1
|
Brooks BW, van den Berg S, Dreier DA, LaLone CA, Owen SF, Raimondo S, Zhang X. Towards Precision Ecotoxicology: Leveraging Evolutionary Conservation of Pharmaceutical and Personal Care Product Targets to Understand Adverse Outcomes Across Species and Life Stages. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:526-536. [PMID: 37787405 PMCID: PMC11017229 DOI: 10.1002/etc.5754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/19/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
Translation of environmental science to the practice aims to protect biodiversity and ecosystem services, and our future ability to do so relies on the development of a precision ecotoxicology approach wherein we leverage the genetics and informatics of species to better understand and manage the risks of global pollution. A little over a decade ago, a workshop focusing on the risks of pharmaceuticals and personal care products (PPCPs) in the environment identified a priority research question, "What can be learned about the evolutionary conservation of PPCP targets across species and life stages in the context of potential adverse outcomes and effects?" We review the activities in this area over the past decade, consider prospects of more recent developments, and identify future research needs to develop next-generation approaches for PPCPs and other global chemicals and waste challenges. Environ Toxicol Chem 2024;43:526-536. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| | | | - David A Dreier
- Syngenta Crop Protection, Greensboro, North Carolina, USA
| | - Carlie A LaLone
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Duluth, Minnesota
| | - Stewart F Owen
- Global Sustainability, Astra Zeneca, Macclesfield, Cheshire, UK
| | - Sandy Raimondo
- Gulf Ecosystem Measurement and Modeling Division, Office of Research and Development, US Environmental Protection Agency, Gulf Breeze, Florida
| | - Xiaowei Zhang
- School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Noventa S, Pace E, Esposito D, Libralato G, Manfra L. Handling concentration data below the analytical limit in environmental mixture risk assessment: A case-study on pesticide river monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167670. [PMID: 37852501 DOI: 10.1016/j.scitotenv.2023.167670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Aquatic organisms are exposed to ever-changing complex mixtures of chemicals throughout their lifetime. Component-Based Mixture Risk Assessment (CBMRA) is a well-established methodology for water contaminant-mixture management, the use of which is growing due to improved access to reference ecotoxicity data and extensive monitoring datasets. It enables the translation of measured exposure concentrations of chemicals into biological effect values, and thus to quantitatively estimate the risk of the whole water sample (i.e., as a mixture). However, many factors can bias the final risk decision by impacting the risk metric components; thus, a careful design of the CBMRA is needed, taking into primary consideration the specific features of the dataset and mixture risk assessment assignments. This study systematically addressed the effects of the most common approaches used for handling the concentrations of chemicals below the limit of detection/quantification (LOD/LOQ) in CBMRA. The main results included: i) an informed CBMRA procedure that enables the tracking of the risk decisions triggered by substances below LOD/LOQ, ii) a conceptual map and guidance criteria to support the selection of the most suitable approach for specific scenarios and related interpretation; iii) a guided implementation of the informed CBMRA on dataset of pesticide concentrations in Italian rivers in 2020 (702,097 records).
Collapse
Affiliation(s)
- Seta Noventa
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), 30015 Chioggia, Italy.
| | - Emanuela Pace
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Vitaliano Brancati 48, 00144 Roma, Italy
| | - Dania Esposito
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Vitaliano Brancati 48, 00144 Roma, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Loredana Manfra
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Vitaliano Brancati 48, 00144 Roma, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
3
|
Carnesecchi E, Langezaal I, Browne P, Batista-Leite S, Campia I, Coecke S, Dagallier B, Deceuninck P, Dorne JLC, Tarazona JV, Le Goff F, Leinala E, Morath S, Munn S, Richardson J, Paini A, Wittwehr C. OECD harmonised template 201: Structuring and reporting mechanistic information to foster the integration of new approach methodologies for hazard and risk assessment of chemicals. Regul Toxicol Pharmacol 2023:105426. [PMID: 37277057 DOI: 10.1016/j.yrtph.2023.105426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
In the European Union, the Chemicals Strategy for Sustainability (CSS) highlights the need to enhance the identification and assessment of substances of concern while reducing animal testing, thus fostering the development and use of New Approach Methodologies (NAMs) such as in silico, in vitro and in chemico. In the United States, the Tox21 strategy aims at shifting toxicological assessments away from traditional animal studies towards target-specific, mechanism-based and biological observations mainly obtained by using NAMs. Many other jurisdictions around the world are also increasing the use of NAMs. Hence, the provision of dedicated non-animal toxicological data and reporting formats as a basis for chemical risk assessment is necessary. Harmonising data reporting is crucial when aiming at re-using and sharing data for chemical risk assessment across jurisdictions. The OECD has developed a series of OECD Harmonised Templates (OHT), which are standard data formats designed for reporting information used for the risk assessment of chemicals relevant to their intrinsic properties, including effects on human health (e.g., toxicokinetics, skin sensitisation, repeated dose toxicity) and the environment (e.g., toxicity to test species and wildlife, biodegradation in soil, metabolism of residues in crops). The objective of this paper is to demonstrate the applicability of the OHT standard format for reporting information under various chemical risk assessment regimes, and to provide users with practical guidance on the use of OHT 201, in particular to report test results on intermediate effects and mechanistic information.
Collapse
Affiliation(s)
- Edoardo Carnesecchi
- Organisation for Economic Co-operation and Development (OECD), Environment Directorate, 75775, Paris CEDEX 16, France.
| | | | - Patience Browne
- Organisation for Economic Co-operation and Development (OECD), Environment Directorate, 75775, Paris CEDEX 16, France
| | | | - Ivana Campia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Bertrand Dagallier
- Organisation for Economic Co-operation and Development (OECD), Environment Directorate, 75775, Paris CEDEX 16, France
| | | | - Jean Lou Cm Dorne
- European Food Safety Authority (EFSA), Via Carlo Magno, 1A, 43126, Parma, Italy
| | - Jose V Tarazona
- European Food Safety Authority (EFSA), Via Carlo Magno, 1A, 43126, Parma, Italy
| | - Francois Le Goff
- European Chemicals Agency (ECHA), Telakkakatu 6, P.O. Box 400, FI-0012, Helsinki, Finland
| | - Eeva Leinala
- Organisation for Economic Co-operation and Development (OECD), Environment Directorate, 75775, Paris CEDEX 16, France
| | | | - Sharon Munn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Jane Richardson
- European Food Safety Authority (EFSA), Via Carlo Magno, 1A, 43126, Parma, Italy
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | |
Collapse
|
4
|
Barron MG, Otter RR, Connors KA, Kienzler A, Embry MR. Ecological Thresholds of Toxicological Concern: A Review. FRONTIERS IN TOXICOLOGY 2022; 3:640183. [PMID: 35295098 PMCID: PMC8915905 DOI: 10.3389/ftox.2021.640183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/10/2021] [Indexed: 12/22/2022] Open
Abstract
The ecological threshold of toxicological concern (ecoTTC) is analogous to traditional human health-based TTCs but with derivation and application to ecological species. An ecoTTC is computed from the probability distribution of predicted no effect concentrations (PNECs) derived from either chronic or extrapolated acute toxicity data for toxicologically or chemically similar groups of chemicals. There has been increasing interest in using ecoTTCs in screening level environmental risk assessments and a computational platform has been developed for derivation with aquatic species toxicity data (https://envirotoxdatabase.org/). Current research and development areas include assessing mode of action-based chemical groupings, conservatism in estimated PNECs and ecoTTCs compared to existing regulatory values, and the influence of taxa (e.g., algae, invertebrates, and fish) composition in the distribution of PNEC values. The ecoTTC continues to develop as a valuable alternative strategy within the toolbox of traditional and new approach methods for ecological chemical assessment. This brief review article describes the ecoTTC concept and potential applications in ecological risk assessment, provides an overview of the ecoTTC workflow and how the values can be derived, and highlights recent developments and ongoing research. Future applications of ecoTTC concept in different disciplines are discussed along with opportunities for its use.
