1
|
Taherian M, Bayati P, Mojtabavi N. Stem cell-based therapy for fibrotic diseases: mechanisms and pathways. Stem Cell Res Ther 2024; 15:170. [PMID: 38886859 PMCID: PMC11184790 DOI: 10.1186/s13287-024-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosis is a pathological process, that could result in permanent scarring and impairment of the physiological function of the affected organ; this condition which is categorized under the term organ failure could affect various organs in different situations. The involvement of the major organs, such as the lungs, liver, kidney, heart, and skin, is associated with a high rate of morbidity and mortality across the world. Fibrotic disorders encompass a broad range of complications and could be traced to various illnesses and impairments; these could range from simple skin scars with beauty issues to severe rheumatologic or inflammatory disorders such as systemic sclerosis as well as idiopathic pulmonary fibrosis. Besides, the overactivation of immune responses during any inflammatory condition causing tissue damage could contribute to the pathogenic fibrotic events accompanying the healing response; for instance, the inflammation resulting from tissue engraftment could cause the formation of fibrotic scars in the grafted tissue, even in cases where the immune system deals with hard to clear infections, fibrotic scars could follow and cause severe adverse effects. A good example of such a complication is post-Covid19 lung fibrosis which could impair the life of the affected individuals with extensive lung involvement. However, effective therapies that halt or slow down the progression of fibrosis are missing in the current clinical settings. Considering the immunomodulatory and regenerative potential of distinct stem cell types, their application as an anti-fibrotic agent, capable of attenuating tissue fibrosis has been investigated by many researchers. Although the majority of the studies addressing the anti-fibrotic effects of stem cells indicated their potent capabilities, the underlying mechanisms, and pathways by which these cells could impact fibrotic processes remain poorly understood. Here, we first, review the properties of various stem cell types utilized so far as anti-fibrotic treatments and discuss the challenges and limitations associated with their applications in clinical settings; then, we will summarize the general and organ-specific mechanisms and pathways contributing to tissue fibrosis; finally, we will describe the mechanisms and pathways considered to be employed by distinct stem cell types for exerting anti-fibrotic events.
Collapse
Affiliation(s)
- Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zakaria MF, Sonoda S, Kato H, Ma L, Uehara N, Kyumoto-Nakamura Y, Sharifa MM, Yu L, Dai L, Yamauchi-Tomoda E, Aijima R, Yamaza H, Nishimura F, Yamaza T. Erythropoietin receptor signal is crucial for periodontal ligament stem cell-based tissue reconstruction in periodontal disease. Sci Rep 2024; 14:6719. [PMID: 38509204 PMCID: PMC10954634 DOI: 10.1038/s41598-024-57361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
Alveolar bone loss caused by periodontal disease eventually leads to tooth loss. Periodontal ligament stem cells (PDLSCs) are the tissue-specific cells for maintaining and repairing the periodontal ligament, cementum, and alveolar bone. Here, we investigated the role of erythropoietin receptor (EPOR), which regulates the microenvironment-modulating function of mesenchymal stem cells, in PDLSC-based periodontal therapy. We isolated PDLSCs from patients with chronic periodontal disease and healthy donors, referred to as PD-PDLSCs and Cont-PDLSCs, respectively. PD-PDLSCs exhibited reduced potency of periodontal tissue regeneration and lower expression of EPOR compared to Cont-PDLSCs. EPOR-silencing suppressed the potency of Cont-PDLSCs mimicking PD-PDLSCs, whereas EPO-mediated EPOR activation rejuvenated the reduced potency of PD-PDLSCs. Furthermore, we locally transplanted EPOR-silenced and EPOR-activated PDLSCs into the gingiva around the teeth of ligament-induced periodontitis model mice and demonstrated that EPOR in PDLSCs participated in the regeneration of the periodontal ligament, cementum, and alveolar bone in the ligated teeth. The EPOR-mediated paracrine function of PDLSCs maintains periodontal immune suppression and bone metabolic balance via osteoclasts and osteoblasts in the periodontitis model mice. Taken together, these results suggest that EPOR signaling is crucial for PDLSC-based periodontal regeneration and paves the way for the development of novel options for periodontal therapy.
Collapse
Affiliation(s)
- Mhd Fouad Zakaria
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Periodontology, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Lan Ma
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Norihisa Uehara
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yukari Kyumoto-Nakamura
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - M Majd Sharifa
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Liting Yu
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Lisha Dai
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Erika Yamauchi-Tomoda
- Department of Oral and Maxillofacial Radiology, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Reona Aijima
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Fusanori Nishimura
- Department of Periodontology, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
3
|
Mehranpour M, Sani M, Beirami A, Hasanzadeh M, Taghizadeh M, Banihashemi M, Moghaddam MH, Fathi M, Vakili K, Yaghoobpoor S, Eskandari N, Abdollahifar MA, Bayat AH, Aliaghaei A, Heidari MH. Grafted Sertoli cells prevent neuronal cell death and memory loss induced by seizures. Metab Brain Dis 2023; 38:2735-2750. [PMID: 37851137 DOI: 10.1007/s11011-023-01309-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Epilepsy significantly reduces the patient's quality of life, and we still need to develop new therapeutic approaches to control it. Transplantation of cells such as Sertoli cells (SCs), having a potent ability to release a variety of growth and immunoprotective substances, have made them a potential candidate to deal with neurological diseases like epilepsy. Hence, this study aims to evaluate whether SCs transplant effectively protects the hippocampus astrocytes and neurons to oppose seizure damage. For this purpose, the effects of bilateral intrahippocampal transplantation of SCs were investigated on the rats with the pentylenetetrazol (PTZ) induced seizure. After one-month, post-graft analysis was performed regarding behavior, immunohistopathology, and the distribution of the hippocampal cells. Our findings showed SCs transplantation reduced astrogliosis, astrocytes process length, the number of branches, and intersections distal to the soma of the hippocampus in the seizure group. In rats with grafted SCs, there was a drop in the hippocampal caspase-3 expression. Moreover, the SCs showed another protective impact, as shown by an improvement in pyramidal neurons' number and spatial distribution. The findings suggested that SCs transplantation can potently modify astrocytes' reactivation and inflammatory responses.
Collapse
Affiliation(s)
- Maryam Mehranpour
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mojtaba Sani
- Department of Educational Neuroscience, Aras International Campus, University of Tabriz, Tabriz, Iran
| | - Amirreza Beirami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maral Hasanzadeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Banihashemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Eskandari
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Hossein Bayat
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossain Heidari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zhang Q, Lei X, Wang F, He X, Liu L, Hou Y, Liu Y, Jin F, Chen C, Li B. ERK1-mediated immunomodulation of mesenchymal stem cells ameliorates inflammatory disorders. iScience 2023; 26:107868. [PMID: 37790278 PMCID: PMC10543658 DOI: 10.1016/j.isci.2023.107868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023] Open
Abstract
Immune system disorders, especially T cell disorders, are important therapeutic targets of mesenchymal stem cells (MSCs) in many autoimmune diseases (ADs). Although extracellular regulated protein kinases (ERKs) play a role in MSC therapy by promoting T cell apoptosis, the mechanism remains unclear. Our findings indicate that ERK1-/- bone marrow MSCs (BMMSCs), but not ERK2-/- BMMSCs, failed to promote T cell apoptosis due to incapacity to activate the ETS2/AURKA/NF-κB/Fas/MCP-1 cascade. Moreover, ERK1-/- BMMSCs were unable to upregulate regulatory T cells and suppress T helper 17 cells. Licochalcone A (LA), which promotes ERK pathway activation, enhanced the therapeutic efficacy of MSC therapy in ulcerative colitis and collagen-induced arthritis mice. Our findings suggest that ERK1, but not ERK2, plays a crucial role in regulating T cells in MSCs. LA-treated MSCs provide a strategy to improve the efficacy of MSC-based treatments for ADs.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
- Shannxi Clinical Research Center for Oral Diseases & Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Xiao Lei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Shannxi Clinical Research Center for Oral Diseases & Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Fang Wang
- Department of Blood Purification, General Hospital of Central Theater Command of PLA, 68 Huangpu Road, Wuhan, Hubei 430010, China
| | - Xiaoning He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Lu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Shannxi Clinical Research Center for Oral Diseases & Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yuxia Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Yuan Liu
- The Affiliated Northwest Women’s and Children’s Hospital of Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, China
| | - Fang Jin
- Shannxi Clinical Research Center for Oral Diseases & Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
5
|
