1
|
Dongare S, Zeeshan M, Aydogdu AS, Dikki R, Kurtoğlu-Öztulum SF, Coskun OK, Muñoz M, Banerjee A, Gautam M, Ross RD, Stanley JS, Brower RS, Muchharla B, Sacci RL, Velázquez JM, Kumar B, Yang JY, Hahn C, Keskin S, Morales-Guio CG, Uzun A, Spurgeon JM, Gurkan B. Reactive capture and electrochemical conversion of CO 2 with ionic liquids and deep eutectic solvents. Chem Soc Rev 2024; 53:8563-8631. [PMID: 38912871 DOI: 10.1039/d4cs00390j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) have tremendous potential for reactive capture and conversion (RCC) of CO2 due to their wide electrochemical stability window, low volatility, and high CO2 solubility. There is environmental and economic interest in the direct utilization of the captured CO2 using electrified and modular processes that forgo the thermal- or pressure-swing regeneration steps to concentrate CO2, eliminating the need to compress, transport, or store the gas. The conventional electrochemical conversion of CO2 with aqueous electrolytes presents limited CO2 solubility and high energy requirement to achieve industrially relevant products. Additionally, aqueous systems have competitive hydrogen evolution. In the past decade, there has been significant progress toward the design of ILs and DESs, and their composites to separate CO2 from dilute streams. In parallel, but not necessarily in synergy, there have been studies focused on a few select ILs and DESs for electrochemical reduction of CO2, often diluting them with aqueous or non-aqueous solvents. The resulting electrode-electrolyte interfaces present a complex speciation for RCC. In this review, we describe how the ILs and DESs are tuned for RCC and specifically address the CO2 chemisorption and electroreduction mechanisms. Critical bulk and interfacial properties of ILs and DESs are discussed in the context of RCC, and the potential of these electrolytes are presented through a techno-economic evaluation.
Collapse
Affiliation(s)
- Saudagar Dongare
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Muhammad Zeeshan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ahmet Safa Aydogdu
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Ruth Dikki
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Samira F Kurtoğlu-Öztulum
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Department of Materials Science and Technology, Faculty of Science, Turkish-German University, Sahinkaya Cad., Beykoz, 34820 Istanbul, Turkey
| | - Oguz Kagan Coskun
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Miguel Muñoz
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Avishek Banerjee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manu Gautam
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - R Dominic Ross
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Jared S Stanley
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rowan S Brower
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Baleeswaraiah Muchharla
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Jesús M Velázquez
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Bijandra Kumar
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher Hahn
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Carlos G Morales-Guio
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - Burcu Gurkan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Philip FA, Henni A. Incorporation of Amino Acid-Functionalized Ionic Liquids into Highly Porous MOF-177 to Improve the Post-Combustion CO 2 Capture Capacity. Molecules 2023; 28:7185. [PMID: 37894664 PMCID: PMC10608833 DOI: 10.3390/molecules28207185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
This study presents the encapsulation of two amino acid-based ionic liquids (AAILs), 1-ethyl-3-methylimidazolium glycine [Emim][Gly] and 1-ethyl-3-methylimidazolium alanine [Emim][Ala], in a highly porous metal-organic framework (MOF-177) to generate state-of-the-art composites for post-combustion CO2 capture. Thermogravimetric analysis (TGA) demonstrated a successful encapsulation of the AAILs, with a dramatic reduction in the composites' surface areas and pore volumes. Both [Emim][Gly]@MOF-177 and [Emim][Ala]@MOF-177 had close to three times the CO2 uptake of MOF-177 at 20 wt.% loading, 0.2 bar, and 303 K. Additionally, 20-[Emim][Gly]@MOF-177 and 20-[Emim] [Ala]@MOF-177 enhanced their CO2/N2 selectivity from 5 (pristine MOF-177) to 13 and 11, respectively.
