Mioc A, Mioc M, Ghiulai R, Voicu M, Racoviceanu R, Trandafirescu C, Dehelean C, Coricovac D, Soica C. Gold Nanoparticles as Targeted Delivery Systems and Theranostic Agents in Cancer Therapy.
Curr Med Chem 2019;
26:6493-6513. [PMID:
31057102 DOI:
10.2174/0929867326666190506123721]
[Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
Cancer is still a leading cause of death worldwide, while most chemotherapies induce nonselective toxicity and severe systemic side effects. To address these problems, targeted nanoscience is an emerging field that promises to benefit cancer patients. Gold nanoparticles are nowadays in the spotlight due to their many well-established advantages. Gold nanoparticles are easily synthesizable in various shapes and sizes by a continuously developing set of means, including chemical, physical or eco-friendly biological methods. This review presents gold nanoparticles as versatile therapeutic agents playing many roles, such as targeted delivery systems (anticancer agents, nucleic acids, biological proteins, vaccines), theranostics and agents in photothermal therapy. They have also been outlined to bring great contributions in the bioimaging field such as radiotherapy, magnetic resonance angiography and photoacoustic imaging. Nevertheless, gold nanoparticles are therapeutic agents demonstrating its in vitro anti-angiogenic, anti-proliferative and pro-apoptotic effects on various cell lines, such as human cervix, human breast, human lung, human prostate and murine melanoma cancer cells. In vivo studies have pointed out data regarding the bioaccumulation and cytotoxicity of gold nanoparticles, but it has been emphasized that size, dose, surface charge, sex and especially administration routes are very important variables.
Collapse