Feng X, Qiao J, Xu W. Impact of immune regulation and differentiation dysfunction of mesenchymal stem cells on the disease process in ankylosing spondylitis and prospective analysis of stem cell transplantation therapy. Postgrad Med J 2023; 99:1138-1147. [PMID: 37689998 DOI: 10.1093/postmj/qgad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 09/11/2023]
Abstract
Ankylosing spondylitis (AS) is a rheumatic bone and joint disease caused by inflammation, erosion, and pathological bone formation. The pathological features of chronic inflammation, bone destruction, and pathological ossification occur due to the disruption of the body's immune regulation and altered bone remodeling balance. Mesenchymal stem cells (MSCs) have multidirectional differentiation potential and immunomodulatory functions and play an important role in immune regulation and bone formation. The immune regulation and osteogenic capacity of MSCs in AS are altered by factors such as genetic background, internal environment, infection, and mechanical forces that drive disease development. This review further evaluates the role of MSCs dysfunction in inflammation and pathological bone formation by analyzing the effects of the above-mentioned factors on MSCs function and also looks forward to the prospects of MSCs in treating AS, providing some ideas for an in-depth study of inflammation and ectopic ossification. KEY MESSAGES
Collapse
Affiliation(s)
- Xinzhe Feng
- Department of Joint Bone Disease Surgery, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Junjie Qiao
- Department of Joint Bone Disease Surgery, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Weidong Xu
- Department of Joint Bone Disease Surgery, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
6
|
Cai Y, Sun H, Song X, Zhao J, Xu D, Liu M. The Wnt/β-catenin signaling pathway inhibits osteoporosis by regulating the expression of TERT: an in vivo and in vitro study. Aging (Albany NY) 2023; 15:11471-11488. [PMID: 37862118 PMCID: PMC10637795 DOI: 10.18632/aging.205136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023]
Abstract
Our study was performed to investigate whether the Wingless and int-1 (Wnt) signaling pathway promotes osteogenic differentiation and inhibits apoptosis in bone marrow mesenchymal stem cells (BMSCs) by regulating telomerase reverse transcriptase (TERT) expression. An in vivo model of osteoporosis (OP) in C57BL/6J mice by bilateral ovariectomy (OVX) and an in vitro model of H2O2-induced BMSCs were established separately. Western blotting was used to detect the expression of the pathway-related proteins TERT, β-catenin, and phosphorylated-glycogen synthase kinase-3beta (p-GSK3β)/GSK3β, the osteogenic-related markers osteopontin (OPN), bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (Runx2), and the apoptosis-related indicators B-cell lymphoma-2 (Bcl-2) and BAX. Osteoblastic phenotypes were also evaluated by alkaline phosphatase (ALP) staining and serum ALP activity assays. Osteogenic differentiation phenotypes in mice were verified by H&E staining, micro-CT, and parameter analysis of the femur. Western blotting results showed that the expression of the pathway-related proteins TERT, β-catenin, p-GSK3β/GSK3β was reduced in OVX mice and H2O2-induced BMSCs, accompanied by downregulated protein expression of osteogenic-related markers and antiapoptotic indicators and upregulated protein expression of apoptotic proteins compared to those in the control group. Mechanistic studies showed that the activation of Wnt signaling pathway in BMSCs promoted β-catenin translocation to the nucleus, as verified by immunofluorescence and facilitated colocalization between β-catenin and TERT, as verified by double-labeling immunofluorescence, thereby promoting osteogenic differentiation and reducing apoptosis. In summary, our experiments confirmed that the GSK3β/β-catenin/TERT pathway could regulate the osteogenic differentiation and apoptosis of BMSCs and that TERT might be a promising target for the future treatment of osteoporosis.
Collapse
Affiliation(s)
- Yuanqing Cai
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Xigang, Dalian 116011, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Lvshunkou, Dalian 116044, China
| | - Xingyu Song
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Xigang, Dalian 116011, China
| | - Jianyu Zhao
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Xigang, Dalian 116011, China
| | - Dong Xu
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Xigang, Dalian 116011, China
| | - Mozhen Liu
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Xigang, Dalian 116011, China
| |
Collapse
|
7
|
Zheng Z, Tang S, Yang T, Wang X, Ding G. Advances in combined application of dental stem cells and small-molecule drugs in regenerative medicine. Hum Cell 2023; 36:1620-1637. [PMID: 37358734 DOI: 10.1007/s13577-023-00943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Teeth are a kind of masticatory organs of special histological origin, unique to vertebrates, playing an important role in chewing, esthetics, and auxiliary pronunciation. In the past decades, with the development of tissue engineering and regenerative medicine, the studies of mesenchymal stem cells (MSCs) gradually attracted the interest of researchers. Accordingly, several types of MSCs have been successively isolated in teeth or teeth-related tissues, including dental pulp stem cells, periodontal ligament stem cells, stem cells from human exfoliated deciduous teeth, dental follicle stem cells, stem cells from apical papilla and gingival mesenchymal stem cells. These dental stem cells (DSCs) are easily accessible, possess excellent stem cell characteristics, such as high proliferation rates and profound immunomodulatory properties. Small-molecule drugs are widely used and show great advantages in clinical practice. As research progressed, small-molecule drugs are found to have various complex effects on the characteristics of DSCs, especially the enhancement of biological characteristics of DSCs, which has gradually become a hot issue in the field of DSCs research. This review summarizes the background, current status, existing problems, future research directions, and prospects of the combination of DSCs with three common small-molecule drugs: aspirin, metformin, and berberine.
Collapse
Affiliation(s)
- Zejun Zheng
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Shuai Tang
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Tong Yang
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Xiaolan Wang
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Gang Ding
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China.
| |
Collapse
|
8
|
Effects of Aspirin on Odontogenesis of Human Dental Pulp Cells and TGF-β1 Liberation from Dentin In Vitro. Int J Dent 2022; 2022:3246811. [PMID: 36034475 PMCID: PMC9411001 DOI: 10.1155/2022/3246811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Aim. This in vitro study aimed to investigate the roles of aspirin (ASA) and its concentrations on the odontogenesis of human dental pulp cells (HDPCs) and to investigate the influence of ASA on TGF-β1 liberation from dentin. Methodology. HDPCs were cultured in a culture medium with 25, 50, 75, 100, and 200 μ·g/mL ASA and 0 μ·g/mL ASA as a control. The mitochondrial activity of HDPCs was assessed using an MTT assay. Crystal violet staining and triton were used to evaluate cell proliferation rates. ALP activity was measured with a fluorometric assay. Expressions of DSP and RUNX2 were determined with the ELISA. DSP and RUNX2 mRNA levels were measured with RT-qPCR. Alizarin red staining was conducted to evaluate the mineralized nodule formation. Dentin slices were submerged in PBS (negative control), 17% EDTA (positive control), and ASA before collecting the solution for TGF-β1 quantification by the ELISA. The data were analyzed by the t-tests and ANOVA, followed by the Tukey post hoc tests.
values < 0.05 were considered statistically significant. Results. The results showed that 25–50 μ·g/mL ASA promoted mitochondrial activity of HDPCs at 72 h (
) and yielded significantly higher proliferation rates of HDPCs than the control at 14d and 21d (
). All concentrations of ASA promoted odontogenic differentiation of HDPCs by enhancing the levels of DSP and RUNX2, their mRNA expression, and mineralization in a dose-dependent manner. Also, ASA yielded significantly higher TGF-β1 liberation after conditioning dentin for 5 min (25, 200 μ·g/mL;
) and 10 min (200 μ·g/mL;
). Conclusions. This in vitro study demonstrated that ASA, especially in high concentrations, promoted the odontogenesis of HDPCs and TGF-β1 liberation from dentin, showing the potential of being incorporated into the novel pulp capping materials for dental tissue regeneration.
Collapse
|
9
|
Li W, Huang X, Yu W, Xu Y, Huang R, Park J, Moshaverinia A, Arora P, Chen C. Activation of Functional Somatic Stem Cells Promotes Endogenous Tissue Regeneration. J Dent Res 2022; 101:802-811. [PMID: 35114850 PMCID: PMC9218498 DOI: 10.1177/00220345211070222] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Periodontal ligament derived stem cells (PDLSCs) are capable of differentiating into multiple cell types and inducing a promising immunomodulation for tissue regeneration and disease treatment. However, it is still challenging to develop a practical approach to activate endogenous stem cells for tissue self-healing and regeneration. In this study, transcriptome analysis reveals that resveratrol promotes PDLSC stemness through activation of stem cell, osteoprogenitor, and chondroprogenitor markers. Self-renewal and multipotent differentiation abilities are also improved in resveratrol-treated PDLSCs. In addition, immunomodulation of PDLSCs is dramatically increased after resveratrol treatment. Mechanistically, we show that resveratrol activates ERK/WNT crosstalk through elevation of olfactory and growth factor signaling pathways to upregulate the expression levels of RUNX2 and FASL for osteogenesis and immunomodulation, respectively. By using a periodontitis animal model, administration of resveratrol partially rescues bone loss through activation of endogenous somatic stem cells and inhibition of inflammatory T-cell infiltration. Taken together, our findings identify a novel pharmacological approach to achieve autotherapies for endogenous tissue regeneration.
