1
|
Peters A, Nys C, Leverett D, Wilson I, Van Sprang P, Merrington G, Middleton E, Garman E, Schlekat C. Updating the Chronic Freshwater Ecotoxicity Database and Biotic Ligand Model for Nickel for Regulatory Applications in Europe. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:566-580. [PMID: 36650904 DOI: 10.1002/etc.5561] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/07/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Bioavailability has been taken into account in the regulation of nickel in freshwater ecosystems in Europe for over a decade; during that time a significant amount of new information has become available covering both the sensitivity of aquatic organisms to nickel toxicity and bioavailability normalization. The ecotoxicity database for chronic nickel toxicity to freshwater organisms has been updated and now includes 358 individual data points covering a total of 53 different species, all of which are suitable for bioavailability normalization to different water chemistry conditions. The bioavailability normalization procedure has also been updated to include updates to the bioavailability models that enable more sensitive water chemistry conditions to be covered by the model predictions. The updated database and bioavailability normalization procedure are applicable to more than 95% of regulated European surface water conditions and have been used to calculate site-specific criteria for a variety of different water chemistry scenarios, to provide an indication of how the sensitivity to nickel varies between different water types. The hazardous concentration for 5% of a species (HC5) values for this diverse selection of water types range from 1.6 to 36 µg L-1 , clearly demonstrating the importance of accounting for nickel bioavailability in freshwaters. This updated database and bioavailability normalization procedure provide a robust basis for the derivation of regulatory thresholds for chronic nickel toxicity in freshwaters such as predicted no-effect concentrations and Environmental Quality Standards and are protective of the results of several mesocosm studies. Environ Toxicol Chem 2023;42:566-580. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
2
|
New Strain of Cyphellophora olivacea Exhibits Striking Tolerance to Sodium Bicarbonate. DIVERSITY 2022. [DOI: 10.3390/d14121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cyanobacterium strain Synechococcus cedrorum SAG 88.79 stock culture has fungal contamination stated by the Sammlung von Algenkulturen der Universität Göttingen itself. In this recent work, this particular fungal strain was isolated, identified, and morphologically characterised. The fungal strain AGSC12 belongs to the species Cyphellophora olivacea, with respect to the sequence similarity, phylogeny, and morphology of the strain. Colony morphology and growth capability were examined on SMA, EMMA, PDA, MEA, YEA, and YPA plates. Growth of the colonies was the most successful on YPA plates, followed by PDA and MEA containing plates. Surprisingly, the AGSC12 strain showed extreme tolerance to NaHCO3, albeit it, is is considered a general fungistatic compound. Moreover, positive association between the AGSC12 and SAG 88.79 strains was revealed, as the SAG 88.79 strain always attained higher cell density in co-cultures with the fungus than in mono-cultures. Besides, a taxonomic note on the SAG 88.79 strain itself was also stated.
Collapse
|
3
|
Po BHK, Wood CM. Transepithelial potential remains indicative of major ion toxicity in rainbow trout (Oncorhynchus mykiss) after 4-day pre-exposure to major salts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 246:106132. [PMID: 35286992 DOI: 10.1016/j.aquatox.2022.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/06/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The Multi-Ion Toxicity (MIT) Model uses electrochemical theory to predict the transepithelial potential (TEP) across the gills as an index of major ion toxicity in freshwater animals. The goal is to determine environmental criteria that will be protective of aquatic organisms exposed to salt pollution. In recent studies, TEP disturbances above baseline (ΔTEP) during short-term exposures to major ions have been proven as indicative of their toxicity to fish, in accord with the MIT model. However, the acute 1-h exposures used in these previous studies might not be realistic relative to the 24 h or 96 h test periods used for toxicity assessment. To address this temporal inconsistency, the current study investigated both the TEP responses to serial concentrations of 10 major salts (NaCl, Na2SO4, NaHCO3, KCl, K2SO4, KHCO3, CaCl2, CaSO4, MgCl2, MgSO4) and plasma ion levels in juvenile rainbow trout after they had been pre-exposed to 50% of the 96h-LC50 levels of these same salts for 4 days. The pre-exposures caused no mortalities. In general, plasma ions (Na+, K+, Ca2+, Mg2+, Cl-) were well-regulated; however, pre-exposure to sulfate salts resulted in the greatest number of alterations in plasma ion levels. TEP responses remained largely similar to those of naïve trout (without salt pre-exposure). All salts caused hyperbolic concentration-dependent increases in TEP that were well-described by the Michaelis-Menten equation. In the pre-exposed trout, the variation of ∆TEP at the 96h-LC50 concentrations was only 2.2-fold, compared to nearly 28-fold variation among the molar concentrations of the various salts at the 96h-LC50s, identical to the conclusion for naïve trout. Overall, the results remove the temporal inconsistency of previous tests and remain supportive of the MIT model. In addition, the recorded alterations in certain plasma ions, baseline TEP, and Michaelis-Menten constants improve our knowledge on specific physiological responses after extended major ion exposure.
