1
|
Walker RH, Smith GD, Hudson SB, French SS, Walters AW. Warmer temperatures interact with salinity to weaken physiological facilitation to stress in freshwater fishes. CONSERVATION PHYSIOLOGY 2020; 8:coaa107. [PMID: 33365130 PMCID: PMC7745714 DOI: 10.1093/conphys/coaa107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/03/2020] [Accepted: 11/01/2020] [Indexed: 05/05/2023]
Abstract
Management of stressors requires an understanding of how multiple stressors interact, how different species respond to those interactions and the underlying mechanisms driving observed patterns in species' responses. Salinization and rising temperatures are two pertinent stressors predicted to intensify in freshwater ecosystems, posing concern for how susceptible organisms achieve and maintain homeostasis (i.e. allostasis). Here, glucocorticoid hormones (e.g. cortisol), responsible for mobilizing energy (e.g. glucose) to relevant physiological processes for the duration of stressors, are liable to vary in response to the duration and severity of salinization and temperature rises. With field and laboratory studies, we evaluated how both salinity and temperature influence basal and stress-reactive cortisol and glucose levels in age 1+ mottled sculpin (Cottus bairdii), mountain sucker (Catostomus platyrhynchus) and Colorado River cutthroat trout (Oncorhynchus clarki pleuriticus). We found that temperature generally had the greatest effect on cortisol and glucose concentrations and the effect of salinity was often temperature dependent. We also found that when individuals were chronically exposed to higher salinities, baseline concentrations of cortisol and glucose usually declined as salinity increased. Reductions in baseline concentrations facilitated stronger stress reactivity for cortisol and glucose when exposed to additional stressors, which weakened as temperatures increased. Controlled temperatures near the species' thermal maxima became the overriding factor regulating fish physiology, resulting in inhibitory responses. With projected increases in freshwater salinization and temperatures, efforts to reduce the negative effects of increasing temperatures (i.e. increased refuge habitats and riparian cover) could moderate the inhibitory effects of temperature-dependent effects of salinization for freshwater fishes.
Collapse
Affiliation(s)
- Richard H Walker
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA
- Program in Ecology, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA
| | - Geoffrey D Smith
- Biological Science Department, Dixie State University, 225 S 700 E, St. George, UT 84770, USA
- Department of Biology, Utah State University, 1435 Old Main Hill, Logan, UT 84322, USA
| | - Spencer B Hudson
- Department of Biology, Utah State University, 1435 Old Main Hill, Logan, UT 84322, USA
| | - Susannah S French
- Department of Biology, Utah State University, 1435 Old Main Hill, Logan, UT 84322, USA
| | - Annika W Walters
- US Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA
- Program in Ecology, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA
| |
Collapse
|
2
|
Griffith MB, Lazorchak JM, Haring H. Uptake of Sulfate from Ambient Water by Freshwater Animals. WATER 2020; 12:1-1496. [PMID: 32704397 PMCID: PMC7376752 DOI: 10.3390/w12051496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To better understand how the sulfate (SO4 2-) anion may contribute to the adverse effects associated with elevated ionic strength or salinity in freshwaters, we measured the uptake and efflux of SO4 2- in four freshwater species: the fathead minnow (Pimephales promelas, Teleostei: Cyprinidae), paper pondshell (Utterbackia imbecillis, Bivalvia: Unionidae), red swamp crayfish (Procambarus clarkii, Crustacea: Cambaridae), and two-lined mayfly (Hexagenia bilineata, Insecta: Ephemeridae). Using δ( 34 S/ 32 S) stable isotope ratios and the concentrations of S and SO4 2-, we measured the SO4 2- influx rate (J in ), net flux (J net ), and efflux rate (Jout) during a 24 h exposure period. For all four species, the means of J in for SO4 2- were positive, and J in was significantly greater than 0 at both target SO4 2- concentrations in the fish and mollusk and at the lower SO4 2- concentration in the crayfish. The means of J out and J net were much more variable than those for J in , but several species by target SO4 2- concentration combinations for J out and J net , were negative, which suggests the net excretion of SO4 2- by the animals. The results of our experiments suggest a greater regulation of SO4 2- in freshwater animals than has been previously reported.
