Australia
| | - Oliver Sieber
- Ludwig Institute for Cancer Research, Melbourne, Victoria 3052, Australia. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Antony W Burgess
- Ludwig Institute for Cancer Research, Melbourne, Victoria 3052, Australia. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | | | - Elizabeth Vincan
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, Victoria 3052, Australia. Victorian Infectious Diseases Reference Laboratories, North Melbourne, Victoria 3051, Australia. School of Biomedical Sciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Matthias Ernst
- Ludwig Institute for Cancer Research, Melbourne, Victoria 3052, Australia. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia.
| |
Collapse
|
20
|
Gudas LJ, Fu L, Minton DR, Mongan NP, Nanus DM. The role of HIF1α in renal cell carcinoma tumorigenesis. J Mol Med (Berl) 2014; 92:825-36. [PMID: 24916472 DOI: 10.1007/s00109-014-1180-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 01/26/2023]
Abstract
UNLABELLED The transcription factor HIF1α is implicated in the development of clear cell renal cell carcinoma (ccRCC). Although HIF1α was initially believed to be essential for ccRCC development, recent studies hypothesize an oncogenic role for HIF2α in ccRCC, but a tumor suppressor role for HIF1α, leading to uncertainty as to the precise roles of the different HIF transcription factors in this disease. Using evidence available from studies with human ccRCC cell lines, mouse xenografts, murine models of ccRCC, and human ccRCC specimens, we evaluate the roles of HIF1α and HIF2α in the pathogenesis of ccRCC. We present a convergence of clinical and mechanistic data supporting an important role for HIF1α in promoting tumorigenesis in a clinically important and large subset of ccRCC. This indicates that current understanding of the exact roles of HIF1α and HIF2α is incomplete and that further research is required to determine the diverse roles of HIF1α and HIF2α in ccRCC. KEY MESSAGES The TRACK mouse ccRCC model with constitutively active HIF1α but not HIF2α expressed in proximal tubules develops RCC. HIF1α protein is expressed in the majority of human ccRCC specimens. Elevated HIF1α in ccRCC correlates with a worse prognosis. Many publications do not support a tumor suppressor role for HIF1α in ccRCC. HIF1α, but not HIF2α, is expressed in some types of cancer stem cells.
Collapse
Affiliation(s)
- Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College (WCMC) of Cornell University, New York, NY, 10065, USA,
| | | | | | | | | |
Collapse
|
21
|
Conway JRW, Carragher NO, Timpson P. Developments in preclinical cancer imaging: innovating the discovery of therapeutics. Nat Rev Cancer 2014; 14:314-28. [PMID: 24739578 DOI: 10.1038/nrc3724] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrating biological imaging into early stages of the drug discovery process can provide invaluable readouts of drug activity within complex disease settings, such as cancer. Iterating this approach from initial lead compound identification in vitro to proof-of-principle in vivo analysis represents a key challenge in the drug discovery field. By embracing more complex and informative models in drug discovery, imaging can improve the fidelity and statistical robustness of preclinical cancer studies. In this Review, we highlight how combining advanced imaging with three-dimensional systems and intravital mouse models can provide more informative and disease-relevant platforms for cancer drug discovery.
Collapse
Affiliation(s)
- James R W Conway
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| | - Neil O Carragher
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Paul Timpson
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| |
Collapse
|
22
|
Seeger-Nukpezah T, Little JL, Serzhanova V, Golemis EA. Cilia and cilia-associated proteins in cancer. ACTA ACUST UNITED AC 2013; 10:e135-e142. [PMID: 24982684 DOI: 10.1016/j.ddmec.2013.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The primary cilium is a well-established target in the pathogenesis of numerous developmental and chronic disorders, and more recently is attracting interest as a structure relevant to cancer. Here we discuss mechanisms by which changes in cilia can contribute to the formation and growth of tumors. We emphasize the cancer-relevance of cilia-dependent signaling pathways and proteins including mTOR, VHL, TSC, WNT, Aurora-A, NEDD9, and Hedgehog, and highlight the emerging role of ciliary dysfunction in renal cell carcinoma, medulloblastoma, and breast cancer.