Collapse
Affiliation(s)
- Beverly H K Po
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4; Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1.
| |
Collapse
|
4
|
Santore RC, Croteau K, Ryan AC, Schlekat C, Middleton E, Garman E, Hoang T. A Review of Water Quality Factors that Affect Nickel Bioavailability to Aquatic Organisms: Refinement of the Biotic Ligand Model for Nickel in Acute and Chronic Exposures. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2121-2134. [PMID: 33945644 DOI: 10.1002/etc.5109] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/18/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
A review of nickel (Ni) toxicity to aquatic organisms was conducted to determine the primary water quality factors that affect Ni toxicity and to provide information for the development and testing of a biotic ligand model (BLM) for Ni. Acute and chronic data for 66 aquatic species were compiled for the present review. The present review found that dissolved organic carbon (DOC) and hardness act as toxicity-modifying factors (TMFs) because they reduced Ni toxicity to fish and aquatic invertebrates, and these effects were consistent in acute and chronic exposures. The effects of pH on Ni toxicity were inconsistent, and for most organisms there was either no effect of pH or, in some cases, a reduction in toxicity at low pH. There appears to be a unique pH effect on Ceriodaphnia dubia that results in increased toxicity at pHs above 8, but otherwise the effects of TMFs were consistent enough across all organisms and endpoints that a single set of parameters in the Ni BLM worked well with all acute and chronic toxicity data for fish, amphibians, aquatic invertebrates, and aquatic plants and algae. The unique effects of pH on C. dubia may be due to mixture toxicity involving both Ni and bicarbonate. The implications of this mixture effect on BLM modeling and a proposed set of BLM parameters for C. dubia are addressed in the review. Other than this exception, the Ni BLM with a single set of parameters could successfully predict toxicity to all acute and chronic data compiled in the present review. Environ Toxicol Chem 2021;40:2121-2134. © 2021 SETAC.
Collapse
Affiliation(s)
| | | | - Adam C Ryan
- International Zinc Association, Durham, North Carolina, USA
| | | | | | | | - Tham Hoang
- School of Environmental Sustainability, Loyola University Chicago, Chicago, Illinois, USA
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
5
|
Po BHK, Wood CM. Trans-epithelial potential (TEP) response as an indicator of major ion toxicity in rainbow trout and goldfish exposed to 10 different salts in ion-poor water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116699. [PMID: 33639489 DOI: 10.1016/j.envpol.2021.116699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Freshwater ecosystems are facing increasing contamination by major ions. The Multi-Ion Toxicity (MIT) model, a new tool for risk assessment and regulation, predicts major ion toxicity to aquatic organisms by relating it to a critical disturbance of the trans-epithelial potential (TEP) across the gills, as predicted by electrochemical theory. The model is based on unproven assumptions. We tested some of these by directly measuring the acute TEP responses to a geometric series of 10 different single salts (NaCl, Na2SO4, KCl, K2SO4, CaCl2, CaSO4, MgCl2, MgSO4, NaHCO3, KHCO3) in the euryhaline rainbow trout (Oncorhynchus mykiss) and the stenohaline goldfish (Carassius auratus) acclimated to very soft, ion-poor water (hardness 10 mg CaCO3/L). Results were compared to 24-h and 96-h LC50 data from the literature, mainly from fathead minnow (Pimephales promelas). All salts caused concentration-dependent increases in TEP to less negative/more positive values, in patterns well-described by the Michaelis-Menten equation, or a modified version incorporating substrate inhibition. The ΔTEP above baseline became close to a maximum at the 96-h LC50, except for the HCO3- salts. Furthermore, the range of ΔTEP values at the LC50 within one species was much more consistent (1.6- to 2.1-fold variation) than the molar concentrations of the different salts at the LC50 (19- to 25-fold variation). ΔTEP responses were related to cation rather than anion concentrations. Overall patterns were qualitatively similar between trout and goldfish, with some quantitative differences, and also in general accord with recently published data on three other species in harder water where ΔTEP responses were much smaller. Blood plasma Na+ and K+ concentrations were minimally affected by the exposures. The results are in accord with most but not all of the assumptions of the MIT model and support its further development as a predictive tool.