Collapse
Affiliation(s)
- W. Li
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - X. Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - W. Yu
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Y. Xu
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R. Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J. Park
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A. Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - P. Arora
- Early-Research Oral Care, Colgate-Palmolive Company, Piscataway, NJ, USA
| | - C. Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Sonoda S, Yamaza T. A New Target of Dental Pulp-Derived Stem Cell-Based Therapy on Recipient Bone Marrow Niche in Systemic Lupus Erythematosus. Int J Mol Sci 2022; 23:ijms23073479. [PMID: 35408840 PMCID: PMC8998830 DOI: 10.3390/ijms23073479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances in mesenchymal stem/stromal cell (MSC) research have led us to consider the feasibility of MSC-based therapy for various diseases. Human dental pulp-derived MSCs (hDPSCs) have been identified in the dental pulp tissue of deciduous and permanent teeth, and they exhibit properties with self-renewal and in vitro multipotency. Interestingly, hDPSCs exhibit superior immunosuppressive functions toward immune cells, especially T lymphocytes, both in vitro and in vivo. Recently, hDPSCs have been shown to have potent immunomodulatory functions in treating systemic lupus erythematosus (SLE) in the SLE MRL/lpr mouse model. However, the mechanisms underlying the immunosuppressive efficacy of hDPSCs remain unknown. This review aims to introduce a new target of hDPSC-based therapy on the recipient niche function in SLE.
Collapse
|
11
|
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis 2022; 13:248. [PMID: 35301281 PMCID: PMC8931059 DOI: 10.1038/s41419-022-04688-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Cell death plays a pivotal role in the maintenance of tissue homeostasis. Key players in the controlled induction of cell death are the Death Receptors (DR). CD95 is a prototypic DR activated by its cognate ligand CD95L triggering programmed cell death. As a consequence, alterations in the CD95/CD95L pathway have been involved in several disease conditions ranging from autoimmune diseases to inflammation and cancer. CD95L-induced cell death has multiple roles in the immune response since it constitutes one of the mechanisms by which cytotoxic lymphocytes kill their targets, but it is also involved in the process of turning off the immune response. Furthermore, beyond the canonical pro-death signals, CD95L, which can be membrane-bound or soluble, also induces non-apoptotic signaling that contributes to its tumor-promoting and pro-inflammatory roles. The intent of this review is to describe the role of CD95/CD95L in the pathophysiology of cancers, autoimmune diseases and chronic inflammation and to discuss recently patented and emerging therapeutic strategies that exploit/block the CD95/CD95L system in these diseases.
Collapse
Affiliation(s)
- Vesna Risso
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France.
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
12
|
Yang N, Liu X, Chen X, Yu S, Yang W, Liu Y. Stem cells from exfoliated deciduous teeth transplantation ameliorates Sjögren's syndrome by secreting soluble PD-L1. J Leukoc Biol 2021; 111:1043-1055. [PMID: 34622984 DOI: 10.1002/jlb.6ma0921-752rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell transplantation (MSCT) regulates immune cells, and is a promising therapeutic approach for treating autoimmune diseases. Stem cells from human exfoliated deciduous teeth (SHED) are a unique postnatal stem cell population from the cranial neural crest with high self-renewal, multipotent differentiation, and superior immunomodulatory properties. However, the mechanisms by which SHED can treat autoimmune diseases remain unclear. Sjögren's syndrome (SS) is an autoimmune disease histologically characterized by high lymphocytic infiltration in the salivary and lacrimal glands that results in dryness symptoms. This study explores the potential of systemic transplantation of SHED to ameliorate SS-induced dryness symptoms in mice. Overall, SHED could rescue the balance of regulatory T cell (Treg)/T helper cell 17 (Th17) in the recipient SS mice. Mechanistically, SHED promoted Treg conversion and inhibited Th17 function via paracrine effects, which were related to the secretion of soluble programmed cell death ligand 1 (sPD-L1). Moreover, it directly induced Th17 apoptosis via cell-cell contact, leading to the up-regulation of Treg and down-regulation of Th17 cells. In summary, SHED-mediated rescue of Treg/Th17 balance via the sPD-L1/PD-1 pathway ameliorates the gland inflammation and dryness symptoms in SS mice. These findings suggest that SHED are a promising stem cell source for the treatment of autoimmune diseases in the clinical setting.
Collapse
Affiliation(s)
- Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xuemei Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Chen
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Si Yu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Wenxiao Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
13
|
Sonoda S, Murata S, Kato H, Zakaria F, Kyumoto-Nakamura Y, Uehara N, Yamaza H, Kukita T, Yamaza T. Targeting of Deciduous Tooth Pulp Stem Cell-Derived Extracellular Vesicles on Telomerase-Mediated Stem Cell Niche and Immune Regulation in Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2021; 206:3053-3063. [PMID: 34078710 DOI: 10.4049/jimmunol.2001312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/05/2021] [Indexed: 01/09/2023]
Abstract
Systemic transplantation of stem cells from human exfoliated deciduous teeth (SHED) is used to treat systemic lupus erythematosus (SLE)-like disorders in MRL/lpr mice. However, the mechanisms underlying the SHED-based therapy remain unclear. In this study, we hypothesized that trophic factors within SHED-releasing extracellular vesicles (SHED-EVs) ameliorate the SLE-like phenotypes in MRL/lpr mice. SHED-EVs were isolated from the culture supernatant of SHED. SHED-EVs were treated with or without RNase and systemically administered to MRL/lpr mice. Subsequently, recipient bone marrow mesenchymal stem cells (BMMSCs) isolated from SHED-EV-administered MRL/lpr mice were examined for the in vitro and in vivo activity of hematopoietic niche formation and immunoregulation. Furthermore, the recipient BMMSCs were secondarily transplanted into MRL/lpr mice. The systemic SHED-EV infusion ameliorated the SLE-like phenotypes in MRL/lpr mice and improved the functions of recipient BMMSCs by rescuing Tert mRNA-associated telomerase activity, hematopoietic niche formation, and immunoregulation. The secondary transplantation of recipient BMMSCs recovered the immune condition and renal functions of MRL/lpr mice. The RNase treatment depleted RNAs, such as microRNAs, within SHED-EVs, and the RNA-depleted SHED-EVs attenuated the benefits of SHED-EVs in MRL/lpr mice. Collectively, our findings suggest that SHED-secreted RNAs, such as microRNAs, play a crucial role in treating SLE by targeting the telomerase activity of recipient BMMSCs.
Collapse
Affiliation(s)
- Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Kyushu University Graduate School of Dental Science, Fukuoka, Japan; and
| | - Sara Murata
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Kyushu University Graduate School of Dental Science, Fukuoka, Japan; and
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Kyushu University Graduate School of Dental Science, Fukuoka, Japan; and
| | - Fouad Zakaria
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Kyushu University Graduate School of Dental Science, Fukuoka, Japan; and
| | - Yukari Kyumoto-Nakamura
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Kyushu University Graduate School of Dental Science, Fukuoka, Japan; and
| | - Norihisa Uehara
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Kyushu University Graduate School of Dental Science, Fukuoka, Japan; and
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Toshio Kukita
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Kyushu University Graduate School of Dental Science, Fukuoka, Japan; and
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Kyushu University Graduate School of Dental Science, Fukuoka, Japan; and
| |
Collapse
|
14
|
Tian J, Kou X, Wang R, Jing H, Chen C, Tang J, Mao X, Zhao B, Wei X, Shi S. Autophagy controls mesenchymal stem cell therapy in psychological stress colitis mice. Autophagy 2020; 17:2586-2603. [PMID: 32910719 DOI: 10.1080/15548627.2020.1821547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cell transplantation (MSCT) has been applied to treat a variety of autoimmune and inflammatory diseases. Psychosocial stress can aggravate disease progression in chronic inflammatory patients. Whether psychological stress affects MSCT is largely unknown. In this study we show that psychological stress attenuates therapeutic effects of MSCT in a DSS-induced colitis mouse model by elevating the levels of exosomal Mir7k/mmu-let-7 k (microRNA 7 k) in circulation. Mechanistically, Mir7k inhibits STAT3 pathway in donor MSCs, leading to upregulated expression of BECN1 (beclin 1, autophagy related) and, thus, activation of macroautophagy/autophagy. Inhibition of autophagy by blocking Mir7k or activating STAT3 signaling can restore MSCT-mediated therapy in psychologically stressed colitis mice. Our study identifies a previously unknown role of autophagy in regulating MSCT therapy via exosomal miRNA Mir7k.Abbreviations: BafA1: bafilomycin A1; BECN1: beclin 1, autophagy related; DAI: disease activity index; DAPI: 4',6-diamidino-2-phenylindole; DSS: dextran sulfate sodium; GFP: green fluorescent protein; HAI: histological activity index; IFNG/IFN-γ: interferon gamma; IL10: interleukin 10; IL1RN/IL-1Rra: interleukin 1 receptor antagonist; KD: knockdown; miRNA: microRNA; MSCs: mesenchymal stem cells; MSCT: mesenchymal stem cell transplantation; NTA: nanoparticle tracking analysis; PGE2: prostaglandin E2; SD: standard deviation; siRNA: small-interfering RNA; STAT3: signal transducer and activator of transcription 3; TEM: transmission electron microscopy; TGFB1/TGF-β1: transforming growth factor, beta 1; Th17 cell: T helper cell 17; TNF/TNF-α: tumor necrosis factor; TNFAIP6/TSG6: tumor necrosis factor alpha induced protein 6; Tregs: regulatory T cells.