Collapse
Affiliation(s)
- Mace G Barron
- U.S. EPA, Office of Research & Development, Gulf Breeze, FL, United States
| | - Ryan R Otter
- The Data Science Institute, Middle Tennessee State University, Murfreesboro, TN, United States
| | | | - Aude Kienzler
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Michelle R Embry
- Health and Environmental Sciences Institute, Washington, DC, United States
| |
Collapse
|
5
|
Astuto MC, Di Nicola MR, Tarazona JV, Rortais A, Devos Y, Liem AKD, Kass GEN, Bastaki M, Schoonjans R, Maggiore A, Charles S, Ratier A, Lopes C, Gestin O, Robinson T, Williams A, Kramer N, Carnesecchi E, Dorne JLCM. In Silico Methods for Environmental Risk Assessment: Principles, Tiered Approaches, Applications, and Future Perspectives. Methods Mol Biol 2022; 2425:589-636. [PMID: 35188648 DOI: 10.1007/978-1-0716-1960-5_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This chapter aims to introduce the reader to the basic principles of environmental risk assessment of chemicals and highlights the usefulness of tiered approaches within weight of evidence approaches in relation to problem formulation i.e., data availability, time and resource availability. In silico models are then introduced and include quantitative structure-activity relationship (QSAR) models, which support filling data gaps when no chemical property or ecotoxicological data are available. In addition, biologically-based models can be applied in more data rich situations and these include generic or species-specific models such as toxicokinetic-toxicodynamic models, dynamic energy budget models, physiologically based models, and models for ecosystem hazard assessment i.e. species sensitivity distributions and ultimately for landscape assessment i.e. landscape-based modeling approaches. Throughout this chapter, particular attention is given to provide practical examples supporting the application of such in silico models in real-world settings. Future perspectives are discussed to address environmental risk assessment in a more holistic manner particularly for relevant complex questions, such as the risk assessment of multiple stressors and the development of harmonized approaches to ultimately quantify the relative contribution and impact of single chemicals, multiple chemicals and multiple stressors on living organisms.
Collapse
Affiliation(s)
| | | | | | - A Rortais
- European Food Safety Authority, Parma, Italy
| | - Yann Devos
- European Food Safety Authority, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | - Antony Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, NC, USA
| | - Nynke Kramer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Edoardo Carnesecchi
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
6
|
Wang YYL, Li P, Ohore OE, Wang Y, Zhang D, Bai Y, Su T, You J, Jin X, Liu W, Wang Z. Life stage and endpoint sensitivity differences of fathead minnow (Pimephales promelas) to chemicals with various modes of action. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117995. [PMID: 34419860 DOI: 10.1016/j.envpol.2021.117995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Fish Embryo Acute Toxicity (FET) test was proposed as an alternative to the traditional test methods using larval or adult fish. However, whether fathead minnow (Pimephales promelas) embryo is appropriate for FET remains uncertain. In the present study, ecological threshold of toxicological concern (ecoTTC) values and uncertainty factors (UFs) for each Verhaar et al. category in P. promelas were identified by employing probabilistic ecological risk assessment (PERA) approach with chemical toxicity distributions (CTDs). The sensitivity among different life stages and toxicity among different mode of actions (MOAs) classes were comprehensively compared by CTD comparisons. The results showed that embryo exhibited the less or similar sensitivity compared to larva or adult for Verhaar et al. MOA classes (1-4) while adults were more sensitive, followed by embryo than larval for non-classified chemicals. Considering growth effect as endpoint to class 1, class 3, and non-classified chemicals on P. promelas embryo and larva was more sensitive than mortality. Non-classified chemicals especially inorganic compounds were most toxic to P. promelas embryo for the four concerned Verharr et al. MOA-specific chemical classes. This study also derived uncertainty factors (UFs) as 26.5 (9.8, 109) for embryo-to-larva, 6.26 (3.94, 11.0) for embryo-to-adult, 15.6 (10.1, 36.1) for mortality-to-growth, and 3.03 (1.86, 7.08) for mortality-to-reproduction, which can be applied for extrapolations of life stage-to-life stage and effect-to-effect to reduce the underestimating and overestimating risk by the use of default UF such as 10, 100 or 1000. Our findings are vital for feasibility of FET test of P. promelas for ecotoxicity testing and ecological risk assessment for chemicals with different MOAs.
Collapse
Affiliation(s)
- Yolina Yu Lin Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Ping Li
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Okugbe Ebiotubo Ohore
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Yuwen Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Dainan Zhang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Yunfei Bai
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Tenghui Su
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Jing You
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Xiaowei Jin
- Department of Analytical Technique, China National Environmental Monitoring Center, Beijing, 100012, China
| | - Wenhua Liu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Zhen Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
7
|
Rizzi C, Villa S, Cuzzeri AS, Finizio A. Use of the Species Sensitivity Distribution Approach to Derive Ecological Threshold of Toxicological Concern (eco-TTC) for Pesticides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12078. [PMID: 34831835 PMCID: PMC8623465 DOI: 10.3390/ijerph182212078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
The species sensitivity distribution (SSD) calculates the hazardous concentration at which 5% of species (HC5) will be potentially affected. For many compounds, HC5 values are unavailable impeding the derivation of SSD curves. Through a detailed bibliographic survey, we selected HC5 values (from acute toxicity tests) for freshwater aquatic species and 129 pesticides. The statistical distribution and variability of the HC5 values within the chemical classes were evaluated. Insecticides are the most toxic compounds in the aquatic communities (HC5 = 1.4 × 10-3 µmol L-1), followed by herbicides (HC5 = 3.3 × 10-2 µmol L-1) and fungicides (HC5 = 7.8 µmol L-1). Subsequently, the specificity of the mode of action (MoA) of pesticides on freshwater aquatic communities was investigated by calculating the ratio between the estimated baseline toxicity for aquatic communities and the HC5 experimental values gathered from the literature. Moreover, we proposed and validated a scheme to derive the ecological thresholds of toxicological concern (eco-TTC) of pesticides for which data on their effects on aquatic communities are not available. We proposed eco-TTCs for different classes of insecticides, herbicides, and fungicides with a specific MoA, and three eco-TTCs for those chemicals with unavailable MoA. We consider the proposed approach and eco-TTC values useful for risk management purposes.