Collapse
Affiliation(s)
- Beverly H K Po
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada; Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149, USA.
| |
Collapse
|
6
|
Walker RH, Smith GD, Hudson SB, French SS, Walters AW. Warmer temperatures interact with salinity to weaken physiological facilitation to stress in freshwater fishes. CONSERVATION PHYSIOLOGY 2020; 8:coaa107. [PMID: 33365130 PMCID: PMC7745714 DOI: 10.1093/conphys/coaa107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/03/2020] [Accepted: 11/01/2020] [Indexed: 05/05/2023]
Abstract
Management of stressors requires an understanding of how multiple stressors interact, how different species respond to those interactions and the underlying mechanisms driving observed patterns in species' responses. Salinization and rising temperatures are two pertinent stressors predicted to intensify in freshwater ecosystems, posing concern for how susceptible organisms achieve and maintain homeostasis (i.e. allostasis). Here, glucocorticoid hormones (e.g. cortisol), responsible for mobilizing energy (e.g. glucose) to relevant physiological processes for the duration of stressors, are liable to vary in response to the duration and severity of salinization and temperature rises. With field and laboratory studies, we evaluated how both salinity and temperature influence basal and stress-reactive cortisol and glucose levels in age 1+ mottled sculpin (Cottus bairdii), mountain sucker (Catostomus platyrhynchus) and Colorado River cutthroat trout (Oncorhynchus clarki pleuriticus). We found that temperature generally had the greatest effect on cortisol and glucose concentrations and the effect of salinity was often temperature dependent. We also found that when individuals were chronically exposed to higher salinities, baseline concentrations of cortisol and glucose usually declined as salinity increased. Reductions in baseline concentrations facilitated stronger stress reactivity for cortisol and glucose when exposed to additional stressors, which weakened as temperatures increased. Controlled temperatures near the species' thermal maxima became the overriding factor regulating fish physiology, resulting in inhibitory responses. With projected increases in freshwater salinization and temperatures, efforts to reduce the negative effects of increasing temperatures (i.e. increased refuge habitats and riparian cover) could moderate the inhibitory effects of temperature-dependent effects of salinization for freshwater fishes.
Collapse
Affiliation(s)
- Richard H Walker
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA
- Program in Ecology, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA
| | - Geoffrey D Smith
- Biological Science Department, Dixie State University, 225 S 700 E, St. George, UT 84770, USA
- Department of Biology, Utah State University, 1435 Old Main Hill, Logan, UT 84322, USA
| | - Spencer B Hudson
- Department of Biology, Utah State University, 1435 Old Main Hill, Logan, UT 84322, USA
| | - Susannah S French
- Department of Biology, Utah State University, 1435 Old Main Hill, Logan, UT 84322, USA
| | - Annika W Walters
- US Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA
- Program in Ecology, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA
| |
Collapse
|
7
|
White KB, Liber K. Chronic Toxicity of Surface Water from a Canadian Oil Sands End Pit Lake to the Freshwater Invertebrates Chironomus dilutus and Ceriodaphnia dubia. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:439-450. [PMID: 32077988 DOI: 10.1007/s00244-020-00720-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Permanent reclamation of tailings generated by surface mining in the Canadian oil sands may be achieved through the creation of end pit lakes (EPLs) in which tailings are stored in mined-out pits and capped with water. However, these tailings contain high concentrations of dissolved organics, metals, and salts, and thus surface water quality of EPLs is a significant concern. This is the first study to investigate the chronic toxicity of surface water from Base Mine Lake (BML), the Canadian oil sands first large-scale EPL, to aquatic invertebrates that play a vital role in the early development of aquatic ecosystems (Chironomus dilutus and Ceriodaphnia dubia). After exposure of C. dilutus larvae for 23 days and C. dubia neonates for 8 days, no mortality was observed in any treatment with whole BML surface water. However, the emergence of C. dilutus adults was delayed by nearly 1 week, and their survival was significantly reduced (36%) compared with the controls. Reproduction (fecundity) of C. dubia was reduced by 20% after exposure to 2014 BML surface water; however, the effect was not observed after exposure to BML surface water collected a year later in 2015. Despite some adverse effects, the results of this study indicate that BML surface water quality is improving over time and is able to support certain salt-tolerant aquatic organisms. Because salinity within BML will persist for decades without manual intervention, the ecological development of the lake will likely resemble that of a brackish or estuarine ecosystem with reduced diversity.
