1
|
Coles L, Forcelli PA, Leclercq K, Katsarou AM, Klein BD, Potschka H, Koehling R, Harte-Hargrove L, Galanopoulou AS, Metcalf CS. Preclinical common data elements for general pharmacological studies (pharmacokinetic sample collection, tolerability, and drug administration). A report of the TASK3-WG1A General Pharmacology Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2023. [PMID: 36896626 DOI: 10.1002/epi4.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Growing concerns over rigor and reproducibility of preclinical studies, including consistency across laboratories and translation to clinical populations, have triggered efforts to harmonize methodologies. This includes the first set of preclinical common data elements (CDEs) for epilepsy research studies, as well as Case Report Forms (CRFs) for widespread use in epilepsy research. The General Pharmacology Working Group of the ILAE/AES Task Force (TASK3-WG1A) has continued in this effort by adapting and refining CDEs/CRFs to address specific study design areas as they relate to preclinical drug screening: general pharmacology, pharmacokinetics (PK) and pharmacodynamics (PD), and tolerability. This work has expanded general pharmacology studies to include dose records, PK/PD, tolerability, and elements of rigor and reproducibility. Tolerability testing CRFs included rotarod and Irwin/Functional Observation Battery (FOB) assays. The material provided in the form of CRFs can be delivered for widespread use within the epilepsy research community.
Collapse
Affiliation(s)
- Lisa Coles
- Department of Experimental and Clinical Pharmacology, The University of Minnesota, College of Pharmacy, Minneapolis, Minnesota, USA
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University, Washington, District of Columbia, USA
- Department of Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Karine Leclercq
- Early Solutions Department, UCB Pharma, Braine-l'Alleud, Belgium
| | - Anna-Maria Katsarou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Brian D Klein
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Rudiger Koehling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | | | - Aristea S Galanopoulou
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, The University of Utah, College of Pharmacy, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Barker-Haliski M, Pitsch J, Galanopoulou AS, Köhling R. A companion to the preclinical common data elements for phenotyping seizures and epilepsy in rodent models. A report of the TASK3-WG1C: Phenotyping working group of the ILAE/AES joint translational task force. Epilepsia Open 2022. [PMID: 36461665 DOI: 10.1002/epi4.12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Epilepsy is a heterogeneous disorder characterized by spontaneous seizures and behavioral comorbidities. The underlying mechanisms of seizures and epilepsy across various syndromes lead to diverse clinical presentation and features. Similarly, animal models of epilepsy arise from numerous dissimilar inciting events. Preclinical seizure and epilepsy models can be evoked through many different protocols, leaving the phenotypic reporting subject to diverse interpretations. Serendipity can also play an outsized role in uncovering novel drivers of seizures or epilepsy, with some investigators even stumbling into epilepsy research because of a new genetic cross or unintentional drug effect. The heightened emphasis on rigor and reproducibility in preclinical research, including that which is conducted for epilepsy, underscores the need for standardized phenotyping strategies. To address this goal as part of the TASK3-WG1C Working Group of the International League Against Epilepsy (ILAE)/American Epilepsy Society (AES) Joint Translational Task Force, we developed a case report form (CRF) to describe the common data elements (CDEs) necessary for the phenotyping of seizure-like behaviors in rodents. This companion manuscript describes the use of the proposed CDEs and CRF for the visual, behavioral phenotyping of seizure-like behaviors. These phenotyping CDEs and accompanying CRF can be used in parallel with video-electroencephalography (EEG) studies or as a first visual screen to determine whether a model manifests seizure-like behaviors before utilizing more specialized diagnostic tests, like video-EEG. Systematic logging of seizure-like behaviors may help identify models that could benefit from more specialized diagnostic tests to determine whether these are epileptic seizures, such as video-EEG.