Collapse
Affiliation(s)
| | - Sara Villa
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (C.R.); (A.S.C.); (A.F.)
| | | | | |
Collapse
|
8
|
Embry MR, Belanger SE, Connors KA, Otter R. Comment on Plugge et al. 2021 "Toward a Universal Acute Fish Threshold of Toxicological Concern". ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2379-2381. [PMID: 34437737 DOI: 10.1002/etc.5124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Michelle R Embry
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | | | - Ryan Otter
- Middle Tennessee State University, Murfreesboro, Tennessee, USA
| |
Collapse
|
9
|
Belanger SE, Beasley A, Brill JL, Krailler J, Connors KA, Carr GJ, Embry M, Barron MG, Otter R, Kienzler A. Comparisons of PNEC derivation logic flows under example regulatory schemes and implications for ecoTTC. Regul Toxicol Pharmacol 2021; 123:104933. [PMID: 33891999 PMCID: PMC10461128 DOI: 10.1016/j.yrtph.2021.104933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
Derivation of Predicted No Effect Concentrations (PNECs) for aquatic systems is the primary deterministic form of hazard extrapolation used in environmental risk assessment. Depending on the data availability, different regulatory jurisdictions apply application factors (AFs) to the most sensitive measured endpoint to derive the PNEC for a chemical. To assess differences in estimated PNEC values, two PNEC determination methodologies were applied to a curated public database using the EnviroTox Platform (www.EnviroToxdatabase.org). PNECs were derived for 3647 compounds using derivation procedures based on example US EPA and a modified European Union chemical registration procedure to allow for comparisons. Ranked probability distributions of PNEC values were developed and 5th percentile values were calculated for the entire dataset and scenarios where full acute or full chronic data sets were available. The lowest PNEC values indicated categorization based on chemical attributes and modes of action would lead to improved extrapolations. Full acute or chronic datasets gave measurably higher 5th percentile PNEC values. Algae were under-represented in available ecotoxicity data but drove PNECs disproportionately. Including algal inhibition studies will be important in understanding chemical hazards. The PNEC derivation logic flows are embedded in the EnviroTox Platform providing transparent and consistent PNEC derivations and PNEC distribution calculations.
Collapse
Affiliation(s)
- S E Belanger
- The Procter & Gamble Company, Cincinnati, OH, USA.
| | - A Beasley
- The Dow Chemical Company, Midland, MI, USA.
| | - J L Brill
- The Procter & Gamble Company, Cincinnati, OH, USA.
| | - J Krailler
- The Procter & Gamble Company, Cincinnati, OH, USA.
| | - K A Connors
- The Procter & Gamble Company, Cincinnati, OH, USA.
| | - G J Carr
- The Procter & Gamble Company, Cincinnati, OH, USA.
| | - M Embry
- Health and Environmental Sciences Institute, Washington, DC, USA.
| | - M G Barron
- U.S. EPA, Office of Research & Development, Gulf Breeze, FL, USA.
| | - R Otter
- The Data Science Institute, Middle Tennessee State University, Murfreesboro, TN, USA.
| | - A Kienzler
- European Commission, Joint Research Centre, Ispra, Italy.
| |
Collapse
|
10
|
Plugge H, Das N, Kostal J. Toward a Universal Acute Fish Threshold of Toxicological Concern. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1740-1749. [PMID: 33492718 DOI: 10.1002/etc.4991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/01/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Threshold of toxicological concern (TTC) is a concept that has been around for decades in human health sciences. Ecotoxicology recently adopted a variant of this concept as eco-TTC. Adoption of the concept of TTC considerably reduces the amount of animal testing required for regulatory purposes. We provide an application of a universal TTC for the entirety of acute fish toxicity data (i.e., establishment of an exposure level below which there would be minimal probability of acute fish toxicity for any chemical, without consideration of mechanism of action). We calculated TTC values for a number of subgroups using various approaches. These approaches were evaluated using data from a cohort of 69 999 acute fish toxicological assays. This database was normalized/curated for units, exposure duration, quality assurance/control, and duplicates, which reduced it to 47 694 assays. Data were not normally but log-normally distributed, making geometric means the most appropriate statistical parameter. Thus, we developed descriptive statistics using geometric means with 95, 99, and 99.9% confidence intervals. Various assessment factors (akin to predicted-no-effect concentration derivation) were applied to the geometric means to derive TTCs. Other approaches employed were the calculation of y = 0 intercepts as well as development of 95 and 99.75% cutoffs of cumulative data as well as modular uncertainty scoring tool (MUST) analysis. All of the methodologies derived highly congruent TTCs ranging from to 2 to 8 μg/L except for the 99.75th percentile cutoff of 0.3 μg/L. The data would be most useful in making a binary testing/no testing required decision. For acute fish toxicity, a TTC value of 2 μg/L was most appropriate, based on the 95th percentile of data distribution without any assessment factor. Environ Toxicol Chem 2021;40:1740-1749. © 2021 SETAC.
Collapse
Affiliation(s)
- Hans Plugge
- Safer Chemical Analytics Group, Verisk 3E, Bethesda, Maryland, USA
| | - Nihar Das
- Safer Chemical Analytics Group, Verisk 3E, Bethesda, Maryland, USA
- Environment, Health & Safety Services Division, IDS Infotech, Mohali, Punjab, India
| | - Jakub Kostal
- Department of Chemistry, George Washington University, Washington, DC, USA
| |
Collapse
|
11
|
Baderna D, Faoro R, Selvestrel G, Troise A, Luciani D, Andres S, Benfenati E. Defining the Human-Biota Thresholds of Toxicological Concern for Organic Chemicals in Freshwater: The Proposed Strategy of the LIFE VERMEER Project Using VEGA Tools. Molecules 2021; 26:1928. [PMID: 33808128 PMCID: PMC8037015 DOI: 10.3390/molecules26071928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/03/2022] Open
Abstract
Several tons of chemicals are released every year into the environment and it is essential to assess the risk of adverse effects on human health and ecosystems. Risk assessment is expensive and time-consuming and only partial information is available for many compounds. A consolidated approach to overcome this limitation is the Threshold of Toxicological Concern (TTC) for assessment of the potential health impact and, more recently, eco-TTCs for the ecological aspect. The aim is to allow a safe assessment of substances with poor toxicological characterization. Only limited attempts have been made to integrate the human and ecological risk assessment procedures in a "One Health" perspective. We are proposing a strategy to define the Human-Biota TTCs (HB-TTCs) as concentrations of organic chemicals in freshwater preserving both humans and ecological receptors at the same time. Two sets of thresholds were derived: general HB-TTCs as preliminary screening levels for compounds with no eco- and toxicological information, and compound-specific HB-TTCs for chemicals with known hazard assessment, in terms of Predicted No effect Concentration (PNEC) values for freshwater ecosystems and acceptable doses for human health. The proposed strategy is based on freely available public data and tools to characterize and group chemicals according to their toxicological profiles. Five generic HB-TTCs were defined, based on the ecotoxicological profiles reflected by the Verhaar classes, and compound-specific thresholds for more than 400 organic chemicals with complete eco- and toxicological profiles. To complete the strategy, the use of in silico models is proposed to predict the required toxicological properties and suitable models already available on the VEGAHUB platform are listed.