Collapse
Affiliation(s)
- Kevin B White
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr., Saskatoon, SK, S7N 5B3, Canada
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr., Saskatoon, SK, S7N 5B3, Canada.
- School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK, S7N 5C8, Canada.
| |
Collapse
|
8
|
Gim BM, Hong S, Lee JS, Kim NH, Kwon EM, Gil JW, Lim HH, Jeon EC, Khim JS. Potential ecotoxicological effects of elevated bicarbonate ion concentrations on marine organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:194-199. [PMID: 29807279 DOI: 10.1016/j.envpol.2018.05.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/26/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Recently, a novel method for carbon capture and storage has been proposed, which converts gaseous CO2 into aqueous bicarbonate ions (HCO3-), allowing it to be deposited into the ocean. This alkalinization method could be used to dispose large amounts of CO2 without acidifying seawater pH, but there is no information on the potential adverse effects of consequently elevated HCO3- concentrations on marine organisms. In this study, we evaluated the ecotoxicological effects of elevated concentrations of dissolved inorganic carbon (DIC) (max 193 mM) on 10 marine organisms. We found species-specific ecotoxicological effects of elevated DIC on marine organisms, with EC50-DIC (causing 50% inhibition) of 11-85 mM. The tentative criteria for protecting 80% of individuals of marine organisms are suggested to be pH 7.8 and 11 mM DIC, based on acidification data previously documented and alkalinization data newly obtained from this study. Overall, the results of this study are useful for providing baseline information on ecotoxicological effects of elevated DIC on marine organisms. More complementary studies are needed on the alkalinization method to determine DIC effects on seawater chemistry and marine organisms.
Collapse
Affiliation(s)
- Byeong-Mo Gim
- Neo Environmental Business Co. (NeoEnBiz), Bucheon 14523, Republic of Korea; Department of Environment & Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jung-Suk Lee
- Neo Environmental Business Co. (NeoEnBiz), Bucheon 14523, Republic of Korea
| | - Nam-Hyun Kim
- Neo Environmental Business Co. (NeoEnBiz), Bucheon 14523, Republic of Korea
| | - Eun-Mi Kwon
- Neo Environmental Business Co. (NeoEnBiz), Bucheon 14523, Republic of Korea
| | - Joon-Woo Gil
- Korea Electric Power Corporation Research Institute, Daejeon 34056, Republic of Korea
| | - Hyun-Hwa Lim
- Korea Electric Power Corporation Research Institute, Daejeon 34056, Republic of Korea
| | - Eui-Chan Jeon
- Department of Environment & Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Griffith MB. Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: Teleost fish, crustacea, aquatic insects, and Mollusca. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:576-600. [PMID: 27808448 PMCID: PMC6114146 DOI: 10.1002/etc.3676] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/11/2016] [Accepted: 11/01/2016] [Indexed: 05/21/2023]
Abstract
Anthropogenic sources increase freshwater salinity and produce differences in constituent ions compared with natural waters. Moreover, ions differ in physiological roles and concentrations in intracellular and extracellular fluids. Four freshwater taxa groups are compared, to investigate similarities and differences in ion transport processes and what ion transport mechanisms suggest about the toxicity of these or other ions in freshwater. Although differences exist, many ion transporters are functionally similar and may belong to evolutionarily conserved protein families. For example, the Na+ /H+ -exchanger in teleost fish differs from the H+ /2Na+ (or Ca2+ )-exchanger in crustaceans. In osmoregulation, Na+ and