Collapse
Affiliation(s)
- Michael B. Griffith
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Cincinnati, OH 45268, USA
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, OH 45268, USA
| | - James M. Lazorchak
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, OH 45268, USA
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Cincinnati, OH 45268, USA
| | - Herman Haring
- Pegasus Technical Services, Inc., Cincinnati, OH 45268, USA
| |
Collapse
|
3
|
White KB, Liber K. Chronic Toxicity of Surface Water from a Canadian Oil Sands End Pit Lake to the Freshwater Invertebrates Chironomus dilutus and Ceriodaphnia dubia. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:439-450. [PMID: 32077988 DOI: 10.1007/s00244-020-00720-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Permanent reclamation of tailings generated by surface mining in the Canadian oil sands may be achieved through the creation of end pit lakes (EPLs) in which tailings are stored in mined-out pits and capped with water. However, these tailings contain high concentrations of dissolved organics, metals, and salts, and thus surface water quality of EPLs is a significant concern. This is the first study to investigate the chronic toxicity of surface water from Base Mine Lake (BML), the Canadian oil sands first large-scale EPL, to aquatic invertebrates that play a vital role in the early development of aquatic ecosystems (Chironomus dilutus and Ceriodaphnia dubia). After exposure of C. dilutus larvae for 23 days and C. dubia neonates for 8 days, no mortality was observed in any treatment with whole BML surface water. However, the emergence of C. dilutus adults was delayed by nearly 1 week, and their survival was significantly reduced (36%) compared with the controls. Reproduction (fecundity) of C. dubia was reduced by 20% after exposure to 2014 BML surface water; however, the effect was not observed after exposure to BML surface water collected a year later in 2015. Despite some adverse effects, the results of this study indicate that BML surface water quality is improving over time and is able to support certain salt-tolerant aquatic organisms. Because salinity within BML will persist for decades without manual intervention, the ecological development of the lake will likely resemble that of a brackish or estuarine ecosystem with reduced diversity.
Collapse
Affiliation(s)
- Kevin B White
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr., Saskatoon, SK, S7N 5B3, Canada
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr., Saskatoon, SK, S7N 5B3, Canada.
- School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK, S7N 5C8, Canada.
| |
Collapse
|
4
|
Wang N, Kunz JL, Cleveland D, Steevens JA, Cozzarelli IM. Biological Effects of Elevated Major Ions in Surface Water Contaminated by a Produced Water from Oil Production. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 76:670-677. [PMID: 30850858 DOI: 10.1007/s00244-019-00610-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Produced water (PW) from oil and gas extraction processes has been shown to contain elevated concentrations of major ions. The objective of this study was to determine the potential effects of elevated major ions in PW-contaminated surface water on a fish (fathead minnow, Pimephales promelas) and a unionid mussel (fatmucket, Lampsilis siliquoidea) in short-term (7-day) exposures. The test organisms were exposed in 3 reconstituted waters formulated with 1, 2, and 4 times the major ions measured at a PW-contaminated stream site 1 month after a PW spill from an oil production wastewater pipeline in the Williston Basin, North Dakota. A reconstituted water mimicking the ionic composition of an upstream site from the spill was used as a reference water. Significant reductions in survival and growth of the fish were observed in the 4× treatment compared with the reference. The mussels were more sensitive than the fish, with significant reductions in survival in the 2× and 4× treatments, and significant reductions in length in the 1× and 2× treatments. Overall, these results indicate that elevated concentrations of major ions in PW-contaminated surface waters could adversely affect the fish and mussels tested and potentially other aquatic organisms.
Collapse
Affiliation(s)
- Ning Wang
- Columbia Environmental Research Center, United States Geological Survey, 4200 New Haven Road, Columbia, MO, 65201, USA.
| | - James L Kunz
- Columbia Environmental Research Center, United States Geological Survey, 4200 New Haven Road, Columbia, MO, 65201, USA
| | - Danielle Cleveland
- Columbia Environmental Research Center, United States Geological Survey, 4200 New Haven Road, Columbia, MO, 65201, USA
| | - Jeffery A Steevens
- Columbia Environmental Research Center, United States Geological Survey, 4200 New Haven Road, Columbia, MO, 65201, USA
| | | |
Collapse
|
5
|
Griffith MB. Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: Teleost fish, crustacea, aquatic insects, and Mollusca. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:576-600. [PMID: 27808448 PMCID: PMC6114146 DOI: 10.1002/etc.3676] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/11/2016] [Accepted: 11/01/2016] [Indexed: 05/21/2023]
Abstract