Collapse
Affiliation(s)
- Diego Baderna
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (R.F.); (G.S.); (D.L.)
| | - Roberta Faoro
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (R.F.); (G.S.); (D.L.)
| | - Gianluca Selvestrel
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (R.F.); (G.S.); (D.L.)
| | - Adrien Troise
- INERIS Institut National de l’Environnement Industriel et des Risques, Rue Jacques Taffanel, 60550 Verneuil-en-Halatt, France; (A.T.); (S.A.)
| | - Davide Luciani
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (R.F.); (G.S.); (D.L.)
| | - Sandrine Andres
- INERIS Institut National de l’Environnement Industriel et des Risques, Rue Jacques Taffanel, 60550 Verneuil-en-Halatt, France; (A.T.); (S.A.)
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (R.F.); (G.S.); (D.L.)
| |
Collapse
|
12
|
Buch AC, Niemeyer JC, Marques ED, Silva-Filho EV. Ecological risk assessment of trace metals in soils affected by mine tailings. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123852. [PMID: 33264928 DOI: 10.1016/j.jhazmat.2020.123852] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/15/2020] [Accepted: 08/22/2020] [Indexed: 06/12/2023]
Abstract
Environmental impacts caused by mine dam ruptures or inappropriate tailing depositions represent a global concern. An ecological risk assessment was performed in 18 areas affected by the collapse of a major mining dam in southeastern Brazil, in two monitoring periods (2015 and 2018). In these areas, pedogeochemical surveys, and ecological risk levels were determinate. In addition, ecotoxicological assays with Proisotoma minuta (Collembola) were carried out in laboratory. Soil screening values indicated that all contaminated areas were above regional reference values for soil quality for at least one metal (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn), likewise exceeding threshold values for potential ecological and human health risks. In two monitoring years, significant ecotoxicity in the avoidance and reproduction of P. minuta (> 60 % and >80 %, respectively) were evidenced in most soils; and lethal responses in some areas like Córrego Novo, Governador Valadares and Tumiritinga. Results suggest changes in soil physical-chemical properties due to tailing deposition, thus affecting soil dwellers. This study can elucidate the use of appropriate tools to ecological risk assessments, helping to identify the priority areas for defining remediation and monitoring strategies.
Collapse
Affiliation(s)
- Andressa Cristhy Buch
- Postgraduate Environmental Geochemistry Program, Fluminense Federal University, Outeiro São João Baptista, s/n., Centro, 24020-141, Niterói, RJ, Brazil.
| | - Júlia Carina Niemeyer
- Postgraduate Program in Agricultural and Natural Ecosystems, Federal University of Santa Catarina (UFSC), Center of Curitibanos, Rod. Ulysses Gabordi, Km 3, 89520-000, Curitibanos, SC, Brazil
| | - Eduardo Duarte Marques
- Researcher of Company of Research of Mineral Resources (CPRM) - Service Geological Survey of Brazil, Av. Brasil, 1731, Funcionários, 30140-002, Belo Horizonte, MG, Brazil
| | - Emmanoel Vieira Silva-Filho
- Postgraduate Environmental Geochemistry Program, Fluminense Federal University, Outeiro São João Baptista, s/n., Centro, 24020-141, Niterói, RJ, Brazil
| |
Collapse
|
13
|
Brill JL, Belanger SE, Barron MG, Beasley A, Connors KA, Embry M, Carr GJ. Derivation of algal acute to chronic ratios for use in chemical toxicity extrapolations. CHEMOSPHERE 2021; 263:127804. [PMID: 33297001 PMCID: PMC8114583 DOI: 10.1016/j.chemosphere.2020.127804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 06/02/2023]
Abstract
Algal toxicity studies are required by regulatory agencies for a variety of purposes including classification and labeling and environmental risk assessment of chemicals. Algae are also frequently the most sensitive taxonomic group tested. Acute to chronic ratios (ACRs) have been challenging to derive for algal species because of the complexities of the underlying experimental data including: a lack of universally agreed upon algal inhibition endpoints; evolution of experimental designs over time and by different standardization authorities; and differing statistical approaches (e.g., regression versus hypothesis-based effect concentrations). Experimental data for developing globally accepted algal ACRs have been limited because of data availability, and in most regulatory frameworks an ACR of 10 is used regardless of species, chemical type or mode of action. Acute and chronic toxicity (inhibition) data on 17 algal species and 442 chemicals were compiled from the EnviroTox database (https://envirotoxdatabase.org/) and a proprietary database of algal toxicity records. Information was probed for growth rate, yield, and final cell density endpoints focusing primarily on studies of 72 and 96 h duration. Comparisons of acute and chronic data based on either single (e.g., growth rate) and multiple (e.g., growth rate, final cell density) endpoints were used to assess acute and chronic relationships. Linear regressions of various model permutations were used to compute ACRs for multiple combinations of taxa, chemicals, and endpoints, and showed that ACRs for algae were consistently around 4 (ranging from 2.43 to 5.62). An ACR of 4 for algal toxicity is proposed as an alternative to a default value of 10, and recommendations for consideration and additional research and development are provided.
Collapse
Affiliation(s)
- Jessica L Brill
- The Procter and Gamble Company, 8700 Mason Montgomery Rd. Cincinnati, Ohio, 45040, USA.
| | - Scott E Belanger
- The Procter and Gamble Company, 8700 Mason Montgomery Rd. Cincinnati, Ohio, 45040, USA.
| | - Mace G Barron
- United States Environmental Protection Agency, 1 Sabine Dr. Gulf Breeze, FL, 32561, USA.
| | - Amy Beasley
- The Dow Chemical Company, 2030 Dow Center Employee Ctr. Midland, MI, 48674, USA.
| | - Kristin A Connors
- The Procter and Gamble Company, 8700 Mason Montgomery Rd. Cincinnati, Ohio, 45040, USA.
| | - Michelle Embry
- Health and Environmental Sciences Institute, 1 Thomas Cir NW STE9, Washington, DC, 20005, USA.
| | - Greg J Carr
- The Procter and Gamble Company, 8700 Mason Montgomery Rd. Cincinnati, Ohio, 45040, USA.
| |
Collapse
|
14
|
Wang Z, Berninger JP, You J, Brooks BW. One uncertainty factor does not fit all: Identifying mode of action and species specific acute to chronic ratios for aquatic life. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114262. [PMID: 32120260 DOI: 10.1016/j.envpol.2020.114262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
In ecological risk assessment, acute to chronic ratio (ACR) uncertainty factors are routinely applied to acute mortality benchmarks to estimate chronic toxicity thresholds. To investigate variability of aquatic ACRs, we first compiled and compared 56 and 150 pairs of acute and subchronic/chronic growth/reproductive toxicity data for fishes (Pimephales promelas (53), Danio rerio (2), and Oryzias latipes (1)) and the crustacean Daphnia magna, respectively, for 172 chemicals with different modes of action (MOA). We found that there were only significant relationships between P. promelas acute median lethal concentrations and growth lowest-observed effect concentrations for class 1 (nonpolar narcosis) chemicals, though significant relationships were demonstrated for D. magna to all Verhaar et al. MOA classes (Class 1: nonpolar narcosis, Class 2: polar narcosis, Class 3: reactive chemicals, and Class 4: AChE inhibitors and estrogenics). Probabilistic ecological hazard assessment using chemical toxicity distributions was subsequently employed for each MOA class to estimate acute and chronic thresholds, respectively, to identify MOA and species specific ecological thresholds of toxicological concern. Finally, novel MOA and species specific ACRs using both chemical toxicity distribution comparison and individual ACR probability distribution approaches were identified using representative MOA and chemical categories. Our data-driven approaches and newly identified ACR values represent robust alternatives to application of default ACR values, and can also support future research and risk assessment and management activities for other chemical classes when toxicity information is limited for chemicals with specific MOAs within invertebrates and fish.