Collapse
Affiliation(s)
- Jun Tian
- Guanghua School of Stomatology, Affiliated Stomatological Hospital and Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Xiaoxing Kou
- Guanghua School of Stomatology, Affiliated Stomatological Hospital and Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Runci Wang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Huan Jing
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Jianxia Tang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Xueli Mao
- Guanghua School of Stomatology, Affiliated Stomatological Hospital and Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Bingjiao Zhao
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Xi Wei
- Guanghua School of Stomatology, Affiliated Stomatological Hospital and Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Songtao Shi
- Guanghua School of Stomatology, Affiliated Stomatological Hospital and Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
15
|
The influence of acetylsalicylic acid on bone regeneration: systematic review and meta-analysis. Br J Oral Maxillofac Surg 2020; 59:E1-E16. [PMID: 34736809 DOI: 10.1016/j.bjoms.2020.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/10/2020] [Indexed: 12/09/2022]
Abstract
Acetylsalicylic acid (ASA) is commonly used as a non-steroidal anti-inflammatory drug that interferes with multiple biological pathways. ASA acts by stimulating osteogenesis and inhibiting osteoclastogenesis. Thus, the objective of this study was to perform a systematic review and meta-analysis to evaluate the effectiveness of the use of ASA in the bone regeneration in animal models. This review was structured based on the PRISMA Statement and registered on PROSPERO database according to protocol number #CDR42018111403. The quality of evidence was assessed by using the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE). With the development of search strategies, we identified studies on the use of ASA from the following databases: 1- Medline (via PubMed); 2 - Web of Science; 3 - Scopus; and 4 - EMBASE. A total of 296 articles were identified and after screening the title, abstract, and full text, only 18 studies were selected for qualitative analysis and 12 were selected for performance of the quantitative analysis (meta-analysis). A meta-analysis of the amount of bone tissue formed showed a significant advantage when ASA was locally used, revealing a mean difference (MD) of 22.75% (95% CI: 15.39-30.12) p < 0.00001. Within the limitations of the available data, the results were promising and showed that ASA can be effective in bone formation in animal models.
Collapse
|
16
|
Sonoda S, Murata S, Nishida K, Kato H, Uehara N, Kyumoto YN, Yamaza H, Takahashi I, Kukita T, Yamaza T. Extracellular vesicles from deciduous pulp stem cells recover bone loss by regulating telomerase activity in an osteoporosis mouse model. Stem Cell Res Ther 2020; 11:296. [PMID: 32680564 PMCID: PMC7367365 DOI: 10.1186/s13287-020-01818-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/23/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Systemic transplantation of stem cells from human exfoliated deciduous teeth (SHED) recovers bone loss in animal models of osteoporosis; however, the mechanisms underlying this remain unclear. Here, we hypothesized that trophic factors within SHED-releasing extracellular vesicles (SHED-EVs) rescue osteoporotic phenotype. METHODS EVs were isolated from culture supernatant of SHED. SHED-EVs were treated with or without ribonuclease and systemically administrated into ovariectomized mice, followed by the function of recipient bone marrow mesenchymal stem cells (BMMSCs) including telomerase activity, osteoblast differentiation, and sepmaphorine-3A (SEMA3A) secretion. Subsequently, human BMMSCs were stimulated by SHED-EVs with or without ribonuclease treatment, and then human BMMSCs were examined regarding the function of telomerase activity, osteoblast differentiation, and SEMA3A secretion. Furthermore, SHED-EV-treated human BMMSCs were subcutaneously transplanted into the dorsal skin of immunocompromised mice with hydroxyapatite tricalcium phosphate (HA/TCP) careers and analyzed the de novo bone-forming ability. RESULTS We revealed that systemic SHED-EV-infusion recovered bone volume in ovariectomized mice and improved the function of recipient BMMSCs by rescuing the mRNA levels of Tert and telomerase activity, osteoblast differentiation, and SEMA3A secretion. Ribonuclease treatment depleted RNAs, including microRNAs, within SHED-EVs, and these RNA-depleted SHED-EVs attenuated SHED-EV-rescued function of recipient BMMSCs in the ovariectomized mice. These findings were supported by in vitro assays using human BMMSCs incubated with SHED-EVs. CONCLUSION Collectively, our findings suggest that SHED-secreted RNAs, such as microRNAs, play a crucial role in treating postmenopausal osteoporosis by targeting the telomerase activity of recipient BMMSCs.
Collapse
Affiliation(s)
- Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Sara Murata
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kento Nishida
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Norihisa Uehara
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yukari N Kyumoto
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Division of Oral Health, Growth & Development, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Toshio Kukita
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
17
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
18
|
Xie Y, Pan M, Gao Y, Zhang L, Ge W, Tang P. Dose-dependent roles of aspirin and other non-steroidal anti-inflammatory drugs in abnormal bone remodeling and skeletal regeneration. Cell Biosci 2019; 9:103. [PMID: 31890152 PMCID: PMC6929289 DOI: 10.1186/s13578-019-0369-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/20/2019] [Indexed: 01/10/2023] Open
Abstract
The failure of remodeling process that constantly regenerates effete, aged bone is highly associated with bone nonunion and degenerative bone diseases. Numerous studies have demonstrated that aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) activate cytokines and mediators on osteoclasts, osteoblasts and their constituent progenitor cells located around the remodeling area. These cells contribute to a complex metabolic scenario, resulting in degradative or synthetic functions for bone mineral tissues. The spatiotemporal effects of aspirin and NSAIDs in the bone remodeling are controversial according the specific therapeutic doses used for different clinical conditions. Herein, we review in vitro, in vivo, and clinical studies on the dose-dependent roles of aspirin and NSAIDs in bone remodeling. Our results show that low-dose aspirin (< 100 μg/mL), which is widely recommended for prevention of thrombosis, is very likely to be benefit for maintaining bone mass and qualities by activation of osteoblastic bone formation and inhibition of osteoclast activities via cyclooxygenase-independent manner. While, the roles of high-dose aspirin (150-300 μg/mL) and other NSAIDs in bone self-regeneration and fracture-healing process are difficult to elucidate owing to their dual effects on osteoclast activity and bone formation of osteoblast. In conclusion, this study highlighted the potential clinical applications of low-dose aspirin in abnormal bone remodeling as well as the risks of high-dose aspirin and other NSAIDs for relieving pain and anti-inflammation in fractures and orthopedic operations.
Collapse
Affiliation(s)
- Yong Xie
- 1Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 China
| | - Meng Pan
- 2State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Yanpan Gao
- 2State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Licheng Zhang
- 1Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 China
| | - Wei Ge
- 2State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Peifu Tang
- 1Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 China
| |
Collapse
|
19
|
Wu L, Luo Z, Liu Y, Jia L, Jiang Y, Du J, Guo L, Bai Y, Liu Y. Aspirin inhibits RANKL-induced osteoclast differentiation in dendritic cells by suppressing NF-κB and NFATc1 activation. Stem Cell Res Ther 2019; 10:375. [PMID: 31805984 PMCID: PMC6894480 DOI: 10.1186/s13287-019-1500-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/17/2019] [Accepted: 11/20/2019] [Indexed: 01/04/2023] Open
Abstract
Background Aspirin has been demonstrated to promote osteoblast-mediated bone formation and inhibit osteoclast (OC)-mediated bone resorption. However, it remains unclear whether aspirin influences other immune cells during bone resorption. Dendritic cells (DCs), the most potent antigen-presenting cells, can also transdifferentiate into active OCs in the presence of receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). The effects of aspirin on DC-derived OCs (DDOCs) were investigated in the current study. Methods Flow cytometry and mixed lymphocyte reaction (MLR) assays were used for DC identification. The proliferative capacity of DCs was determined by BrdU assays. Apoptosis was examined by flow cytometry. The osteoclastic potential of DCs was tested using tartrate-resistant acid phosphatase (TRAP) staining, western blotting, and reverse transcription polymerase chain reaction (RT-PCR). Western blotting was also used to examine signaling pathways. A mandibular bone defect model was established to assess the effect of aspirin on bone resorption. Results Aspirin had no influence on the surface phenotype, proliferation, or apoptosis of DCs, though aspirin significantly inhibited osteoclast differentiation in RANKL-stimulated DCs. DC osteoclast differentiation was modulated by aspirin via the nuclear factor kappa B (NF-κB)/nuclear factor of activated T cell, cytoplasmic 1 (NFATc1) signaling pathway. Aspirin treatment also had favorable therapeutic effects on bone regeneration in the bone defect model, and the number of osteoclasts was decreased. Conclusions Aspirin inhibited RANKL-induced OC differentiation in DCs via the NF-κB pathway, downregulating expression of NFATc1. Aspirin treatment promoted bone regeneration by inhibiting DDOC activation in the early stages of inflammation in a rat mandibular bone defect model.