Collapse
Affiliation(s)
| | - Amr Henni
- Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada;
| |
Collapse
|
3
|
Abstract
Metal-organic frameworks (MOFs) and ionic liquids (ILs) represent promising materials for adsorption separation. ILs incorporated into MOF materials (denoted as IL/MOF composites) have been developed, and IL/MOF composites combine the advantages of MOFs and ILs to achieve enhanced performance in the adsorption-based separation of fluid mixtures. The designed different ILs are introduced into the various MOFs to tailor their functional properties, which affect the optimal adsorptive separation performance. In this Perspective, the rational fabrication of IL/MOF composites is presented, and their functional properties are demonstrated. This paper provides a critical overview of an emergent class of materials termed IL/MOF composites as well as the recent advances in the applications of IL/MOF composites as adsorbents or membranes in fluid separation. Furthermore, the applications of IL/MOF in adsorptive gas separations (CO2 capture from flue gas, natural gas purification, separation of acetylene and ethylene, indoor pollutants removal) and liquid separations (separation of bioactive components, organic-contaminant removal, adsorptive desulfurization, radionuclide removal) are discussed. Finally, the existing challenges of IL/MOF are highlighted, and an appropriate design strategy direction for the effective exploration of new IL/MOF adsorptive materials is proposed.
Collapse
Affiliation(s)
- Xueqin Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
4
|
Daglar H, Gulbalkan HC, Habib N, Durak O, Uzun A, Keskin S. Integrating Molecular Simulations with Machine Learning Guides in the Design and Synthesis of [BMIM][BF 4]/MOF Composites for CO 2/N 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17421-17431. [PMID: 36972354 PMCID: PMC10080536 DOI: 10.1021/acsami.3c02130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Considering the existence of a large number and variety of metal-organic frameworks (MOFs) and ionic liquids (ILs), assessing the gas separation potential of all possible IL/MOF composites by purely experimental methods is not practical. In this work, we combined molecular simulations and machine learning (ML) algorithms to computationally design an IL/MOF composite. Molecular simulations were first performed to screen approximately 1000 different composites of 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) with a large variety of MOFs for CO2 and N2 adsorption. The results of simulations were used to develop ML models that can accurately predict the adsorption and separation performances of [BMIM][BF4]/MOF composites. The most important features that affect the CO2/N2 selectivity of composites were extracted from ML and utilized to computationally generate an IL/MOF composite, [BMIM][BF4]/UiO-66, which was not present in the original material data set. This composite was finally synthesized, characterized, and tested for CO2/N2 separation. Experimentally measured CO2/N2 selectivity of the [BMIM][BF4]/UiO-66 composite matched well with the selectivity predicted by the ML model, and it was found to be comparable, if not higher than that of all previously synthesized [BMIM][BF4]/MOF composites reported in the literature. Our proposed approach of combining molecular simulations with ML models will be highly useful to accurately predict the CO2/N2 separation performances of any [BMIM][BF4]/MOF composite within seconds compared to the extensive time and effort requirements of purely experimental methods.
Collapse
Affiliation(s)
- Hilal Daglar
- Department
of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Hasan Can Gulbalkan
- Department
of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Nitasha Habib
- Department
of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç
University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Ozce Durak
- Department
of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç
University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Alper Uzun
- Department
of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç
University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
- Koç
University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Seda Keskin
- Department
of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
5
|
Molecular Insight into the Structure of Heterometallic Metal-Organic Frameworks MIL-53-M (M = Al and Ga) and Their Intermolecular Interaction with Pyridine: A Periodic Density Functional Theory. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
6
|
Wang Q, Chen Y, Liu P, Wang Y, Yang J, Li J, Li L. CO2 Capture from High-Humidity Flue Gas Using a Stable Metal–Organic Framework. Molecules 2022; 27:molecules27175608. [PMID: 36080377 PMCID: PMC9458099 DOI: 10.3390/molecules27175608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/26/2022] Open
Abstract
The flue gas from fossil fuel power plants is a long-term stable and concentrated emission source of CO2, and it is imperative to reduce its emission. Adsorbents have played a pivotal role in reducing CO2 emissions in recent years, but the presence of water vapor in flue gas poses a challenge to the stability of adsorbents. In this study, ZIF-94, one of the ZIF adsorbents, showed good CO2 uptake (53.30 cm3/g), and the calculated CO2/N2 (15:85, v/v) selectivity was 54.12 at 298 K. Because of its excellent structural and performance stability under humid conditions, the CO2/N2 mixture was still well-separated on ZIF-94 with a separation time of 30.4 min when the relative humidity was as high as 99.2%, which was similar to the separation time of the dry gas experiments (33.2 min). These results pointed to the enormous potential applications of ZIF-94 for CO2/N2 separation under high humidity conditions in industrial settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Libo Li
- Correspondence: (Y.C.); (L.L.)