Collapse
Affiliation(s)
- Zhen Wang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jason P Berninger
- Department of Environmental Science and Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Jing You
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| | - Bryan W Brooks
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; Department of Environmental Science and Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| |
Collapse
|
15
|
Hoondert RP, Oldenkamp R, de Zwart D, van de Meent D, Posthuma L. QSAR-Based Estimation of Species Sensitivity Distribution Parameters: An Exploratory Investigation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2764-2770. [PMID: 31553801 PMCID: PMC6900027 DOI: 10.1002/etc.4601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/30/2019] [Accepted: 09/17/2019] [Indexed: 05/25/2023]
Abstract
Ecological risk assessments are hampered by limited availability of ecotoxicity data. The present study aimed to explore the possibility of deriving species sensitivity distribution (SSD) parameters for nontested compounds, based on simple physicochemical characteristics, known SSDs for data-rich compounds, and a quantitative structure-activity relationship (QSAR)-type approach. The median toxicity of a data-poor chemical for species assemblages significantly varies with values of the physicochemical descriptors, especially when based on high-quality SSD data (from either acute median effect concentrations or chronic no-observed-effect concentrations). Beyond exploratory uses, we discuss how the precision of QSAR-based SSDs can be improved to construct models that accurately predict the SSD parameters of data-poor chemicals. The current models show that the concept of QSAR-based SSDs supports screening-level evaluations of the potential ecotoxicity of compounds for which data are lacking. Environ Toxicol Chem 2019;38:2764-2770. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Renske P.J. Hoondert
- RIVM, Centre for SustainabilityEnvironment and HealthBilthovenThe Netherlands
- Department of Environmental Sciences, Faculty of ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Rik Oldenkamp
- Department of Environmental Sciences, Faculty of ScienceRadboud University NijmegenNijmegenThe Netherlands
| | | | - Dik van de Meent
- Department of Environmental Sciences, Faculty of ScienceRadboud University NijmegenNijmegenThe Netherlands
- ARESOdijkThe Netherlands
| | - Leo Posthuma
- RIVM, Centre for SustainabilityEnvironment and HealthBilthovenThe Netherlands
- Department of Environmental Sciences, Faculty of ScienceRadboud University NijmegenNijmegenThe Netherlands
| |
Collapse
|
16
|
Kienzler A, Bopp S, Halder M, Embry M, Worth A. Application of new statistical distribution approaches for environmental mixture risk assessment: A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133510. [PMID: 31357034 PMCID: PMC6839615 DOI: 10.1016/j.scitotenv.2019.07.316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES There is growing evidence that single substances present below their individual thresholds of effect may still contribute to combined effects. In component-based mixture risk assessment (MRA), the risks can be addressed using information on the mixture components. This is, however, often hampered by limited availability of ecotoxicity data. Here, the possible use of ecotoxicological threshold concentrations of no concern (i.e. 5th percentile of statistical distribution of ecotoxicological values) is investigated to fill data gaps in MRA. METHODS For chemicals without available aquatic toxicity data, ecotoxicological threshold concentrations of no concern have been derived from Predicted No Effect Concentration (PNEC) distributions and from chemical toxicity distributions, using the EnviroTox tool, with and without considering the chemical mode of action. For exposure, chemical monitoring data from European rivers have been used to illustrate four realistic co-exposure scenarios. Based on those monitoring data and available ecotoxicity data or threshold concentrations when no data were available, Risk Quotients for individual chemicals were calculated, to then derive a mixture Risk Quotient (RQmix). RESULTS A risk was identified in two of the four scenarios. Threshold concentrations contribute from 24 to 95% of the whole RQmix; thus they have a large impact on the predicted mixture risk. Therefore they could only be used for data gap filling for a limited number of chemicals in the mixture. The use of mode of action information to derive more specific threshold values could be a helpful refinement in some cases.
Collapse
Affiliation(s)
- Aude Kienzler
- European Commission, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra, VA, Italy.
| | - Stephanie Bopp
- European Commission, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra, VA, Italy
| | - Marlies Halder
- European Commission, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra, VA, Italy
| | - Michelle Embry
- Health and Environmental Science Institute, 740 15th Street NW, Suite 600, Washington, DC 20005, USA
| | - Andrew Worth
- European Commission, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra, VA, Italy
| |
Collapse
|
17
|
Kienzler A, Connors KA, Bonnell M, Barron MG, Beasley A, Inglis CG, Norberg‐King TJ, Martin T, Sanderson H, Vallotton N, Wilson P, Embry MR. Mode of Action Classifications in the EnviroTox Database: Development and Implementation of a Consensus MOA Classification. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2294-2304. [PMID: 31269286 PMCID: PMC6851772 DOI: 10.1002/etc.4531] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/29/2019] [Accepted: 06/25/2019] [Indexed: 05/24/2023]
Abstract
Multiple mode of action (MOA) frameworks have been developed in aquatic ecotoxicology, mainly based on fish toxicity. These frameworks provide information on a key determinant of chemical toxicity, but the MOA categories and level of specificity remain unique to each of the classification schemes. The present study aimed to develop a consensus MOA assignment within EnviroTox, a curated in vivo aquatic toxicity database, based on the following MOA classification schemes: Verhaar (modified) framework, Assessment Tool for Evaluating Risk, Toxicity Estimation Software Tool, and OASIS. The MOA classifications from each scheme were first collapsed into one of 3 categories: non-specifically acting (i.e., narcosis), specifically acting, or nonclassifiable. Consensus rules were developed based on the degree of concordance among the 4 individual MOA classifications to attribute a consensus MOA to each chemical. A confidence rank was also assigned to the consensus MOA classification based on the degree of consensus. Overall, 40% of the chemicals were classified as narcotics, 17% as specifically acting, and 43% as unclassified. Sixty percent of chemicals had a medium to high consensus MOA assignment. When compared to empirical acute toxicity data, the general trend of specifically acting chemicals being more toxic is clearly observed for both fish and invertebrates but not for algae. EnviroTox is the first approach to establishing a high-level consensus across 4 computationally and structurally distinct MOA classification schemes. This consensus MOA classification provides both a transparent understanding of the variation between MOA classification schemes and an added certainty of the MOA assignment. In terms of regulatory relevance, a reliable understanding of MOA can provide information that can be useful for the prioritization (ranking) and risk assessment of chemicals. Environ Toxicol Chem 2019;38:2294-2304. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Aude Kienzler
- European Commission, Joint Research Centre, IspraItaly
| | | | - Mark Bonnell
- Environment and Climate Change Canada, GatineauQuebecCanada
| | - Mace G. Barron
- Gulf Ecology DivisionUS Environmental Protection Agency, Gulf BreezeFlorida
| | | | | | | | - Todd Martin
- US Environmental Protection Agency, CinncinatiOhio
| | | | | | | | | |
Collapse
|
18
|
More SJ, Bampidis V, Benford D, Bragard C, Halldorsson TI, Hernández-Jerez AF, Hougaard Bennekou S, Koutsoumanis KP, Machera K, Naegeli H, Nielsen SS, Schlatter JR, Schrenk D, Silano V, Turck D, Younes M, Gundert-Remy U, Kass GEN, Kleiner J, Rossi AM, Serafimova R, Reilly L, Wallace HM. Guidance on the use of the Threshold of Toxicological Concern approach in food safety assessment. EFSA J 2019; 17:e05708. [PMID: 32626331 PMCID: PMC7009090 DOI: 10.2903/j.efsa.2019.5708] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Scientific Committee confirms that the Threshold of Toxicological Concern (TTC) is a pragmatic screening and prioritisation tool for use in food safety assessment. This Guidance provides clear step-by-step instructions for use of the TTC approach. The inclusion and exclusion criteria are defined and the use of the TTC decision tree is explained. The approach can be used when the chemical structure of the substance is known, there are limited chemical-specific toxicity data and the exposure can be estimated. The TTC approach should not be used for substances for which EU food/feed legislation requires the submission of toxicity data or when sufficient data are available for a risk assessment or if the substance under consideration falls into one of the exclusion categories. For substances that have the potential to be DNA-reactive mutagens and/or carcinogens based on the weight of evidence, the relevant TTC value is 0.0025 μg/kg body weight (bw) per day. For organophosphates or carbamates, the relevant TTC value is 0.3 μg/kg bw per day. All other substances are grouped according to the Cramer classification. The TTC values for Cramer Classes I, II and III are 30 μg/kg bw per day, 9 μg/kg bw per day and 1.5 μg/kg bw per day, respectively. For substances with exposures below the TTC values, the probability that they would cause adverse health effects is low. If the estimated exposure to a substance is higher than the relevant TTC value, a non-TTC approach is required to reach a conclusion on potential adverse health effects.