Collapse
Affiliation(s)
- Lili Wu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Lu Jia
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| |
Collapse
|
20
|
Yu T, Yan B, Li J, Zhang T, Yang R, Wang X, Liu Y, Liu D. Acetylsalicylic acid rescues the immunomodulation of inflamed gingiva-derived mesenchymal stem cells via upregulating FasL in mice. Stem Cell Res Ther 2019; 10:368. [PMID: 31796122 PMCID: PMC6892130 DOI: 10.1186/s13287-019-1485-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023] Open
Abstract
Background Gingiva-derived mesenchymal stem cells (GMSCs) obtained multipotent differentiation and immunomodulatory properties. However, collecting healthy gingival tissues may be challenging in the clinical situation. Thus, in our present study, we aim to evaluate whether the immunomodulatory capacity of gingiva-derived mesenchymal stem cells from inflamed gingival tissues (iGMSCs) is impaired and find a way to rescue their deficient properties. Methods We compared the immunomodulation capacity of GMSCs and iGMSCs using an in vitro co-culture system and a mouse colitis model. T cell apoptosis, T helper 17 (Th17), and regulatory T (Treg) cell differentiation were detected by flow cytometry analysis. Results We demonstrated that iGMSCs obtained a decreased immunomodulatory capacity compared with GMSCs. Acetylsalicylic acid (ASA) pretreatment was able to rescue iGMSCs’ impaired immunomodulatory properties. Mechanistically, ASA was capable of upregulating the expression of Fas ligand (FasL) in iGMSCs, leading to an improvement in iGMSC-mediated T cell apoptosis and therapeutic efficacy in the treatment in colitis mice. Conclusions This study indicates that the deficient immunomodulatory function of iGMSCs could be rescued by ASA pretreatment via upregulating of FasL in mice. This strategy might serve as a practical approach to rescue deficient MSC function for further therapeutic application.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Boxi Yan
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Jing Li
- Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Ting Zhang
- Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Ruili Yang
- Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Xuedong Wang
- Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Yan Liu
- Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Dawei Liu
- Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China.
| |
Collapse
|
21
|
Inhibition of Tet1- and Tet2-mediated DNA demethylation promotes immunomodulation of periodontal ligament stem cells. Cell Death Dis 2019; 10:780. [PMID: 31611558 PMCID: PMC6791886 DOI: 10.1038/s41419-019-2025-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
Periodontal ligament stem cells (PDLSCs) possess great potential for clinical treatment of immune diseases due to their extensive immunomodulatory properties. However, the underlying mechanisms that govern the immunomodulatory properties of mesenchymal stem cells (MSCs) are still not fully elucidated. Here, we show that member of the Ten-eleven translocation (Tet) family, a group of DNA demethylases, are capable of regulating PDLSC immunomodulatory functions. Tet1 and Tet2 deficiency enhance PDLSC-induced T cell apoptosis and ameliorate the disease phenotype in colitis mice. Mechanistically, we found that downregulation of Tet1 and Tet2 leads to hypermethylation of DKK-1 promoter, leading to the activation of WNT signaling pathway and therefore promoting Fas ligand (FasL) expression, which results in elevated immunomodulatory capacity of PDLSCs. These results reveal a previously unrecognized role of Tet1 and Tet2 in regulating immunomodulation of PDLSCs. This Tet/DKK-1/FasL cascade may serve as a promising target for enhancing PDLSC-based immune therapy.
Collapse
|
22
|
Yuan X, Xu D. Telomerase Reverse Transcriptase (TERT) in Action: Cross-Talking with Epigenetics. Int J Mol Sci 2019; 20:ijms20133338. [PMID: 31284662 PMCID: PMC6651578 DOI: 10.3390/ijms20133338] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Telomerase, an RNA-dependent DNA polymerase with telomerase reverse transcriptase (TERT) as the catalytic component, is silent due to the tight repression of the TERT gene in most normal human somatic cells, whereas activated only in small subsets of cells, including stem cells, activated lymphocytes, and other highly proliferative cells. In contrast, telomerase activation via TERT induction is widespread in human malignant cells, which is a prerequisite for malignant transformation. It is well established that TERT/telomerase extends telomere length, thereby conferring sustained proliferation capacity to both normal and cancerous cells. The recent evidence has also accumulated that TERT/telomerase may participate in the physiological process and oncogenesis independently of its telomere-lengthening function. For instance, TERT is shown to interact with chromatin remodeling factors and to regulate DNA methylation, through which multiple cellular functions are attained. In the present review article, we summarize the non-canonical functions of TERT with a special emphasis on its cross-talk with epigenetics: How TERT contributes to epigenetic alterations in physiological processes and cancer, and how the aberrant epigenetics in turn facilitate TERT expression and function, eventually promoting cancer either initiation or progression or both. Finally, we briefly discuss clinical implications of the TERT-related methylation.
Collapse
Affiliation(s)
- Xiaotian Yuan
- School of Medicine, Shandong University, Jinan 250012, China.
- Department of Medicine, Center for Molecular Medicine (CMM) and Bioclinicum, Karolinska Institute and Karolinska University Hospital Solna, 171 64 Solna, Sweden.
| | - Dawei Xu
- Department of Medicine, Center for Molecular Medicine (CMM) and Bioclinicum, Karolinska Institute and Karolinska University Hospital Solna, 171 64 Solna, Sweden.
- Shandong University-Karolinska Institute Collaborative Laboratory for Cancer and Stem Cell Research, Jinan 250033, China.
| |
Collapse
|
23
|
Chen L, Zhang L, Zhu Z, He W, Gao L, Zhang W, Liu J, Huang A. Effects of IL-10- and FasL-overexpressing dendritic cells on liver transplantation tolerance in a heterotopic liver transplantation rat model. Immunol Cell Biol 2019; 97:714-725. [PMID: 30977930 DOI: 10.1111/imcb.12252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
Acute rejection is the major determinant for the long-term survival of donor liver after liver transplantation (LT). The aim of this study was to examine the therapeutic potential of interleukin (IL)-10-FasL-overexpressing immature dendritic cells (imDCs) to induce local immunosuppression in liver grafts. imDCs derived from donors were transduced by lentiviral vectors expressing human IL-10 and/or Fas ligand (FasL) gene(s), and the expression of surface molecules and the ability to induce T-cell proliferation were measured. imDCs were intraperitoneally injected into recipient rats as a model of LT to examine the rejection grade [Banff rejection activity index (RAI)], liver functions [Alanine aminotransferase, Aspartate aminotransferase (AST) and total bilirubin (TBIL)] and post-transplant survival. IL-10 and FasL co-transduction of imDCs induced a greater reduction in CD80, CD86 and major histocompatibility complex class II (MHC II) expression, as well as T-cell proliferation, but increased levels of IL-10 and FasL in culture supernatants compared with mono-transduced or untransduced imDCs (P < 0.05). The infusion of co-transduced imDCs in LT recipients reduced RAI scores, decreased plasma AST and TBIL, and prolonged survival compared with mono-transduced or untransduced imDC-treated liver allografts. These findings demonstrated that the transfusion of IL-10-FasL/imDCs enhanced immune tolerance and prolonged the survival of liver allografts after LT. The immunomodulatory activity of IL-10- and FasL-modified imDCs might be a new therapeutic approach to prevent organ rejection in clinical transplantation.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian, China.,Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Institute of Oncology, Fujian Medical University, Fuzhou, Fujian, China.,Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Lina Zhang
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian, China.,Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhu Zhu
- Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wubing He
- Provincial Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Lingyun Gao
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian, China.,Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Institute of Oncology, Fujian Medical University, Fuzhou, Fujian, China.,Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenmin Zhang
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian, China.,Institute of Oncology, Fujian Medical University, Fuzhou, Fujian, China.,Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Jingfeng Liu
- Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Divison of Hepatobiliary Surgery, Hepatic Disease Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Aimin Huang
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian, China.,Institute of Oncology, Fujian Medical University, Fuzhou, Fujian, China.,Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
24
|
Tanaka Y, Sonoda S, Yamaza H, Murata S, Nishida K, Kyumoto-Nakamura Y, Uehara N, Nonaka K, Kukita T, Yamaza T. Acetylsalicylic Acid Treatment and Suppressive Regulation of AKT Accelerate Odontogenic Differentiation of Stem Cells from the Apical Papilla. J Endod 2019; 45:591-598.e6. [DOI: 10.1016/j.joen.2019.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/07/2019] [Accepted: 01/17/2019] [Indexed: 01/26/2023]
|
25
|
Liu D, Kou X, Chen C, Liu S, Liu Y, Yu W, Yu T, Yang R, Wang R, Zhou Y, Shi S. Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Res 2018; 28:918-933. [PMID: 30030518 PMCID: PMC6123409 DOI: 10.1038/s41422-018-0070-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/26/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022] Open
Abstract
In the human body, 50-70 billion cells die every day, resulting in the generation of a large number of apoptotic bodies. However, the detailed biological role of apoptotic bodies in regulating tissue homeostasis remains unclear. In this study, we used Fas-deficient MRL/lpr and Caspase 3-/- mice to show that reduction of apoptotic body formation significantly impaired the self-renewal and osteo-/adipo-genic differentiation of bone marrow mesenchymal stem cells (MSCs). Systemic infusion of exogenous apoptotic bodies rescued the MSC impairment and also ameliorated the osteopenia phenotype in MRL/lpr, Caspase 3-/- and ovariectomized (OVX) mice. Mechanistically, we showed that MSCs were able to engulf apoptotic bodies via integrin αvβ3 and reuse apoptotic body-derived ubiquitin ligase RNF146 and miR-328-3p to inhibit Axin1 and thereby activate the Wnt/β-catenin pathway. Moreover, we used a parabiosis mouse model to reveal that apoptotic bodies participated in the circulation to regulate distant MSCs. This study identifies a previously unknown role of apoptotic bodies in maintaining MSC and bone homeostasis in both physiological and pathological contexts and implies the potential use of apoptotic bodies to treat osteoporosis.