| |
Collapse
|
7
|
Hussain S, Dong H, Zhang Y, Zhan G, Zeng S, Duan H, Zhang X. Impregnation of 1- n-Butyl-3-methylimidazolium Dicyanide [BMIM][DCA] into ZIF-8 as a Versatile Sorbent for Efficient and Selective Separation of CO 2. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shahid Hussain
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Huizhou Institute of Green Energy and Advanced Materials, Huizhou, Guangdong 516081, China
| | - Yanqiang Zhang
- Key Laboratory of Science and Technology on Particle Materials, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoxiong Zhan
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shaojuan Zeng
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Huifang Duan
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong 516003, China
| | - Xiangping Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong 516003, China
| |
Collapse
|
8
|
Zheng S, Zeng S, Li Y, Bai L, Bai Y, Zhang X, Liang X, Zhang S. State of the art of ionic liquid‐modified adsorbents for
CO
2
capture and separation. AIChE J 2021. [DOI: 10.1002/aic.17500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuang Zheng
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- Sino‐Danish College University of Chinese Academy of Sciences Beijing China
| | - Shaojuan Zeng
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
| | - Yue Li
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- College of Chemical Engineering and Environment China University of Petroleum Beijing China
| | - Lu Bai
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
| | - Yinge Bai
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
| | - Xiangping Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- Sino‐Danish College University of Chinese Academy of Sciences Beijing China
| | - Xiaodong Liang
- Department of Chemical and Biochemical Engineering Technical University of Denmark Lyngby Denmark
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
| |
Collapse
|
9
|
Hoang TTN, Lin YS, Le TNH, Le TK, Huynh TKX, Tsai DH. Cu-ZnO@Al2O3 hybrid nanoparticle with enhanced activity for catalytic CO2 conversion to methanol. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem Rev 2020; 121:1286-1424. [DOI: 10.1021/acs.chemrev.0c00487] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dimitar A. Panayotov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Elena Z. Ivanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislava M. Andonova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikola L. Drenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
11
|
Durak Ö, Kulak H, Kavak S, Polat HM, Keskin S, Uzun A. Towards complete elucidation of structural factors controlling thermal stability of IL/MOF composites: effects of ligand functionalization on MOFs. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:484001. [PMID: 32590364 DOI: 10.1088/1361-648x/aba06c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
In this work, we incorporated an ionic liquid (IL), 1-n-butyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO4]) into two different metal organic frameworks (MOFs), UiO-66, and its amino-functionalized counterpart, NH2-UiO-66, to investigate the effects of ligand-functionalization on the thermal stability limits of IL/MOF composites. The as-synthesized IL/MOF composites were characterized in detail by combining x-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller analysis, x-ray fluorescence, infrared spectroscopies (FTIR), and their thermal stability limits were determined by thermogravimetric analysis (TGA). Characterization data confirmed the successful incorporation of the IL into each MOF and indicated the presence of direct interactions between them. A comparison of the interactions in [BMIM][MeSO4]-incorporated UiO-66 and NH2-UiO-66 with those in their 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6])-incorporated counterparts showed that the hydrophilic IL, [BMIM][MeSO4], interacts with the 1,4-benzenedicarboxylate (BDC) ligand of the UiO-66, while the hydrophobic IL, [BMIM][PF6], is interacting with the joints where zirconium metal cluster coordinates with BDC ligand. The TGA data demonstrated that the composite with the ligand-functionalized MOF, NH2-UiO-66, exhibited a lower percentage decrease in the maximum tolerable temperature compared to those of IL/UiO-66 composites. Moreover, it is discovered that when the IL is hydrophilic, its hydrogen bonding ability can be utilized to designate an interaction site on MOF's ligand structure, leads to a lower reduction in thermal stability limits. These results provide insights for the rational design of IL/MOF composites and contribute towards the complete elucidation of structural factors controlling the thermal stability.