Collapse
|
19
|
Connors KA, Beasley A, Barron MG, Belanger SE, Bonnell M, Brill JL, de Zwart D, Kienzler A, Krailler J, Otter R, Phillips JL, Embry MR. Creation of a Curated Aquatic Toxicology Database: EnviroTox. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1062-1073. [PMID: 30714190 PMCID: PMC6850623 DOI: 10.1002/etc.4382] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 05/20/2023]
Abstract
Flexible, rapid, and predictive approaches that do not require the use of large numbers of vertebrate test animals are needed because the chemical universe remains largely untested for potential hazards. Development of robust new approach methodologies and nontesting approaches requires the use of existing information via curated, integrated data sets. The ecological threshold of toxicological concern (ecoTTC) represents one such new approach methodology that can predict a conservative de minimis toxicity value for chemicals with little or no information available. For the creation of an ecoTTC tool, a large, diverse environmental data set was developed from multiple sources, with harmonization, characterization, and information quality assessment steps to ensure that the information could be effectively organized and mined. The resulting EnviroTox database contains 91 217 aquatic toxicity records representing 1563 species and 4016 unique Chemical Abstracts Service numbers and is a robust, curated database containing high-quality aquatic toxicity studies that are traceable to the original information source. Chemical-specific information is also linked to each record and includes physico-chemical information, chemical descriptors, and mode of action classifications. Toxicity data are associated with the physico-chemical data, mode of action classifications, and curated taxonomic information for the organisms tested. The EnviroTox platform also includes 3 analysis tools: a predicted-no-effect concentration calculator, an ecoTTC distribution tool, and a chemical toxicity distribution tool. Although the EnviroTox database and tools were originally developed to support ecoTTC analysis and development, they have broader applicability to the field of ecological risk assessment. Environ Toxicol Chem 2019;9999:1-12. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
| | | | | | | | - Mark Bonnell
- Environment and Climate Change CanadaGatineauOntarioCanada
| | | | | | | | | | - Ryan Otter
- Middle Tennessee State UniversityMurfreesboroTennesseeUSA
| | | | | |
Collapse
|
20
|
Wang Z, Dinh D, Scott WC, Williams ES, Ciarlo M, DeLeo P, Brooks BW. Critical review and probabilistic health hazard assessment of cleaning product ingredients in all-purpose cleaners, dish care products, and laundry care products. ENVIRONMENT INTERNATIONAL 2019; 125:399-417. [PMID: 30743146 DOI: 10.1016/j.envint.2019.01.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Though numerous chemical ingredients are used in cleaning products, empirical mammalian toxicology information is often limited for many substances. Such limited data inherently presents challenges to environmental health practitioners performing hazard and risk assessments. Probabilistic hazard assessment using chemical toxicity distributions (CTDs) is an alternative approach for assessments of chemicals when toxicity information is lacking. The CTD concept allows for derivation of thresholds of toxicological concern (TTCs) to predict adverse effect thresholds for mammalian species. Unfortunately, comparative health hazard assessment of cleaning product ingredients in common use categories such as all-purpose cleaners (APC), dish care products (DCP) and laundry care products (LCP) has not been well studied. However, APC, DCP, and LCP are used routinely for household and industrial applications, resulting in residential and industrial occupational exposures. Therefore, we reviewed and then examined hazard information (median lethal dose (LD50), lowest-observed-adverse-effect level (LOAEL), and no-observed-adverse-effect level (NOAEL)) from different types of standard mammalian toxicity studies for oral toxicity in the rat model from the unique Cleaning Product Ingredient Safety Initiative mammalian toxicology database. Probabilistic distributions (CTDs) were subsequently constructed using LD50, NOAEL and LOAEL data from a specific toxicity study type for all available ingredients in these three use categories. Based on data availability, product type-specific and chemical category-specific CTDs were also generated and compared. For each CTD, threshold concentrations (TCs) and their 95% confidence intervals (95% CIs) at 1st, 5th, 10th, 50th, 90th, 95th and 99th percentiles were calculated using the log-normal model. To test whether the common default uncertainty factor (UF) approach (e.g., 3, 10) in mammalian health risk assessment provides sufficient protection, UFs were also derived for LOAEL-to-NOAEL and exposure duration (e.g., subchronic-to-chronic) extrapolations. Relationships between CTDs of acute LD50s and sublethal LOAELs/NOAELs were also examined for acute-to-chronic ratio calculations, which may be useful in extreme circumstances. Results from our critical review and meta-analysis appear particularly useful for hazard and risk practitioners when identifying TTCs for ingredients in product use categories, and other chemical classes. This approach can also support development of regulatory data dossiers through read across, chemical substitutions and screening-level health risk assessments when limited or no empirical toxicity information exists for industrial chemicals.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Environmental Science, Baylor University, Waco, TX, USA; School of Environment, Jinan University, Guangzhou, China
| | - Dan Dinh
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - W Casan Scott
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | | | - Michael Ciarlo
- EA Engineering, Science & Technology, Inc., Baltimore, MD, USA
| | - Paul DeLeo
- American Cleaning Institute, Washington, DC, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA; School of Environment, Jinan University, Guangzhou, China; Institute of Biomedical Studies, Baylor University, Waco, TX, USA.