Collapse
Affiliation(s)
- Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rüdiger Köhling
- Oscar-Langendorff-Institut für Physiologie, Universitätsmedizin Rostock, Rostock, Germany
| |
Collapse
|
3
|
van Vliet EA, Immonen R, Prager O, Friedman A, Bankstahl JP, Wright DK, O'Brien TJ, Potschka H, Gröhn O, Harris NG. A companion to the preclinical common data elements and case report forms for in vivo rodent neuroimaging: A report of the TASK3-WG3 Neuroimaging Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35962745 DOI: 10.1002/epi4.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force established the TASK3 working groups to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. In this article, we discuss CDEs for neuroimaging data that are collected in rodent models of epilepsy, with a focus on adult rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the methodologies for several imaging modalities and the parameters that can be collected.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Riikka Immonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- The Royal Melbourne Hospital, The University of Melbourne, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Olli Gröhn
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Neil G Harris
- Department of Neurosurgery UCLA, UCLA Brain Injury Research Center, Los Angeles, California, USA
- Intellectual and Developmental Disabilities Research Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
4
|
Katsarou AM, Kubova H, Auvin S, Mantegazza M, Barker-Haliski M, Galanopoulou AS, Reid CA, Semple BD. A companion to the preclinical common data elements for rodent models of pediatric acquired epilepsy: A report of the TASK3-WG1B, Pediatric and Genetic Models Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35950641 DOI: 10.1002/epi4.12641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/08/2022] [Indexed: 11/05/2022] Open
Abstract
Epilepsy syndromes during the early years of life may be attributed to an acquired insult, such as hypoxic-ischemic injury, infection, status epilepticus, or brain trauma. These conditions are frequently modeled in experimental rodents to delineate mechanisms of epileptogenesis and investigate novel therapeutic strategies. However, heterogeneity and subsequent lack of reproducibility of such models across laboratories is an ongoing challenge to maintain scientific rigor and knowledge advancement. To address this, as part of the TASK3-WG1B Working Group of the International League Against Epilepsy/American Epilepsy Society Joint Translational Task Force, we have developed a series of case report forms (CRFs) to describe common data elements for pediatric acquired epilepsy models in rodents. The "Rodent Models of Pediatric Acquired Epilepsy" Core CRF was designed to capture cohort-general information; while two Specific CRFs encompass physical induction models and chemical induction models, respectively. This companion manuscript describes the key elements of these models and why they are important to be considered and reported consistently. Together, these CRFs provide investigators with the tools to systematically record critical information regarding their chosen model of acquired epilepsy during early life, for improved standardization and transparency across laboratories. These outcomes will support the ultimate goal of such research; that is, to understand the childhood onset-specific biology of epileptogenesis after acquired insults, and translate this knowledge into therapeutics to improve pediatric patient outcomes and minimize the lifetime burden of epilepsy.
Collapse
Affiliation(s)
- Anna-Maria Katsarou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hana Kubova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Stéphane Auvin
- Service de Neurologie Pédiatrique, Hôpital Robert-Debré, INSERM UMR 1141, APHP, Université de Paris, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Massimo Mantegazza
- Inserm, LabEx ICST, Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, Université Côte d'Azur, Valbonne-Sophia Antipolis, France
| | - Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Christopher A Reid
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Prahran, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Mantegazza M, Auvin S, Barker-Haliski M, Katsarou AM, Kubova H, Galanopoulou AS, Semple B, Reid CA. A companion to the preclinical common data elements for rodent genetic epilepsy models. A report of the TASK3-WG1B: Paediatric and genetic models working group of the ILAE/AES joint translational TASK force. Epilepsia Open 2022. [PMID: 35951766 DOI: 10.1002/epi4.12642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/11/2022] [Indexed: 11/06/2022] Open
Abstract