Collapse
Affiliation(s)
| | - Joy L Little
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Victoria Serzhanova
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Erica A Golemis
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111
| |
Collapse
|
23
|
Nobis M, Carragher NO, McGhee EJ, Morton JP, Sansom OJ, Anderson KI, Timpson P. Advanced intravital subcellular imaging reveals vital three-dimensional signalling events driving cancer cell behaviour and drug responses in live tissue. FEBS J 2013; 280:5177-97. [PMID: 23678945 DOI: 10.1111/febs.12348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/18/2022]
Abstract
The integration of signal transduction pathways plays a fundamental role in governing disease initiation, progression and outcome. It is therefore necessary to understand disease at the signalling level to enable effective treatment and to intervene in its progression. The recent extension of in vitro subcellular image-based analysis to live in vivo modelling of disease is providing a more complete picture of real-time, dynamic signalling processes or drug responses in live tissue. Intravital imaging offers alternative strategies for studying disease and embraces the biological complexities that govern disease progression. In the present review, we highlight how three-dimensional or live intravital imaging has uncovered novel insights into biological mechanisms or modes of drug action. Furthermore, we offer a prospective view of how imaging applications may be integrated further with the aim of understanding disease in a more physiological and functional manner within the framework of the drug discovery process.
Collapse
Affiliation(s)
- Max Nobis
- The Beatson Institute for Cancer Research, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Sharma A, Sen JM. Molecular basis for the tissue specificity of β-catenin oncogenesis. Oncogene 2013; 32:1901-9. [PMID: 22689057 PMCID: PMC3534820 DOI: 10.1038/onc.2012.215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/03/2012] [Accepted: 04/16/2012] [Indexed: 12/14/2022]
Abstract
Wnt-β-catenin-T-cell factor signaling is causally linked to c-myc-dependent tumorigenesis in mouse and human colon epithelial cells. By contrast, β-catenin is not similarly associated with oncogenic transformation of other tissues, including T cells. The molecular basis for tissue specificity of β-catenin-dependent oncogenesis is unknown. Here, we demonstrate that adenomatous polyposis coli mutant APC(Min/+) mice, which have increased expression of β-catenin in all tissues, develop severe intestinal neoplasia, but fail to develop thymic lymphoma. Whereas β-catenin-dependent signals elicit a proliferative response from intestinal cells, thymocytes experience oncogene-induced senescence (OIS), growth arrest and apoptosis. We demonstrate that the differential cellular response of thymocytes and intestinal epithelial cells is a direct consequence of the gene expression elicited by β-catenin expression in each tissue. We find that whereas intestinal cells induce genes that promote proliferation thymocytes induce expression of genes associated with OIS, growth arrest and p53-dependent apoptosis. We correlate gene expression pattern with the role β-catenin plays in the development of each tissue and suggest that susceptibility of transformation by β-catenin is intimately related to its function during development. We propose that when oncogenes are used as signaling molecules, safety nets in the form of OIS, growth arrest and apoptosis prevent accidental transformation.
Collapse
Affiliation(s)
- Archna Sharma
- Lymphocyte Development Unit, Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore MD 21224
| | - Jyoti Misra Sen
- Lymphocyte Development Unit, Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore MD 21224
| |
Collapse
|
25
|
Zheng L, MacKenzie ED, Karim SA, Hedley A, Blyth K, Kalna G, Watson DG, Szlosarek P, Frezza C, Gottlieb E. Reversed argininosuccinate lyase activity in fumarate hydratase-deficient cancer cells. Cancer Metab 2013; 1:12. [PMID: 24280230 PMCID: PMC4108060 DOI: 10.1186/2049-3002-1-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/27/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Loss of function of fumarate hydratase (FH), the mitochondrial tumor suppressor and tricarboxylic acid (TCA) cycle enzyme, is associated with a highly malignant form of papillary and collecting duct renal cell cancer. The accumulation of fumarate in these cells has been linked to the tumorigenic process. However, little is known about the overall effects of the loss of FH on cellular metabolism. METHODS We performed comprehensive metabolomic analyses of urine from Fh1-deficient mice and stable isotopologue tracing from human and mouse FH-deficient cell lines to investigate the biochemical signature of the loss of FH. RESULTS The metabolomics analysis revealed that the urea cycle metabolite argininosuccinate is a common metabolic biomarker of FH deficiency. Argininosuccinate was found to be produced from arginine and fumarate by the reverse activity of the urea cycle enzyme argininosuccinate lyase (ASL), making these cells auxotrophic for arginine. Depleting arginine from the growth media by the addition of pegylated arginine deiminase (ADI-PEG 20) decreased the production of argininosuccinate in FH-deficient cells and reduced cell survival and proliferation. CONCLUSIONS These results unravel a previously unidentified correlation between fumarate accumulation and the urea cycle enzyme ASL in FH-deficient cells. The finding that FH-deficient cells become auxotrophic for arginine opens a new therapeutic perspective for the cure of hereditary leiomyomatosis and renal cell cancer (HLRCC).