Collapse
Affiliation(s)
- Dawei Liu
- Department of Orthodontics, Peking University School & Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing, 100081, China
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Xiaoxing Kou
- Department of Orthodontics, Peking University School & Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing, 100081, China
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Shiyu Liu
- School of Stomatology, Fourth Military Medical University, Xi'an, Shanxi, 710032, China
| | - Yao Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Wenjing Yu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Tingting Yu
- Department of Orthodontics, Peking University School & Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing, 100081, China
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Ruili Yang
- Department of Orthodontics, Peking University School & Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing, 100081, China
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Runci Wang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School & Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA.
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA.
| |
Collapse
|
26
|
Abstract
Mesenchymal stem cells (MSCs) have been discovered in almost every organ and tissue. MSCs are a heterogeneous population of cells with the capacity to self-renew and show multilineage differentiation. MSCs possess immunomodulatory properties by regulating multiple types of immune cells. They are emerging as a promising therapeutic agent, and have been widely used for cell-based tissue regeneration and immune therapies. A further understanding of the biological characteristics of MSCs is a prerequisite to develop more efficient MSC-based therapies. This article reviews the current understanding of different MSC populations in orofacial tissue compared with those derived from bone marrow.
Collapse
Affiliation(s)
- Xueli Mao
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, 55 West Lingyuan Rd, Yuexiu District, Guangzhou 510055, China
| | - Yao Liu
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pediatric Dentistry, School of Stomatology, China Medical University, 117 South Nanjing Street, Heping District, Shenyang 110002, China
| | - Chider Chen
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Songtao Shi
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Stem Cells as Potential Targets of Polyphenols in Multiple Sclerosis and Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1483791. [PMID: 30112360 PMCID: PMC6077677 DOI: 10.1155/2018/1483791] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) and multiple sclerosis are major neurodegenerative diseases, which are characterized by the accumulation of abnormal pathogenic proteins due to oxidative stress, mitochondrial dysfunction, impaired autophagy, and pathogens, leading to neurodegeneration and behavioral deficits. Herein, we reviewed the utility of plant polyphenols in regulating proliferation and differentiation of stem cells for inducing brain self-repair in AD and multiple sclerosis. Firstly, we discussed the genetic, physiological, and environmental factors involved in the pathophysiology of both the disorders. Next, we reviewed various stem cell therapies available and how they have proved useful in animal models of AD and multiple sclerosis. Lastly, we discussed how polyphenols utilize the potential of stem cells, either complementing their therapeutic effects or stimulating endogenous and exogenous neurogenesis, against these diseases. We suggest that polyphenols could be a potential candidate for stem cell therapy against neurodegenerative disorders.
Collapse
|
28
|
Therapeutic effect of bone marrow mesenchymal stem cells pretreated with acetylsalicylic acid on experimental periodontitis in rats. Int Immunopharmacol 2017; 54:320-328. [PMID: 29195233 DOI: 10.1016/j.intimp.2017.11.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 02/05/2023]
Abstract
Periodontitis is a local inflammatory environment with dysregulation of host responses, which results in destruction of periodontal tissues. Mesenchymal stem cells (MSCs) have been proven to play important roles in tissue regeneration by serving as progenitor cells, but its therapeutic outcomes are yet, evaluated variable and unpredictable because of the influence of local inflammation. Acetylsalicylic acid (ASA) has been reported to benefit for MSCs in terms of inflammation control and tissue regeneration. In this study, we aimed to explore the effect of bone marrow mesenchymal stem cells (BMMSCs) pretreated with ASA (ASA-BMMSCs) on periodontal bone repair in a ligature and bacteria-induced periodontitis model in rats. We show herein that, ASA-BMMSCs treatment reduced inflammatory infiltration and alveolar bone loss in periodontitis rats, reflected by immunohistochemistry staining of OPG/RANK-L and Micro-CT. Levels of TNF-α and IL-17 decreased while IL-10 increased after the treatment of ASA-BMMSCs in periodontitis rats. In addition, less osteoclasts number was detected in ASA-BMMSCs treated group. In vitro study showed that ASA facilitated BMMSCs proliferation and differentiation, which might explain the reduced bone loss in periodontitis. These results together suggest that local application of ASA-BMMSCs in periodontal lesion sites is capable of improving inflammatory microenvironment, promoting alveolar bone regeneration, thus leading to a recovery of periodontal homeostasis. Besides, this study also provides us a new idea that a combined application of ASA and BMMSCs may be a novel approach for periodontitis treatment and periodontal bone regeneration.
Collapse
|
29
|
|
30
|
Chen C, Wang D, Moshaverinia A, Liu D, Kou X, Yu W, Yang R, Sun L, Shi S. Mesenchymal stem cell transplantation in tight-skin mice identifies miR-151-5p as a therapeutic target for systemic sclerosis. Cell Res 2017; 27:559-577. [PMID: 28106077 PMCID: PMC5385608 DOI: 10.1038/cr.2017.11] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/03/2016] [Accepted: 12/06/2016] [Indexed: 12/16/2022] Open
Abstract
Systemic sclerosis (SSc), an autoimmune disease, may cause significant osteopenia due to activation of the IL4Rα/mTOR pathway. Mesenchymal stem cell transplantation (MSCT) can ameliorate immune disorders in SSc via inducing immune tolerance. However, it is unknown whether MSCT rescues osteopenia phenotype in SSc. Here we show that MSCT can effectively ameliorate osteopenia in SSc mice by rescuing impaired lineage differentiation of the recipient bone marrow MSCs. Mechanistically, we show that donor MSCs transfer miR-151-5p to the recipient bone marrow MSCs in SSc mice to inhibit IL4Rα expression, thus downregulating mTOR pathway activation to enhance osteogenic differentiation and reduce adipogenic differentiation. Moreover, systemic delivery of miR-151-5p is capable of rescuing osteopenia, impaired bone marrow MSCs, tight skin, and immune disorders in SSc mice, suggesting that miR-151-5p may be a specific target for SSc treatment. Our finding identifies a previously unrecognized role of MSCT in transferring miRNAs to recipient stem cells to ameliorate osteopenia via rescuing a non-coding RNA pathway.
Collapse
Affiliation(s)
- Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Alireza Moshaverinia
- Division of Advanced Prosthodontics, Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Dawei Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Xiaoxing Kou
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Wenjing Yu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Ruili Yang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Gu Y, Shi S. Transplantation of gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis. Arthritis Res Ther 2016; 18:262. [PMID: 27836015 PMCID: PMC5106846 DOI: 10.1186/s13075-016-1160-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/20/2016] [Indexed: 12/29/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic, progressive, and inflammatory autoimmune disease which primarily affects the small arthrodial joints. The aim of this study was to test whether transplantation of mesenchymal stem cells derived from gingival tissue (GMSCs) could ameliorate collagen-induced arthritis (CIA), and to explore the role of the FasL/Fas pathway in the underlying mechanism. Methods DBA/1 mice with collagen II-induced arthritis were treated with GMSCs from the C57BL/6 J mouse, the B6Smn.C3-FasLgld/J mouse (FasL–/– GMSCs), and FasL overexpressed FasL–/– GMSCs (FasL TF GMSCs). Inflammation was evaluated by measuring clinical score, tumor necrosis factor (TNF)-α and anti-collagen II antibody levels, and histological analyses. The levels of CD4+ Th cell subsets in spleens and draining lymph nodes were assessed by flow cytometric analysis. Results Systemic infusion of GMSCs can significantly reduce the severity of experimental arthritis, and resume the balance of Th cell subsets. FasL–/– GMSCs failed to induce apoptosis of activated T cells in vitro and in vivo, and therefore show no therapeutic effects, whereas FasL TF GMSCs can rescue the immunosuppressant effects in the treatment of CIA. Conclusions GMSC-based therapy induces T-cell apoptosis via the FasL/Fas pathway and results in immune tolerance and amelioration of the CIA inflammation.