Collapse
Affiliation(s)
- Özce Durak
- Department of Chemical and Biological Engineering, Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
- Ko̧ University TÜPRAŞ Energy Center (KUTEM), Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Harun Kulak
- Department of Chemical and Biological Engineering, Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
- Ko̧ University TÜPRAŞ Energy Center (KUTEM), Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Safiyye Kavak
- Ko̧ University TÜPRAŞ Energy Center (KUTEM), Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
- Department of Materials Science and Engineering, Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - H Mert Polat
- Ko̧ University TÜPRAŞ Energy Center (KUTEM), Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
- Department of Materials Science and Engineering, Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
- Ko̧ University TÜPRAŞ Energy Center (KUTEM), Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
- Ko̧ University TÜPRAŞ Energy Center (KUTEM), Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| |
Collapse
|
12
|
Piscopo CG, Loebbecke S. Strategies to Enhance Carbon Dioxide Capture in Metal‐Organic Frameworks. Chempluschem 2020; 85:538-547. [DOI: 10.1002/cplu.202000072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/06/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Calogero Giancarlo Piscopo
- Energetic Materials DepartmentFraunhofer Institute for Chemical Technology ICT Joseph-von-Fraunhofer-Str. 7 76327 Pfinztal Germany
| | - Stefan Loebbecke
- Energetic Materials DepartmentFraunhofer Institute for Chemical Technology ICT Joseph-von-Fraunhofer-Str. 7 76327 Pfinztal Germany
| |
Collapse
|
13
|
Kavak S, Polat HM, Kulak H, Keskin S, Uzun A. MIL-53(Al) as a Versatile Platform for Ionic-Liquid/MOF Composites to Enhance CO 2 Selectivity over CH 4 and N 2. Chem Asian J 2019; 14:3655-3667. [PMID: 31339661 PMCID: PMC6851973 DOI: 10.1002/asia.201900634] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/05/2019] [Indexed: 11/25/2022]
Abstract
Five different imidazolium-based ionic liquids (ILs) were incorporated into a metal-organic framework (MOF), MIL-53(Al), to investigate the effect of IL incorporation on the CO2 separation performance of MIL-53(Al). CO2 , CH4 , and N2 adsorption isotherms of the IL/MIL-53(Al) composites and pristine MIL-53(Al) were measured to evaluate the effect of the ILs on the CO2 /CH4 and CO2 /N2 selectivities of the MOF. Of the composite materials that were tested, [BMIM][PF6 ]/MIL-53(Al) exhibited the largest increase in CO2 /CH4 selectivity, 2.8-times higher than that of pristine MIL-53(Al), whilst [BMIM][MeSO4 ]/MIL-53(Al) exhibited the largest increase in CO2 /N2 selectivity, 3.3-times higher than that of pristine MIL-53(Al). A comparison of the CO2 separation potentials of the IL/MOF composites showed that the [BMIM][BF4 ]- and [BMIM][PF6 ]-incorporated MIL-53(Al) composites both showed enhanced CO2 /N2 and CO2 /CH4 selectivities at pressures of 1-5 bar compared to composites of CuBTC and ZIF-8 with the same ILs. These results demonstrate that MIL-53(Al) is a versatile platform for IL/MOF composites and could help to guide the rational design of new composites for target gas-separation applications.
Collapse
Affiliation(s)
- Safiyye Kavak
- Department of Materials Science and EngineeringKoç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
- Koç University TÜPRAŞ Energy Center (KUTEM)Koç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
| | - H. Mert Polat
- Department of Materials Science and EngineeringKoç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
- Koç University TÜPRAŞ Energy Center (KUTEM)Koç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
| | - Harun Kulak
- Department of Chemical and Biological EngineeringKoç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
- Koç University TÜPRAŞ Energy Center (KUTEM)Koç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
| | - Seda Keskin
- Department of Chemical and Biological EngineeringKoç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
- Koç University TÜPRAŞ Energy Center (KUTEM)Koç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
| | - Alper Uzun
- Department of Chemical and Biological EngineeringKoç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
- Koç University TÜPRAŞ Energy Center (KUTEM)Koç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
- Koç University Surface Science and Technology Center (KUYTAM)Koç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
| |
Collapse
|