Cl- predominate. Stenohaline freshwater animals hyperregulate until they are no longer able to maintain hypertonic extracellular Na+ and Cl- concentrations with increasing salinity and become isotonic. Toxic effects of K+ are related to ionoregulation and volume regulation. The ionic balance between intracellular and extracellular fluids is maintained by Na+ /K+ -adenosine triphosphatase (ATPase), but details are lacking on apical K+ transporters. Elevated H+ affects the maintenance of internal Na+ by Na+ /H+ exchange; elevated HCO3- inhibits Cl- uptake. The uptake of Mg2+ occurs by the gills or intestine, but details are lacking on Mg2+ transporters. In unionid gills, SO42- is actively transported, but most epithelia are generally impermeant to SO42- . Transporters of Ca2+ maintain homeostasis of dissolved Ca2+ . More integration of physiology with toxicology is needed to fully understand freshwater ion effects. Environ Toxicol Chem 2017;36:576-600. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Michael B. Griffith
- Office of Research and Development, National Center for Environmental Assessment, US Environmental Protection Agency, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Cozzarelli IM, Skalak KJ, Kent DB, Engle MA, Benthem A, Mumford AC, Haase K, Farag A, Harper D, Nagel SC, Iwanowicz LR, Orem WH, Akob DM, Jaeschke JB, Galloway J, Kohler M, Stoliker DL, Jolly GD. Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1781-1793. [PMID: 27939081 DOI: 10.1016/j.scitotenv.2016.11.157] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 05/17/2023]
Abstract
Wastewaters from oil and gas development pose largely unknown risks to environmental resources. In January 2015, 11.4ML (million liters) of wastewater (300g/L TDS) from oil production in the Williston Basin was reported to have leaked from a pipeline, spilling into Blacktail Creek, North Dakota. Geochemical and biological samples were collected in February and June 2015 to identify geochemical signatures of spilled wastewaters as well as biological responses along a 44-km river reach. February water samples had elevated chloride (1030mg/L) and bromide (7.8mg/L) downstream from the spill, compared to upstream levels (11mg/L and <0.4mg/L, respectively). Lithium (0.25mg/L), boron (1.75mg/L) and strontium (7.1mg/L) were present downstream at 5-10 times upstream concentrations. Light hydrocarbon measurements indicated a persistent thermogenic source of methane in the stream. Semi-volatile hydrocarbons indicative of oil were not detected in filtered samples but low levels, including tetramethylbenzenes and di-methylnaphthalenes, were detected in unfiltered water samples downstream from the spill. Labile sediment-bound barium and strontium concentrations (June 2015) were higher downstream from the Spill Site. Radium activities in sediment downstream from the Spill Site were up to 15 times the upstream activities and, combined with Sr isotope ratios, suggest contributions from the pipeline fluid and support the conclusion that elevated concentrations in Blacktail Creek water are from the leaking pipeline. Results from June 2015 demonstrate the persistence of wastewater effects in Blacktail Creek several months after remediation efforts started. Aquatic health effects were observed in June 2015; fish bioassays showed only 2.5% survival at 7.1km downstream from the spill compared to 89% at the upstream reference site. Additional potential biological impacts were indicated by estrogenic inhibition in downstream waters. Our findings demonstrate that environmental signatures from wastewater spills are persistent and create the potential for long-term environmental health effects.
Collapse
Affiliation(s)
- I M Cozzarelli
- U.S. Geological Survey, National Research Program, Reston, VA 20192, USA.