Collapse
Affiliation(s)
- Yongchun Gu
- Department of Dentistry, First People's Hospital of Wujiang Dist., Nantong University, Suzhou, China. .,Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, USA.
| | - Songtao Shi
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Interferon-gamma improves impaired dentinogenic and immunosuppressive functions of irreversible pulpitis-derived human dental pulp stem cells. Sci Rep 2016; 6:19286. [PMID: 26775677 PMCID: PMC4726054 DOI: 10.1038/srep19286] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/07/2015] [Indexed: 12/29/2022] Open
Abstract
Clinically, irreversible pulpitis is treated by the complete removal of pulp tissue followed by replacement with artificial materials. There is considered to be a high potential for autologous transplantation of human dental pulp stem cells (DPSCs) in endodontic treatment. The usefulness of DPSCs isolated from healthy teeth is limited. However, DPSCs isolated from diseased teeth with irreversible pulpitis (IP-DPSCs) are considered to be suitable for dentin/pulp regeneration. In this study, we examined the stem cell potency of IP-DPSCs. In comparison with healthy DPSCs, IP-DPSCs expressed lower colony-forming capacity, population-doubling rate, cell proliferation, multipotency, in vivo dentin regeneration, and immunosuppressive activity, suggesting that intact IP-DPSCs may be inadequate for dentin/pulp regeneration. Therefore, we attempted to improve the impaired in vivo dentin regeneration and in vitro immunosuppressive functions of IP-DPSCs to enable dentin/pulp regeneration. Interferon gamma (IFN-γ) treatment enhanced in vivo dentin regeneration and in vitro T cell suppression of IP-DPSCs, whereas treatment with tumor necrosis factor alpha did not. Therefore, these findings suggest that IFN-γ may be a feasible modulator to improve the functions of impaired IP-DPSCs, suggesting that autologous transplantation of IFN-γ-accelerated IP-DPSCs might be a promising new therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment.
Collapse
|
33
|
Delta-Like-1 Changes the Immunomodulatory Property of OP9 Cells. Stem Cells Int 2015; 2016:1628352. [PMID: 26649045 PMCID: PMC4663344 DOI: 10.1155/2016/1628352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/10/2015] [Accepted: 04/20/2015] [Indexed: 01/10/2023] Open
Abstract
As stromal cells and recently confirmed mesenchymal stem cells, OP9 cells support hematopoiesis stem cell (HSC) differentiation into the B lymphocyte lineage, yet Delta-like-1 (DL1) overexpressing OP9 (OP9DL1) cells promote the development of early T lymphocytes from HSC. However, the immunomodulatory capacity of OP9 or OP9DL1 on mature B and T cell proliferation has not been elucidated. Here, we show that OP9 and OP9DL1 have similar proliferation capacities and immunophenotypes except DL1 expression. Compared with OP9, OP9DL1 displayed more osteogenesis and less adipogenesis when cultured in the respective induction media. Both OP9 and OP9DL1 inhibited mature B and T cell proliferation. Furthermore, OP9 showed stronger inhibition on B cell proliferation and OP9DL1 exhibited stronger inhibition on T cell proliferation. With stimulation, both OP9 and OP9DL1 showed increased nitrate oxide (NO) production. The NO levels of OP9 were higher than that of OP9DL1 when stimulated with TNFα/IFNγ or LPS/IL4. Taken together, our study reveals a previously unrecognized role of OP9 and OP9DL1 in mature B and T cell proliferation. DL1 overexpression alone changed the properties of OP9 cells in addition to their role in early B cell development.
Collapse
|
34
|
Cao Y, Xiong J, Mei S, Wang F, Zhao Z, Wang S, Liu Y. Aspirin promotes bone marrow mesenchymal stem cell-based calvarial bone regeneration in mini swine. Stem Cell Res Ther 2015; 6:210. [PMID: 26519141 PMCID: PMC4628405 DOI: 10.1186/s13287-015-0200-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 03/17/2015] [Accepted: 10/08/2015] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Stem cells have great therapeutic potential due to their capacity for self-renewal and their potential for differentiating into multiple cell lineages. It has been recently shown that the host immune system has fundamental effects on the fate of transplanted mesenchymal stem cells during bone repair, where the topical administration of aspirin is capable of improving calvarial bone repair in rodents by inhibiting tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) production. This study investigates whether aspirin is capable of accelerating the regenerative potential of bone marrow mesenchymal stem cells (BMSC) in a mini swine calvarial bone defect model. METHODS Calvarial bone defects (3 cm × 1.8 cm oval defect) in mini swine were treated with BMSC pretreated with 75 μg/ml aspirin for 24 h seeded onto hydroxyaptite/tricalcium phosphatel (HA/TCP), or with BMSC with HA/TCP, or with HA/TCP only, or remained untreated. Animals were scanned with micro-computed tomography (microCT) at 2 days and 6 months postsurgery and were sacrificed at 6 months postsurgery with decalcified tissues being processed for histomorphometric examination. The cytokine levels, including TNF-α and IFN-γ, were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Aspirin at 75 μg/ml promoted the osteogenesis of BMSC in vitro and in vivo, shown by Alizarin Red staining and new bone volume in the nude mice transplantation model (p < 0.01), respectively. Defects treated with aspirin-BMSC showed significantly greater new bone fill compared with other three groups at 6 months postsurgery (p < 0.01). Aspirin-BMSC treatment has significantly decreased the concentration of TNF-α and IFN-γ (p < 0.05). CONCLUSIONS The present study shows that BMSC pretreated with aspirin have a greater capacity to repair calvarial bone defects in a mini swine model. The results suggest that the administration of aspirin is capable of improving BMSC-mediated calvarial bone regeneration in a big animal model.
Collapse
Affiliation(s)
- Yu Cao
- Department of General Dentistry, School of Stomatology, Capital Medical University, Beijing, P. R. China.
| | - Jimin Xiong
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, P. R. China.
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China.
| | - Fu Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China.
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China.
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, P. R. China.
| |
Collapse
|
35
|
Arish N, Cohen PY, Golan-Gerstl R, Fridlender Z, Dayan MR, Zisman P, Breuer R, Wallach-Dayan SB. Overexpression of Telomerase Protects Human and Murine Lung Epithelial Cells from Fas- and Bleomycin-Induced Apoptosis via FLIP Upregulation. PLoS One 2015; 10:e0126730. [PMID: 25951185 PMCID: PMC4423936 DOI: 10.1371/journal.pone.0126730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/07/2015] [Indexed: 11/18/2022] Open
Abstract
High doses of bleomycin administered to patients with lymphomas and other tumors lead to significant lung toxicity in general, and to apoptosis of epithelial cells, in particular. Apoptosis of alveolar epithelium is an important step in the pathogenesis of bleomycin-induced pulmonary fibrosis. The Fas-FasL pathway is one of the main apoptotic pathways involved. Telomerase is a ribonucleoprotein RNA-dependent DNA polymerase complex consisting of an RNA template and a catalytic protein, telomerase reverse transcriptase (TERT). Telomerase also possess extra-telomeric roles, including modulation of transcription of anti-apoptotic genes, differentiation signals, and more. We hypothesized that telomerase overexpression affects Fas-induced epithelial cell apoptosis by an extra-telomeric role such as regulation of anti-apoptotic genes, specifically FLICE-like inhibitory protein (FLIP). Telomerase in mouse (MLE) and human (A549) lung epithelial cell lines was upregulated by transient transfection using cDNA hTERT expression vector. Telomerase activity was detected using a real-time PCR-based system. Bleomycin, and bleomycin-induced Fas-mediated apoptosis following treatment with anti-Fas activating mAb or control IgG, were assessed by Annexin V staining, FACS analysis, and confocal microscopy; caspase cleavage by Western blot; FLIP or Fas molecule detection by Western blot and flow cytometry. hTERT transfection of lung epithelial cells resulted in a 100% increase in their telomerase activity. Fas-induced lung epithelial cell apoptosis was significantly reduced in hTERT-transfected cells compared to controls in all experiments. Lung epithelial cells with increased telomerase activity had higher levels of FLIP expression but membrane Fas expression was unchanged. Upregulation of hTERT+ in human lung epithelial cells and subsequent downregulation of FLIP by shFLIP-RNA annulled hTERT-mediated resistance to apoptosis. Telomerase-mediated FLIP overexpression may be a novel mechanism to confer protection from apoptosis in bleomycin-exposed human lung epithelial cells.