Collapse
Affiliation(s)
- Liang Zheng
- Cancer Research UK, Beatson Institute for Cancer Research, Switchback Road, Glasgow, G61 1BD, UK
| | - Elaine D MacKenzie
- Cancer Research UK, Beatson Institute for Cancer Research, Switchback Road, Glasgow, G61 1BD, UK
| | - Saadia A Karim
- Cancer Research UK, Beatson Institute for Cancer Research, Switchback Road, Glasgow, G61 1BD, UK
| | - Ann Hedley
- Cancer Research UK, Beatson Institute for Cancer Research, Switchback Road, Glasgow, G61 1BD, UK
| | - Karen Blyth
- Cancer Research UK, Beatson Institute for Cancer Research, Switchback Road, Glasgow, G61 1BD, UK
| | - Gabriela Kalna
- Cancer Research UK, Beatson Institute for Cancer Research, Switchback Road, Glasgow, G61 1BD, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, G4 0NR, Glasgow, UK
| | - Peter Szlosarek
- Queen Mary, University of London, Barts and The London School of Medicine, Charterhouse Square, London, EC1M 6BQ, UK.,Department of Medical Oncology, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Christian Frezza
- Cancer Research UK, Beatson Institute for Cancer Research, Switchback Road, Glasgow, G61 1BD, UK.,Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 OXZ, UK
| | - Eyal Gottlieb
- Cancer Research UK, Beatson Institute for Cancer Research, Switchback Road, Glasgow, G61 1BD, UK
| |
Collapse
|
26
|
Timpson P, McGhee EJ, Anderson KI. Imaging molecular dynamics in vivo--from cell biology to animal models. J Cell Sci 2012; 124:2877-90. [PMID: 21878495 DOI: 10.1242/jcs.085191] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Advances in fluorescence microscopy have enabled the study of membrane diffusion, cell adhesion and signal transduction at the molecular level in living cells grown in culture. By contrast, imaging in living organisms has primarily been restricted to the localization and dynamics of cells in tissues. Now, imaging of molecular dynamics is on the cusp of progressing from cell culture to living tissue. This transition has been driven by the understanding that the microenvironment critically determines many developmental and pathological processes. Here, we review recent progress in fluorescent protein imaging in vivo by drawing primarily on cancer-related studies in mice. We emphasize the need for techniques that can be easily combined with genetic models and complement fluorescent protein imaging by providing contextual information about the cellular environment. In this Commentary we will consider differences between in vitro and in vivo experimental design and argue for an approach to in vivo imaging that is built upon the use of intermediate systems, such as 3-D and explant culture models, which offer flexibility and control that is not always available in vivo. Collectively, these methods present a paradigm shift towards the molecular-level investigation of disease and therapy in animal models of disease.
Collapse
Affiliation(s)
- Paul Timpson
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G611BD, UK
| | | | | |
Collapse
|
27
|
Klotz DM, Nelson SA, Kroboth K, Newton IP, Radulescu S, Ridgway RA, Sansom OJ, Appleton PL, Näthke IS. The microtubule poison vinorelbine kills cells independently of mitotic arrest and targets cells lacking the APC tumour suppressor more effectively. J Cell Sci 2012; 125:887-95. [PMID: 22399804 PMCID: PMC3311929 DOI: 10.1242/jcs.091843] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2011] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancers commonly carry truncation mutations in the adenomatous polyposis coli (APC) gene. The APC protein contributes to the stabilization of microtubules. Consistently, microtubules in cells lacking APC depolymerize more readily in response to microtubule-destabilizing drugs. This raises the possibility that such agents are suitable for treatment of APC-deficient cancers. However, APC-deficient cells have a compromised spindle assembly checkpoint, which renders them less sensitive to killing by microtubule poisons whose toxicity relies on the induction of prolonged mitotic arrest. Here, we describe the novel discovery that the clinically used microtubule-depolymerizing drug vinorelbine (Navelbine) kills APC-deficient cells in culture and in intestinal tissue more effectively than it kills wild-type cells. This is due to the ability of vinorelbine to kill cells in interphase independently of mitotic arrest. Consistent with a role for p53 in cell death in interphase, depletion of p53 renders cells less sensitive to vinorelbine, but only in the presence of wild-type APC. The pro-apoptotic protein BIM (also known as BCL2L11) is recruited to mitochondria in response to vinorelbine, where it can inhibit the anti-apoptotic protein BCL2, suggesting that BIM mediates vinorelbine-induced cell death. This recruitment of BIM is enhanced in cells lacking APC. Consistently, BIM depletion dampens the selective effect of vinorelbine on these cells. Our findings reveal that vinorelbine is a potential therapeutic agent for colorectal cancer, but they also illustrate the importance of the APC tumour suppressor status when predicting therapeutic efficacy.