| | - K J Skalak
- U.S. Geological Survey, National Research Program, Reston, VA 20192, USA
| | - D B Kent
- U.S. Geological Survey, National Research Program, Menlo Park, CA 94025, USA
| | - M A Engle
- U.S. Geological Survey, Eastern Energy Resources Science Center, Reston, VA 20192, USA
| | - A Benthem
- U.S. Geological Survey, National Research Program, Reston, VA 20192, USA
| | - A C Mumford
- U.S. Geological Survey, National Research Program, Reston, VA 20192, USA
| | - K Haase
- U.S. Geological Survey, National Research Program, Reston, VA 20192, USA
| | - A Farag
- U.S. Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, Jackson, WY 83001, USA
| | - D Harper
- U.S. Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, Jackson, WY 83001, USA
| | - S C Nagel
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO 65211, USA
| | - L R Iwanowicz
- U.S. Geological Survey, Leetown Science Center, Kearneysville, WV 25430, USA
| | - W H Orem
- U.S. Geological Survey, Eastern Energy Resources Science Center, Reston, VA 20192, USA
| | - D M Akob
- U.S. Geological Survey, National Research Program, Reston, VA 20192, USA
| | - J B Jaeschke
- U.S. Geological Survey, National Research Program, Reston, VA 20192, USA
| | - J Galloway
- U.S. Geological Survey, North Dakota Water Science Center, Bismarck, ND 58503, USA
| | - M Kohler
- U.S. Geological Survey, National Research Program, Menlo Park, CA 94025, USA
| | - D L Stoliker
- U.S. Geological Survey, National Research Program, Menlo Park, CA 94025, USA
| | - G D Jolly
- U.S. Geological Survey, National Research Program, Reston, VA 20192, USA
| |
Collapse
|
11
|
Ciparis S, Phipps A, Soucek DJ, Zipper CE, Jones JW. Effects of environmentally relevant mixtures of major ions on a freshwater mussel. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 207:280-287. [PMID: 26412268 DOI: 10.1016/j.envpol.2015.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
The Clinch and Powell Rivers (Virginia, USA) support diverse mussel assemblages. Extensive coal mining occurs in both watersheds. In large reaches of both rivers, major ion concentrations are elevated and mussels have been extirpated or are declining. We conducted a laboratory study to assess major ion effects on growth and survival of juvenile Villosa iris. Mussels were exposed to pond water and diluted pond water with environmentally relevant major ion mixtures for 55 days. Two treatments were tested to mimic low-flow concentrations of Ca(2+), Mg(2+), [Formula: see text] , [Formula: see text] , K(+) and Cl(-) in the Clinch and Powell Rivers, total ion concentrations of 419 mg/L and 942 mg/L, respectively. Mussel survival (>90%) and growth in the two treatments showed little variation, and were not significantly different than in diluted pond water (control). Results suggest that major ion chronic toxicity is not the primary cause for mussel declines in the Clinch and Powell Rivers.
Collapse
Affiliation(s)
- Serena Ciparis
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Andrew Phipps
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| | - David J Soucek
- Illinois Natural History Survey, Champaign, IL 61820, USA
| | - Carl E Zipper
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jess W Jones
- U.S. Fish and Wildlife Service, Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
12
|
Elskus AA, Ingersoll CG, Kemble NE, Echols KR, Brumbaugh WG, Henquinet JW, Watten BJ. An evaluation of the residual toxicity and chemistry of a sodium hydroxide-based ballast water treatment system for freshwater ships. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1405-1416. [PMID: 25693486 DOI: 10.1002/etc.2943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/04/2015] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
Nonnative organisms in the ballast water of freshwater ships must be killed to prevent the spread of invasive species. The ideal ballast water treatment system (BWTS) would kill 100% of ballast water organisms with minimal residual toxicity to organisms in receiving waters. In the present study, the residual toxicity and chemistry of a BWTS was evaluated. Sodium hydroxide was added to elevate pH to >11.5 to kill ballast water organisms, then reduced to pH <9 by sparging with wet-scrubbed diesel exhaust (the source of CO2 ). Cladocerans (Ceriodaphnia dubia), amphipods (Hyalella azteca), and fathead minnows (Pimephales promelas) were exposed for 2 d to BWTS water under an air atmosphere (pH drifted to ≥9) or a 2.5% CO2 atmosphere (pH 7.5-8.2), then transferred to control water for 5 d to assess potential delayed toxicity. Chemical concentrations in the BWTS water met vessel discharge guidelines with the exception of concentrations of copper. There was little to no residual toxicity to cladocerans or fish, but the BWTS water was toxic to amphipods. Maintaining a neutral pH and diluting BWTS water by 50% eliminated toxicity to the amphipods. The toxicity of BWTS water would likely be minimal because of rapid dilution in the receiving water, with subsurface release likely preventing pH rise. This BWTS has the potential to become a viable method for treating ballast water released into freshwater systems.