Rodent models of epilepsy remain the cornerstone of research into the mechanisms underlying genetic epilepsy. Reproducibility of experiments using these rodent models, occurring across a diversity of laboratories and commercial vendors, remains an issue impacting the cost-effectiveness and scientific rigor of the studies performed. Here, we present two case report forms (CRFs) describing common data elements (CDE) for genetic rodent models, developed by the TASK3-WG1B Working Group of the International League Against Epilepsy (ILAE)/American Epilepsy Society (AES) Joint Translational Task Force. The first CRF relates to genetic rodent models that have been engineered based on variants described in epilepsy patients. The second CRF encompasses both spontaneous and inbred rodent models. This companion piece describes the elements and discusses the important factors to consider before documenting each required element. These CRFs provide tools that allow investigators to more uniformly describe core experimental data on different genetic models across laboratories, with the aim of improving experimental reproducibility and thus translational impact of such studies.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Côte d'Azur, CNRS UMR7275, Inserm, LabEx ICST, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Stėphane Auvin
- Université de Paris, INSERM UMR 1141, Service de Neurologie Pédiatrique, Hôpital Robert-Debré, APHP, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Anna-Maria Katsarou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hana Kubova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Laboratory of Developmental Epilepsy, Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Dominique P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Bridgette Semple
- Department of Neuroscience, Monash University, Prahran, Victoria, Australia
- Department of Neurology, Alfred Health, Prahran, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher A Reid
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Aronica E, Binder DK, Drexel M, Ikonomidou C, Kadam SD, Sperk G, Steinhäuser C. A companion to the preclinical common data elements and case report forms for neuropathology studies in epilepsy research. A report of the TASK3 WG2 Neuropathology Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35938285 DOI: 10.1002/epi4.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/28/2022] [Indexed: 11/06/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force initiated the TASK3 working group to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. This article addresses neuropathological changes associated with seizures and epilepsy in rodent models of epilepsy. We discuss CDEs for histopathological parameters for neurodegeneration, changes in astrocyte morphology and function, mechanisms of inflammation, and changes in the blood-brain barrier and myelin/oligodendrocytes resulting from recurrent seizures in rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the rationale and methodological aspects of individual neuropathological examinations. The CDEs, CRFs, and companion paper are available to all researchers, and their use will benefit the harmonization and comparability of translational preclinical epilepsy research. The ultimate hope is to facilitate the development of rational therapy concepts for treating epilepsies, seizures, and comorbidities and the development of biomarkers assessing the pathological state of the disease.
Collapse
Affiliation(s)
- Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Meinrad Drexel
- Department of Genetics and Pharmacology, Institute of Molecular and Cellular Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Shilpa D Kadam
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guenther Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
de Curtis M, Rossetti AO, Verde DV, van Vliet EA, Ekdahl CT. Brain pathology in focal status epilepticus: evidence from experimental models. Neurosci Biobehav Rev 2021; 131:834-846. [PMID: 34517036 DOI: 10.1016/j.neubiorev.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/01/2022]
Abstract
Status Epilepticus (SE) is often a neurological emergency characterized by abnormally sustained, longer than habitual seizures. The new ILAE classification reports that SE "…can have long-term consequences including neuronal death, neuronal injury…depending on the type and duration of seizures". While it is accepted that generalized convulsive SE exerts detrimental effects on the brain, it is not clear if other forms of SE, such as focal non-convulsive SE, leads to brain pathology and contributes to long-term deficits in patients. With the available clinical and experimental data, it is hard to discriminate the specific action of the underlying SE etiologies from that exerted by epileptiform activity. This information is highly relevant in the clinic for better treatment stratification, which may include both medical and surgical intervention for seizure control. Here we review experimental studies of focal SE, with an emphasis on focal non-convulsive SE. We present a repertoire of brain pathologies observed in the most commonly used animal models and attempt to establish a link between experimental findings and human condition(s). The extensive literature on focal SE animal models suggest that the current approaches have significant limitations in terms of translatability of the findings to the clinic. We highlight the need for a more stringent description of SE features and brain pathology in experimental studies in animal models, to improve the accuracy in predicting clinical translation.