Collapse
Affiliation(s)
- Daniel M. Klotz
- Division of Cell and Developmental Biology, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Scott A. Nelson
- Division of Cell and Developmental Biology, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Karin Kroboth
- Division of Molecular Medicine, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Ian P. Newton
- Division of Cell and Developmental Biology, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Sorina Radulescu
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Rachel A. Ridgway
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Owen J. Sansom
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Paul L. Appleton
- Division of Cell and Developmental Biology, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Inke S. Näthke
- Division of Cell and Developmental Biology, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| |
Collapse
|
28
|
Bieging KT, Attardi LD. Deconstructing p53 transcriptional networks in tumor suppression. Trends Cell Biol 2011; 22:97-106. [PMID: 22154076 DOI: 10.1016/j.tcb.2011.10.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 12/16/2022]
Abstract
p53 is a pivotal tumor suppressor that induces apoptosis, cell-cycle arrest and senescence in response to stress signals. Although p53 transcriptional activation is important for these responses, the mechanisms underlying tumor suppression have been elusive. To date, no single or compound mouse knockout of specific p53 target genes has recapitulated the dramatic tumor predisposition that characterizes p53-null mice. Recently, however, analysis of knock-in mice expressing p53 transactivation domain mutants has revealed a group of primarily novel direct p53 target genes that may mediate tumor suppression in vivo. We present here an overview of well-known p53 target genes and the tumor phenotypes of the cognate knockout mice, and address the recent identification of new p53 transcriptional targets and how they enhance our understanding of p53 transcriptional networks central for tumor suppression.
Collapse
Affiliation(s)
- Kathryn T Bieging
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
29
|
McGhee EJ, Morton JP, Von Kriegsheim A, Schwarz JP, Karim SA, Carragher NO, Sansom OJ, Anderson KI, Timpson P. FLIM-FRET imaging in vivo reveals 3D-environment spatially regulates RhoGTPase activity during cancer cell invasion. Small GTPases 2011; 2:239-244. [PMID: 22145098 PMCID: PMC3225915 DOI: 10.4161/sgtp.2.4.17275] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/13/2011] [Indexed: 11/19/2022] Open
Abstract
Many conceptual advances in biology have been achieved by experimental studies using planar two-dimensional cell culture systems. Recent adaptations of molecular techniques to three-dimensional model systems are bridging the gap in our understanding of biological events in vitro and in vivo in the study of disease progression. Recently, in vitro studies using Förster resonance energy transfer (FRET) have shown that the prototypical RhoGTPases Cdc42, Rac and RhoA are temporally and spatially synchronized during cell migration, with initial RhoA activity inducing protrusion prior to activation of Rac. This simultaneous FRET approach illustrates the tight control and dynamic regulation of RhoGTPase activity necessary for coordinated cell migration in vitro. Here, we discuss our recent work using FLIM-FRET analysis in a three-dimensional setting to reveal another layer of regulation in which RhoA activity is governed by the extracellular microenvironment. We demonstrate that RhoA is spatially regulated into discrete fractions of activity at the leading edge and rear of cells during invasion in vivo or within three-dimensional matrices. Significantly, this spatial regulation of RhoA was absent in two-dimensional in vitro settings. This distinct sub-cellular regulation of RhoA at the poles of invading cells in three-dimensions sets a precedent that other RhoGTPases or signaling proteins may also be differentially regulated in a con-text-dependent manner during key biological processes such as invasion.
Collapse
Affiliation(s)
- Ewan J McGhee
- The Beatson Institute for Cancer Research; Glasgow; Edinburgh, UK
| | | | | | | | - Saadia A Karim
- The Beatson Institute for Cancer Research; Glasgow; Edinburgh, UK
| | - Neil O Carragher
- Edinburgh Cancer Research Centre; Institute of Genetics and Molecular Medicine; University of Edinburgh; Edinburgh, UK
| | - Owen J Sansom
- The Beatson Institute for Cancer Research; Glasgow; Edinburgh, UK
| | - Kurt I Anderson
- The Beatson Institute for Cancer Research; Glasgow; Edinburgh, UK
| | - Paul Timpson
- The Beatson Institute for Cancer Research; Glasgow; Edinburgh, UK
| |
Collapse
|
30
|
Live cell in vitro and in vivo imaging applications: accelerating drug discovery. Pharmaceutics 2011; 3:141-70. [PMID: 24310493 PMCID: PMC3864231 DOI: 10.3390/pharmaceutics3020141] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/21/2011] [Accepted: 03/31/2011] [Indexed: 12/20/2022] Open
Abstract
Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates.
Collapse
|