Collapse
Affiliation(s)
- Adria A Elskus
- Maine Field Office, University of Maine, US Geological Survey, Orono, Maine
| | | | - Nile E Kemble
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri
| | - Kathy R Echols
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri
| | - William G Brumbaugh
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri
| | | | - Barnaby J Watten
- S.O. Conte Anadromous Fish Research Laboratory, US Geological Survey, Turners Falls, Massachusetts
| |
Collapse
|
13
|
Brittingham MC, Maloney KO, Farag AM, Harper DD, Bowen ZH. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11034-47. [PMID: 25188826 DOI: 10.1021/es5020482] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance. Examples include core forest habitat and forest specialists, sagebrush habitat and specialists, vernal pond inhabitants and stream biota. We suggest five general areas of research and monitoring that could aid in development of effective guidelines and policies to minimize negative impacts and protect vulnerable species and ecosystems: (1) spatial analyses, (2) species-based modeling, (3) vulnerability assessments, (4) ecoregional assessments, and (5) threshold and toxicity evaluations.
Collapse
Affiliation(s)
- Margaret C Brittingham
- Department of Ecosystem Science and Management, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | | | | | | | |
Collapse
|
14
|
Farag AM, Harper DD, Skaar D. In situ and laboratory toxicity of coalbed natural gas produced waters with elevated sodium bicarbonate. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2086-2093. [PMID: 24909548 DOI: 10.1002/etc.2658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/14/2014] [Accepted: 06/02/2014] [Indexed: 06/03/2023]
Abstract
Some tributaries in the Powder River Structural Basin, USA, were historically ephemeral, but now contain water year round as a result of discharge of coalbed natural gas (CBNG)-produced waters. This presented the opportunity to study field sites with 100% effluent water with elevated concentrations of sodium bicarbonate. In situ experiments, static renewal experiments performed simultaneously with in situ experiments, and static renewal experiments performed with site water in the laboratory demonstrated that CBNG-produced water reduces survival of fathead minnow (Pimephales promelas) and pallid sturgeon (Scaphirhynchus albus). Age affected survival of fathead minnow, where fish 2 d posthatch (dph) were more sensitive than 6 dph fish, but pallid sturgeon survival was adversely affected at both 4 and 6 dph. This may have implications for acute assays that allow for the use of fish up to 14 dph. The survival of early lifestage fish is reduced significantly in the field when concentrations of NaHCO(3) rise to more than 1500 mg/L (also expressed as >1245 mg HCO(3) (-) /L). Treatment with the Higgin's Loop technology and dilution of untreated water increased survival in the laboratory. The mixing zones of the 3 outfalls studied ranged from approximately 800 m to 1200 m below the confluence. These experiments addressed the acute toxicity of effluent waters but did not address issues related to the volumes of water that may be added to the watershed.
Collapse
Affiliation(s)
- Aïda M Farag
- Jackson Field Research Station, US Geological Survey, Jackson, Wyoming, USA
| | | | | |
Collapse
|
15
|
Farag AM, Harper DD. The chronic toxicity of sodium bicarbonate, a major component of coal bed natural gas produced waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:532-540. [PMID: 24504936 DOI: 10.1002/etc.2455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/24/2013] [Accepted: 10/11/2013] [Indexed: 06/03/2023]
Abstract
Sodium bicarbonate (NaHCO3) is the principal salt in coal bed natural gas produced water from the Powder River Structural Basin, Wyoming, USA, and concentrations of up to 3000 mg NaHCO3/L have been documented at some locations. No adequate studies have been performed to assess the chronic effects of NaHCO3 exposure. The present study was initiated to investigate the chronic toxicity and define sublethal effects at the individual organism level to explain the mechanisms of NaHCO3 toxicity. Three chronic experiments were completed with fathead minnows (Pimephales promelas), 1 with white suckers (Catostomus commersoni), 1 with Ceriodaphnia dubia, and 1 with a freshwater mussel, (Lampsilis siliquoidea). The data demonstrated that approximately 500 mg NaHCO3/L to 1000 mg NaHCO3/L affected all species of experimental aquatic animals in chronic exposure conditions. Freshwater mussels were the least sensitive to NaHCO3 exposure, with a 10-d inhibition concentration that affects 20% of the sample population (IC20) of 952 mg NaHCO3/L. The IC20 for C. dubia was the smallest, at 359 mg NaHCO3/L. A significant decrease in sodium-potassium adenosine triphosphatase (Na(+)/K(+) ATPase) together with the lack of growth effects suggests that Na(+)/K(+) ATPase activity was shut down before the onset of death. Several histological anomalies, including increased incidence of necrotic cells, suggested that fish were adversely affected as a result of exposure to >450 mg NaHCO3/L. This article is a US Government work and is in the public domain in the USA.
Collapse
|