Collapse
Affiliation(s)
- Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto NeurologicoCarlo Besta, Milano, Italy.
| | - Andrea O Rossetti
- Department of Clinical Neuroscience, University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Diogo Vila Verde
- Epilepsy Unit, Fondazione IRCCS Istituto NeurologicoCarlo Besta, Milano, Italy
| | - Erwin A van Vliet
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, P.O. Box 94246, 1090 GE, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Christine T Ekdahl
- Division of Clinical Neurophysiology, Lund University, Sweden; Lund Epilepsy Center, Dept Clinical Sciences, Lund University, Sweden
| |
Collapse
|
8
|
Lévesque M, Biagini G, de Curtis M, Gnatkovsky V, Pitsch J, Wang S, Avoli M. The pilocarpine model of mesial temporal lobe epilepsy: Over one decade later, with more rodent species and new investigative approaches. Neurosci Biobehav Rev 2021; 130:274-291. [PMID: 34437936 DOI: 10.1016/j.neubiorev.2021.08.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/19/2023]
Abstract
Fundamental work on the mechanisms leading to focal epileptic discharges in mesial temporal lobe epilepsy (MTLE) often rests on the use of rodent models in which an initial status epilepticus (SE) is induced by kainic acid or pilocarpine. In 2008 we reviewed how, following systemic injection of pilocarpine, the main subsequent events are the initial SE, the latent period, and the chronic epileptic state. Up to a decade ago, rats were most often employed and they were frequently analysed only behaviorally. However, the use of transgenic mice has revealed novel information regarding this animal model. Here, we review recent findings showing the existence of specific neuronal events during both latent and chronic states, and how optogenetic activation of specific cell populations modulate spontaneous seizures. We also address neuronal damage induced by pilocarpine treatment, the role of neuroinflammation, and the influence of circadian and estrous cycles. Updating these findings leads us to propose that the rodent pilocarpine model continues to represent a valuable tool for identifying the basic pathophysiology of MTLE.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena & Reggio Emilia, 41100 Modena, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| | - Vadym Gnatkovsky
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy; Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Siyan Wang
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada; Departments of Physiology, McGill University, Montreal, QC, H3A 2B4, Canada; Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy.
| |
Collapse
|
9
|
Galanopoulou AS, Löscher W, Lubbers L, O’Brien TJ, Staley K, Vezzani A, D’Ambrosio R, White HS, Sontheimer H, Wolf JA, Twyman R, Whittemore V, Wilcox KS, Klein B. Antiepileptogenesis and disease modification: Progress, challenges, and the path forward-Report of the Preclinical Working Group of the 2018 NINDS-sponsored antiepileptogenesis and disease modification workshop. Epilepsia Open 2021; 6:276-296. [PMID: 34033232 PMCID: PMC8166793 DOI: 10.1002/epi4.12490] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is one of the most common chronic brain diseases and is often associated with cognitive, behavioral, or other medical conditions. The need for therapies that would prevent, ameliorate, or cure epilepsy and the attendant comorbidities is a priority for both epilepsy research and public health. In 2018, the National Institute of Neurological Disease and Stroke (NINDS) convened a workshop titled "Accelerating the Development of Therapies for Antiepileptogenesis and Disease Modification" that brought together preclinical and clinical investigators and industry and regulatory bodies' representatives to discuss and propose a roadmap to accelerate the development of antiepileptogenic (AEG) and disease-modifying (DM) new therapies. This report provides a summary of the discussions and proposals of the Preclinical Science working group. Highlights of the progress of collaborative preclinical research projects on AEG/DM of ongoing research initiatives aiming to improve infrastructure and translation to clinical trials are presented. Opportunities and challenges of preclinical epilepsy research, vis-à-vis clinical research, were extensively discussed, as they pertain to modeling of specific epilepsy types across etiologies and ages, the utilization of preclinical models in AG/DM studies, and the strategies and study designs, as well as on matters pertaining to transparency, data sharing, and reporting research findings. A set of suggestions on research initiatives, infrastructure, workshops, advocacy, and opportunities for expanding the borders of epilepsy research were discussed and proposed as useful initiatives that could help create a roadmap to accelerate and optimize preclinical translational AEG/DM epilepsy research.