| |
Collapse
|
21
|
Berninger JP, Tillitt DE. Polychlorinated biphenyl tissue-concentration thresholds for survival, growth, and reproduction in fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:712-736. [PMID: 30548322 DOI: 10.1002/etc.4335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/24/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) have left a legacy of environmental contamination. Even though they were banned from production and active use in the 1970s, they persist in the environment and still have the potential to impact aquatic life. Our objective was to identify data from controlled laboratory studies of PCB-related adverse effects in fish and to conduct a meta-analysis on mortality, growth, and reproductive (MGR) threshold responses. For each endpoint type, we compiled data on the lowest-observed-adverse effect concentration (LOAEC) and the degree of effect at the LOAEC as a percentage of control. The LOAECs were expressed as tissue concentrations, so the term lowest-observed-adverse-effect residue concentration (LOAER) was used to represent PCB exposures. The lower limit of applicability was set at 0.1 μg/g total PCB tissue concentration, below which adverse MGR effects in fish were not supported by the data. Sensitivity distributions identifying the probability of adverse effects in fish populations or communities predicted that 25% of fish species would be impacted between 0.1 and 7.5 μg/g. Concentration-response threshold regressions were developed from the MGR datasets. For example, a 1 μg/g total PCB tissue concentration would predict effects of 17% mortality, 15% growth, and 39% reproductive. The analysis determined the degree of adverse response, with uncertainty estimates, expected across a broad range of PCB tissue exposure concentrations in fish. Data generated from MGR endpoints were combined to determine an approach for overall effect thresholds for PCB-related injury in fish. The MGR datasets included only laboratory data; however, responses were compared with field-observed effects. The present review provides a comprehensive assessment of PCB-induced injury in fish utilizing a data-inclusive approach. Environ Toxicol Chem 2019;38:712-736. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Jason P Berninger
- Columbia Environmental Research Center, US Geological Survey, Department of the Interior, Columbia, Missouri
| | - Donald E Tillitt
- Columbia Environmental Research Center, US Geological Survey, Department of the Interior, Columbia, Missouri
| |
Collapse
|
22
|
Rawlings JM, Belanger SE, Connors KA, Carr GJ. Fish embryo tests and acute fish toxicity tests are interchangeable in the application of the threshold approach. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:671-681. [PMID: 30615221 DOI: 10.1002/etc.4351] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/20/2018] [Accepted: 12/21/2018] [Indexed: 05/13/2023]
Abstract
A database was compiled for algal Organisation for Economic Co-operation and Development (OECD) test guideline 201, for Daphnia magna OECD test guideline 202, for the acute fish toxicity (AFT) OECD test guideline 203, and for the fish embryo toxicity (FET) OECD test guideline 236 to assess the suitability and applicability of the FET test in a threshold approach context. In the threshold approach, algal and Daphnia toxicity are assessed first, after which a limit test is conducted at the lower of the 2 toxicity values using fish. If potential fish toxicity is indicated, a full median lethal concentration assay is performed. This tiered testing strategy can significantly reduce the number of fish used in toxicity testing because algae or Daphnia are typically more sensitive than fish. A total of 165 compounds had AFT and FET data available, and of these, 82 had algal and Daphnia acute toxicity data available. Algae and Daphnia were more sensitive 75 to 80% of the time. Fish or FET tests were most sensitive 20 and 16% of the time, respectively, when considered as the sole fish toxicity indicator and 27% of the time when both were considered simultaneously. When fish were the most sensitive trophic level, different compounds were identified as the most toxic in FET and to AFT tests; however, the differences were not so large that they resulted in substantially different outcomes when potencies were binned using the United Nations categories of aquatic toxicity under the Globally Harmonized System for classification and labeling. It is recommended that the FET test could be used to directly replace the AFT test in the threshold approach or could be used as the definitive test if an AFT limit test indicated toxicity potential for a chemical. Environ Toxicol Chem 2019;38:671-681. © 2019 SETAC.
Collapse
Affiliation(s)
- Jane M Rawlings
- Environmental Stewardship, The Procter & Gamble Company, Mason, Ohio, USA
| | - Scott E Belanger
- Environmental Stewardship, The Procter & Gamble Company, Mason, Ohio, USA
| | - Kristin A Connors
- Environmental Stewardship, The Procter & Gamble Company, Mason, Ohio, USA
| | - Gregory J Carr
- Quantitative Sciences, The Procter & Gamble Company, Mason, Ohio, USA
| |
Collapse
|
23
|
McCarty LS, Borgert CJ, Posthuma L. The regulatory challenge of chemicals in the environment: Toxicity testing, risk assessment, and decision-making models. Regul Toxicol Pharmacol 2018; 99:289-295. [PMID: 30291878 DOI: 10.1016/j.yrtph.2018.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 11/26/2022]
Abstract
Environmental assessment for chemicals relies on models of fate, exposure, toxicity, risk, and impacts. Together, these models should provide scientific support for regulatory risk management decision-making, assuming that progress through the data-information-knowledge-wisdom (DIKW) hierarchy is both appropriate and sufficient. Improving existing regulatory processes necessitates continuing enhancement of interpretation and evaluation of key data for use in decision-making schemes, including ecotoxicity testing data, physical-chemical properties, and environmental fate processes. Yet, as environmental objectives also increase in scope and sophistication to encompass a safe chemical economy, testing, risk assessment, and decision-making are subject to additional complexity due to the ongoing interaction between science and policy models. Problems associated with existing design and implementation choices in science and policy have both limited needed development beyond chemo-centric environmental risk assessment modeling and constrained needed improvements in environmental decision-making. Without a thorough understanding of either the scientific foundations or the disparate evaluation processes for validation, quality, and relevance, this results in complex technical and philosophical problems that increase costs and decrease productivity. Both over- and under-management of chemicals are consequences of failure to validate key model assumptions, unjustified standardized views on data selection, and inordinate reification (i.e., abstract concepts are wrongly treated as facts).
Collapse
Affiliation(s)
- L S McCarty
- Scientific Research & Consulting, Newmarket, ON, L3X 3E2, Canada.
| | - C J Borgert
- Applied Pharmacology and Toxicology, Inc., Gainesville, FL, 32605, USA.
| | - L Posthuma
- National Institute of Public Health and the Environment (RIVM), NL-3720, BA, Bilthoven, the Netherlands; Radboud University Nijmegen, Department of Environmental Science, Nijmegen, the Netherlands.
| |
Collapse
|
24
|
Kienzler A, Barron MG, Belanger SE, Beasley A, Embry MR. Mode of Action (MOA) Assignment Classifications for Ecotoxicology: An Evaluation of Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10203-10211. [PMID: 28759717 DOI: 10.1021/acs.est.7b02337] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The mode of toxic action (MOA) is recognized as a key determinant of chemical toxicity and as an alternative to chemical class-based predictive toxicity modeling. However, MOA classification has never been standardized in ecotoxicology, and a comprehensive comparison of classification tools and approaches has never been reported. Here we critically evaluate three MOA classification methodologies using an aquatic toxicity data set of 3448 chemicals, compare the approaches, and assess utility and limitations in screening and early tier assessments. The comparisons focused on three commonly used tools: Verhaar prediction of toxicity MOA, the U.S. Environmental Protection Agency (EPA) ASsessment Tool for Evaluating Risk (ASTER) QSAR (quantitative structure activity relationship) application, and the EPA Mode of Action and Toxicity (MOAtox) database. Of the 3448 MOAs predicted using the Verhaar scheme, 1165 were classified by ASTER, and 802 were available in MOAtox. Of the subset of 432 chemicals with MOA assignments for each of the three schemes, 42% had complete concordance in MOA classification, and there was no agreement for 7% of the chemicals. The research shows the potential for large differences in MOA classification between the five broad groups of the Verhaar scheme and the more mechanism-based assignments of ASTER and MOAtox. Harmonization of classification schemes is needed to use MOA classification in chemical hazard and risk assessment more broadly.