Collapse
Affiliation(s)
- Nissim Arish
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Pazit Y. Cohen
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Regina Golan-Gerstl
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Zvi Fridlender
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
- Department of Pulmonary and Critical Care Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mark Richter Dayan
- Department of Emergency Medicine, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Philip Zisman
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Raphael Breuer
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
- Department of Pathology, Boston University School of Medicine, Boston, MA, United States of America
| | - Shulamit B. Wallach-Dayan
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
36
|
Chen C, Akiyama K, Wang D, Xu X, Li B, Moshaverinia A, Brombacher F, Sun L, Shi S. mTOR inhibition rescues osteopenia in mice with systemic sclerosis. ACTA ACUST UNITED AC 2014; 212:73-91. [PMID: 25534817 PMCID: PMC4291526 DOI: 10.1084/jem.20140643] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chen et al. show that treatment with rapamycin, a drug known to inhibit mTOR signaling, rescues low bone density in mice with systemic sclerosis. Fibrillin-1 (FBN1) deficiency-induced systemic sclerosis is attributed to elevation of interleukin-4 (IL4) and TGF-β, but the mechanism underlying FBN1 deficiency–associated osteopenia is not fully understood. We show that bone marrow mesenchymal stem cells (BMMSCs) from FBN1-deficient (Fbn1+/−) mice exhibit decreased osteogenic differentiation and increased adipogenic differentiation. Mechanistically, this lineage alteration is regulated by IL4/IL4Rα-mediated activation of mTOR signaling to down-regulate RUNX2 and up-regulate PPARγ2, respectively, via P70 ribosomal S6 protein kinase (P70S6K). Additionally, we reveal that activation of TGF-β/SMAD3/SP1 signaling results in enhancement of SP1 binding to the IL4Rα promoter to synergistically activate mTOR pathway in Fbn1+/− BMMSCs. Blockage of mTOR signaling by osteoblastic-specific knockout or rapamycin treatment rescues osteopenia phenotype in Fbn1+/− mice by improving osteogenic differentiation of BMMSCs. Collectively, this study identifies a previously unrecognized role of the FBN1/TGF-β/IL4Rα/mTOR cascade in BMMSC lineage selection and provides experimental evidence that rapamycin treatment may provide an anabolic therapy for osteopenia in Fbn1+/− mice.
Collapse
Affiliation(s)
- Chider Chen
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033 Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kentaro Akiyama
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033 Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama 700-8525, Japan
| | - Dandan Wang
- Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xingtian Xu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033 Key Laboratory of Translational Research, Tong Ji University School of Stomatology, Shanghai 200072, China
| | - Bei Li
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033 School of Stomatology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Alireza Moshaverinia
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033
| | - Frank Brombacher
- Division of Immunology, Cape Town Component and Institute of Infectious Diseases and Molecular Medicine (IIDMM), International Center for Genetic Engineering and Biotechnology (ICGEB) University of Cape Town, Cape Town 7925, South Africa
| | - Lingyun Sun
- Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Songtao Shi
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
37
|
Jiang CM, Liu J, Zhao JY, Xiao L, An S, Gou YC, Quan HX, Cheng Q, Zhang YL, He W, Wang YT, Yu WJ, Huang YF, Yi YT, Chen Y, Wang J. Effects of hypoxia on the immunomodulatory properties of human gingiva-derived mesenchymal stem cells. J Dent Res 2014; 94:69-77. [PMID: 25403565 DOI: 10.1177/0022034514557671] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The environment of bone marrow mesenchymal stem cells (MSCs) is hypoxic, which plays an important role in maintaining their self-renewal potential and undifferentiated state. MSCs have been proven to possess immunomodulatory properties and have been used clinically to treat autoimmune diseases. Here, we tested the effects of hypoxia on the immunomodulatory properties of MSCs and examined its possible underlying mechanisms. We found that hypoxic stimulation promoted the immunomodulatory properties of human gingiva-derived mesenchymal stem cells (hGMSCs) by enhancing the suppressive effects of hGMSCs on peripheral blood mononuclear cells (PBMCs). The proliferation of PBMCs was significantly inhibited, while the apoptosis of PBMCs was increased, which was associated with the Fas ligand (FasL) expression of hGMSCs. The in vivo study showed that systemically infused hGMSCs could enhance skin wound repair, and 24-h hypoxic stimulation significantly promoted the reparative capacity of hGMSCs. For mechanism, hGMSC treatment inhibited the local inflammation of injured skin by suppressing the inflammatory cells, reducing the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α), and increasing anti-inflammatory cytokine interleukin-10 (IL-10), which was promoted by hypoxia. Hypoxia preconditioning may be a good optimizing method to promote the potential of MSCs for the future cell-based therapy.
Collapse
Affiliation(s)
- C M Jiang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - J Liu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - J Y Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - L Xiao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - S An
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - Y C Gou
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - H X Quan
- Qingdao First Sanatorium of Jinan Military Distract of PLA, Qingdao Shandong, China
| | - Q Cheng
- Department of Orthodontics, Luzhou Medical College, Luzhou, Sichuan, China
| | - Y L Zhang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - W He
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - Y T Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - W J Yu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - Y F Huang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - Y T Yi
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - Y Chen
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - J Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| |
Collapse
|
38
|
Liu Y, Chen C, Liu S, Liu D, Xu X, Chen X, Shi S. Acetylsalicylic acid treatment improves differentiation and immunomodulation of SHED. J Dent Res 2014; 94:209-18. [PMID: 25394850 DOI: 10.1177/0022034514557672] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Stem cells from exfoliated deciduous teeth (SHED) possess multipotent differentiation and immunomodulatory properties. They have been used for orofacial bone regeneration and autoimmune disease treatment. In this study, we show that acetylsalicylic acid (ASA) treatment is able to significantly improve SHED-mediated osteogenic differentiation and immunomodulation. Mechanistically, ASA treatment upregulates the telomerase reverse transcriptase (TERT)/Wnt/β-catenin cascade, leading to improvement of SHED-mediated bone regeneration, and also upregulates TERT/FASL signaling, leading to improvement of SHED-mediated T-cell apoptosis and ameliorating disease phenotypes in dextran sodium sulfate-induced colitis mice. These data indicate that ASA treatment is a practical approach to improving SHED-based cell therapy.
Collapse
Affiliation(s)
- Y Liu
- Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - C Chen
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - S Liu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - D Liu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - X Xu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - X Chen
- Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China
| | - S Shi
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
39
|
Liu Y, Wang L, Liu S, Liu D, Chen C, Xu X, Chen X, Shi S. Transplantation of SHED prevents bone loss in the early phase of ovariectomy-induced osteoporosis. J Dent Res 2014; 93:1124-32. [PMID: 25252877 DOI: 10.1177/0022034514552675] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) are a unique postnatal stem cell population, possessing multipotent differentiation capacity and immunomodulatory properties. However, the mechanism by which SHED treat immune diseases is not fully understood. Here we show that systemic transplantation of SHED via the tail vein ameliorates ovariectomy (OVX)-induced osteopenia by reducing T-helper 1 (Th1) and T-helper 17 (Th17) cell numbers in the recipient OVX mice. Mechanistically, SHED transplantation induces activated T-cell apoptosis in OVX mice via Fas ligand (FasL)-mediated Fas pathway activation, leading to up-regulation of regulatory T-cells (Tregs) and down-regulation of Th1 and Th17 cells. This SHED-mediated immunomodulation rescues OVX-induced impairment of bone marrow mesenchymal stem cells (BMMSCs) and activation of osteoclastogenesis, resulting in increased bone mass. In summary, SHED-mediated T-cell apoptosis via a FasL/Fas pathway results in immune tolerance and ameliorates the osteopenia phenotype in OVX mice.
Collapse
Affiliation(s)
- Y Liu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China
| | - L Wang
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - S Liu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - D Liu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - C Chen
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - X Xu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - X Chen
- Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China
| | - S Shi
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Tang J, Xiong J, Wu T, Tang Z, Ding G, Zhang C, Wang S, Liu Y. Aspirin treatment improved mesenchymal stem cell immunomodulatory properties via the 15d-PGJ2/PPARγ/TGF-β1 pathway. Stem Cells Dev 2014; 23:2093-103. [PMID: 24730450 DOI: 10.1089/scd.2014.0081] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMMSCs) have been used to treat a variety of autoimmune diseases in clinics. However, the therapeutic effects are largely dependent on the immunomodulatory capacity of culture-expanded BMMSCs. In the present study, we show that aspirin (acetylsalicylic acid, ASA)-treated BMMSCs have significantly improved immunomodulatory function, as indicated by upregulation of regulatory T cells (Tregs) and downregulation of Th17 cells via the 15d-PGJ2/PPARγ/TGF-β1 pathway. Furthermore, the therapeutic effect of ASA-pretreated BMMSCs was confirmed in a dextran sodium sulfate-induced experimental colitis mouse model, in which systemic infusion of ASA-pretreated BMMSCs significantly ameliorated disease activity index and colonic inflammation, along with an increased number of Tregs and decreased number of Th17 cells. Taken together, our results suggest that aspirin treatment is a feasible strategy to promote BMMSC-based immunomodulation.
Collapse
Affiliation(s)
- Jianxia Tang
- 1 Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|