Collapse
Affiliation(s)
- Aristea S. Galanopoulou
- Saul R. Korey Department of NeurologyDominick P. Purpura Department of NeuroscienceIsabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNYUSA
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and PharmacyUniversity of Veterinary Medicine HannoverHannoverGermany
| | | | - Terence J. O’Brien
- Department of NeuroscienceCentral Clinical SchoolAlfred HealthMonash UniversityMelbourneVic.Australia
| | - Kevin Staley
- Department of NeurologyMassachusetts General HospitalBostonMAUSA
| | - Annamaria Vezzani
- Department of NeuroscienceIRCCS‐Mario Negri Institute for Pharmacological ResearchMilanoItaly
| | | | - H. Steve White
- Department of PharmacySchool of PharmacyUniversity of WashingtonSeattleWAUSA
| | | | - John A. Wolf
- Center for Brain Injury and RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
- Corporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPAUSA
| | | | - Vicky Whittemore
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Karen S. Wilcox
- Department of Pharmacology & ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Brian Klein
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
10
|
Mazarati A. Can we and should we use animal models to study neurobehavioral comorbidities of epilepsy? Epilepsy Behav 2019; 101:106566. [PMID: 31699663 DOI: 10.1016/j.yebeh.2019.106566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/20/2022]
Abstract
Animal systems have been widely used to examine mechanisms of neurobehavioral comorbidities of epilepsy and to help in developing their effective therapies. Despite the progress made in the field, animal studies have their limitations stemming both from issues with modeling neuropsychiatric disorders in the laboratory and from drawbacks of animal models of epilepsy themselves. This review discusses advantages and weaknesses of experimental paradigms and approaches used to model and to analyze neurobehavioral comorbidities of epilepsy, from the perspectives of their needs, interpretation, ways of improvement, and clinical relevance. Developmental studies are required to adequately address age-specific aspects of the comorbidities. The deployment of preclinical Common Data Elements (pCDEs) for epilepsy research should facilitate the standardization and the harmonization of studies in question, while the application of Research Domain Criteria (RDoC) to characterize neurobehavioral disorders in animals with epilepsy should help in closing the bench-to-bedside gap. Special Issue: Epilepsy & Behavior's 20th Anniversary.
Collapse
Affiliation(s)
- Andrey Mazarati
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Effects of Single Cage Housing on Stress, Cognitive, and Seizure Parameters in the Rat and Mouse Pilocarpine Models of Epilepsy. eNeuro 2019; 6:ENEURO.0179-18.2019. [PMID: 31331937 PMCID: PMC6709207 DOI: 10.1523/eneuro.0179-18.2019] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
Many experimental approaches require housing rodents in individual cages, including in epilepsy research. However, rats and mice are social animals; and individual housing constitutes a stressful situation. The goal of the present study was to determine the effects of individual housing as compared to conditions maintaining social contact on stress markers and epilepsy. Control male mice socially housed during pretest and then transferred to individual cages for six weeks displayed anhedonia, increased anxiety and biological markers of stress as compared to pretest values or mice kept socially housed during six weeks. Pilocarpine (pilo)-treated mice housed together showed increased levels of anhedonia, anxiety and stress markers as well as decreased cognitive performance as compared to the control group. The differences were more significant in pilo-treated mice housed individually. Anxiety correlated linearly with cognitive performance and stress markers independently of the experimental conditions. In the male rat pilo model, seizures were sixteen times more frequent in singly housed animals as compared to animals kept in pairs. Daily interactions with an experimenter in otherwise singly housed animals was sufficient to produce results identical to those found in animals kept in pairs. We propose that social isolation produces a severe phenotype in terms of stress and seizure frequency as compared to animals maintaining social contact (at least in these two models), a factor that needs to be taken into account for data interpretation, in particular for preclinical studies.
Collapse
|