Anthropogenic sources increase freshwater salinity and produce differences in constituent ions compared with natural waters. Moreover, ions differ in physiological roles and concentrations in intracellular and extracellular fluids. Four freshwater taxa groups are compared, to investigate similarities and differences in ion transport processes and what ion transport mechanisms suggest about the toxicity of these or other ions in freshwater. Although differences exist, many ion transporters are functionally similar and may belong to evolutionarily conserved protein families. For example, the Na+ /H+ -exchanger in teleost fish differs from the H+ /2Na+ (or Ca2+ )-exchanger in crustaceans. In osmoregulation, Na+ and Cl- predominate. Stenohaline freshwater animals hyperregulate until they are no longer able to maintain hypertonic extracellular Na+ and Cl- concentrations with increasing salinity and become isotonic. Toxic effects of K+ are related to ionoregulation and volume regulation. The ionic balance between intracellular and extracellular fluids is maintained by Na+ /K+ -adenosine triphosphatase (ATPase), but details are lacking on apical K+ transporters. Elevated H+ affects the maintenance of internal Na+ by Na+ /H+ exchange; elevated HCO3- inhibits Cl- uptake. The uptake of Mg2+ occurs by the gills or intestine, but details are lacking on Mg2+ transporters. In unionid gills, SO42- is actively transported, but most epithelia are generally impermeant to SO42- . Transporters of Ca2+ maintain homeostasis of dissolved Ca2+ . More integration of physiology with toxicology is needed to fully understand freshwater ion effects. Environ Toxicol Chem 2017;36:576-600. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Michael B. Griffith
- Office of Research and Development, National Center for Environmental Assessment, US Environmental Protection Agency, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Ciparis S, Phipps A, Soucek DJ, Zipper CE, Jones JW. Effects of environmentally relevant mixtures of major ions on a freshwater mussel. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 207:280-287. [PMID: 26412268 DOI: 10.1016/j.envpol.2015.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
The Clinch and Powell Rivers (Virginia, USA) support diverse mussel assemblages. Extensive coal mining occurs in both watersheds. In large reaches of both rivers, major ion concentrations are elevated and mussels have been extirpated or are declining. We conducted a laboratory study to assess major ion effects on growth and survival of juvenile Villosa iris. Mussels were exposed to pond water and diluted pond water with environmentally relevant major ion mixtures for 55 days. Two treatments were tested to mimic low-flow concentrations of Ca(2+), Mg(2+), [Formula: see text] , [Formula: see text] , K(+) and Cl(-) in the Clinch and Powell Rivers, total ion concentrations of 419 mg/L and 942 mg/L, respectively. Mussel survival (>90%) and growth in the two treatments showed little variation, and were not significantly different than in diluted pond water (control). Results suggest that major ion chronic toxicity is not the primary cause for mussel declines in the Clinch and Powell Rivers.
Collapse
Affiliation(s)
- Serena Ciparis
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Andrew Phipps
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| | - David J Soucek
- Illinois Natural History Survey, Champaign, IL 61820, USA
| | - Carl E Zipper
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jess W Jones
- U.S. Fish and Wildlife Service, Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
7
|
Brittingham MC, Maloney KO, Farag AM, Harper DD, Bowen ZH. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11034-47. [PMID: 25188826 DOI: 10.1021/es5020482] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance. Examples include core forest habitat and forest specialists, sagebrush habitat and specialists, vernal pond inhabitants and stream biota. We suggest five general areas of research and monitoring that could aid in development of effective guidelines and policies to minimize negative impacts and protect vulnerable species and ecosystems: (1) spatial analyses, (2) species-based modeling, (3) vulnerability assessments, (4) ecoregional assessments, and (5) threshold and toxicity evaluations.
Collapse
Affiliation(s)
- Margaret C Brittingham
- Department of Ecosystem Science and Management, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | | | | | | | |
Collapse
|
8
|
Farag AM, Harper DD, Skaar D. In situ and laboratory toxicity of coalbed natural gas produced waters with elevated sodium bicarbonate. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2086-2093. [PMID: 24909548 DOI: 10.1002/etc.2658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/14/2014] [Accepted: 06/02/2014] [Indexed: 06/03/2023]
Abstract
Some tributaries in the Powder River Structural Basin, USA, were historically ephemeral, but now contain water year round as a result of discharge of coalbed natural gas (CBNG)-produced waters. This presented the opportunity to study field sites with 100% effluent water with elevated concentrations of sodium bicarbonate. In situ experiments, static renewal experiments performed simultaneously with in situ experiments, and static renewal experiments performed with site water in the laboratory demonstrated that CBNG-produced water reduces survival of fathead minnow (Pimephales promelas) and pallid sturgeon (Scaphirhynchus albus). Age affected survival of fathead minnow, where fish 2 d posthatch (dph) were more sensitive than 6 dph fish, but pallid sturgeon survival was adversely affected at both 4 and 6 dph. This may have implications for acute assays that allow for the use of fish up to 14 dph. The survival of early lifestage fish is reduced significantly in the field when concentrations of NaHCO(3) rise to more than 1500 mg/L (also expressed as >1245 mg HCO(3) (-) /L). Treatment with the Higgin's Loop technology and dilution of untreated water increased survival in the laboratory. The mixing zones of the 3 outfalls studied ranged from approximately 800 m to 1200 m below the confluence. These experiments addressed the acute toxicity of effluent waters but did not address issues related to the volumes of water that may be added to the watershed.
Collapse
Affiliation(s)
- Aïda M Farag
- Jackson Field Research Station, US Geological Survey, Jackson, Wyoming, USA
| | | | | |
Collapse
|