Collapse
Affiliation(s)
- A Kienzler
- Joint Research Centre , Directorate F-Health, Consumers, and Reference Materials, F.3 Chemicals Safety & Alternative Methods, TP 126, Via E. Fermi, 2749, I-21027 Ispra, Italy
| | - M G Barron
- United States Environmental Protection Agency , 1 Sabine Island Drive, Gulf Breeze, Florida 32561, United States
| | - S E Belanger
- The Procter & Gamble Company , Mason Business Center, 8700 S Mason-Montgomery Road, Mason, Ohio 45040, United States
| | - A Beasley
- TERC Toxicology and Environmental Research and Consulting, The Dow Chemical Company , 1803 Building, Midland, Michigan 48674, United States
| | - M R Embry
- International Life Sciences Institute Health and Environmental Sciences Institute (HESI) . 1156 15th Street, NW, Suite 200, Washington, District of Columbia 20005, United States
| |
Collapse
|
25
|
Cronin MTD. (Q)SARs to predict environmental toxicities: current status and future needs. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:213-220. [PMID: 28243641 DOI: 10.1039/c6em00687f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The current state of the art of (Quantitative) Structure-Activity Relationships ((Q)SARs) to predict environmental toxicity is assessed along with recommendations to develop these models further. The acute toxicity of compounds acting by the non-polar narcotic mechanism of action can be well predicted, however other approaches, including read-across, may be required for compounds acting by specific mechanisms of action. The chronic toxicity of compounds to environmental species is more difficult to predict from (Q)SARs, with robust data sets and more mechanistic information required. In addition, the toxicity of mixtures is little addressed by (Q)SAR approaches. Developments in environmental toxicology including Adverse Outcome Pathways (AOPs) and omics responses should be utilised to develop better, more mechanistically relevant, (Q)SAR models.
Collapse
Affiliation(s)
- Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England, UK.
| |
Collapse
|
26
|
Lillicrap A, Belanger S, Burden N, Pasquier DD, Embry MR, Halder M, Lampi MA, Lee L, Norberg-King T, Rattner BA, Schirmer K, Thomas P. Alternative approaches to vertebrate ecotoxicity tests in the 21st century: A review of developments over the last 2 decades and current status. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2637-2646. [PMID: 27779828 DOI: 10.1002/etc.3603] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/21/2016] [Accepted: 08/24/2016] [Indexed: 05/21/2023]
Abstract
The need for alternative approaches to the use of vertebrate animals for hazard assessment of chemicals and pollutants has become of increasing importance. It is now the first consideration when initiating a vertebrate ecotoxicity test, to ensure that unnecessary use of vertebrate organisms is minimized wherever possible. For some regulatory purposes, the use of vertebrate organisms for environmental risk assessments has been banned; in other situations, the number of organisms tested has been dramatically reduced or the severity of the procedure refined. However, there is still a long way to go to achieve a complete replacement of vertebrate organisms to generate environmental hazard data. The development of animal alternatives is based not just on ethical considerations but also on reducing the cost of performing vertebrate ecotoxicity tests and in some cases on providing better information aimed at improving environmental risk assessments. The present Focus article provides an overview of the considerable advances that have been made toward alternative approaches for ecotoxicity assessments over the last few decades. Environ Toxicol Chem 2016;35:2637-2646. © 2016 SETAC.
Collapse
Affiliation(s)
- Adam Lillicrap
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | - Scott Belanger
- Environmental Safety and Sustainability, Global Product Stewardship, Procter & Gamble, Mason, Ohio, USA
| | - Natalie Burden
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, United Kingdom
| | | | - Michelle R Embry
- ILSI Health and Environmental Sciences Institute, Washington, DC, USA
| | | | - Mark A Lampi
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | - Lucy Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, British Columbia, Canada
| | - Teresa Norberg-King
- National Health and Environmental Effects Laboratory, Office of Research and Development, Mid-Continent Ecology Division-Duluth, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Barnett A Rattner
- Patuxent Wildlife Research Center, US Geological Survey, Beltsville, Maryland, USA
| | - Kristin Schirmer
- Eawag-Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Swiss Federal Institute of Technology, Zürich, Switzerland
- School of Architecture, Civil and Environmental Engineering, EPF Lausanne, Lausanne, Switzerland
| | - Paul Thomas
- Consultancy for Environmental & Human Toxicology & Risk Assessment (Lyon Agency), L'Isle d'Abeau, France
| |
Collapse
|
27
|
Aguirre AA, Beasley VR, Augspurger T, Benson WH, Whaley J, Basu N. One health-Transdisciplinary opportunities for SETAC leadership in integrating and improving the health of people, animals, and the environment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2383-2391. [PMID: 27717067 PMCID: PMC7163514 DOI: 10.1002/etc.3557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/05/2016] [Accepted: 07/12/2016] [Indexed: 05/18/2023]
Abstract
One Health is a collaborative, transdisciplinary effort working locally, nationally, and globally to improve health for people, animals, plants, and the environment. The term is relatively new (from ∼2003), and it is increasingly common to see One Health included by name in interinstitutional research partnerships, conferences, communications, and organizational frameworks, particularly those championed by the human health and veterinary medical communities. Environmental quality is arguably the least developed component within the One Health framework, but can be guided by expertise within the Society of Environmental Toxicology and Chemistry (SETAC). Despite SETAC's long history of tripartite (academic, government, business) interdisciplinary environmental science activities, the term "One Health" is seldom used in SETAC communications (i.e., many of SETAC's activities are guided by One Health, but it is called by other names in SETAC's journals, newsletters, and presentations). Accordingly, the objective of this Focus article is to introduce the One Health concept to the SETAC membership. The article discusses the origins, evolution, and utility of the One Health approach as an organizational framework and provides key examples of ways in which SETAC expertise can benefit the One Health community. The authors assert that One Health needs SETAC and, to be most effective, SETAC needs One Health. Given that One Health to date has focused too little on the environment, on ecosystems, and on contaminants, SETAC's constructive involvement in One Health presents an opportunity to accelerate actions that will ultimately better protect human and ecosystem health. Environ Toxicol Chem 2016;35:2383-2391. © 2016 SETAC.
Collapse
Affiliation(s)
- A Alonso Aguirre
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, USA.
| | - Val R Beasley
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tom Augspurger
- Ecological Services, US Fish and Wildlife Service, Raleigh, North Carolina, USA
| | - William H Benson
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Janet Whaley
- Ecological and Biological Sciences Practice, Exponent, Alexandria, Virginia, USA
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| |
Collapse
|
28
|
Kienzler A, Bopp SK, van der Linden S, Berggren E, Worth A. Regulatory assessment of chemical mixtures: Requirements, current approaches and future perspectives. Regul Toxicol Pharmacol 2016; 80:321-34. [DOI: 10.1016/j.yrtph.2016.05.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
|