1
|
Santos GS, Casallanovo F, Scorza Júnior RP, Daam MA, Cione AP. Proposal for a tiered regulatory framework for the aquatic risk assessment of pesticides in Brazil. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1514-1528. [PMID: 38629463 DOI: 10.1002/ieam.4931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 08/13/2024]
Abstract
Aquatic risk assessment is essential to guarantee the sustainable use of pesticides and the conservation of water resources near agricultural fields. This article discusses a proposal for a tiered regulatory framework for the aquatic risk assessment of pesticides in Brazil. The first step is problem formulation, which includes establishing general and specific protection goals. In the exposure assessment, the Estimated Environmental Concentrations in water should be calculated based on realistic worst-case assumptions regarding application rate and frequency, the entry into the edge-of-field water body, and fate in the water body, using scenario-dependent models suggested by the Brazilian Environmental Agency. These calculations can be refined by including Efate studies with variable exposures to reflect realistic environmental conditions accurately and include mitigation measures that impact the modeling. In the hazard assessment, ecotoxicological data for toxicity to fish, aquatic invertebrates, algae, and aquatic plants should be required for all pesticides based on standardized protocols and species. Tier 2 has several refinement options, including incorporating toxicity data from additional test species and effect modeling. In Tier 3, population- and community-level effects are evaluated using semi-field studies. Considering the case study in Brazil, Tier 1 demonstrated that, from the 12 pesticides that were assessed, seven (58%) failed based on the value of the Risk Quotient. In Tier 2, when exposure refinement options and mitigation measures such as buffer zones are considered, all seven pesticides, for which Tier 1 indicated risk, still failed the assessment. The risk for four of these seven pesticides could be refined by considering toxicity information from additional species. Refinement options and mitigation measures that could be applied to the agricultural scenario in Brazil were discussed. In conclusion, the proposed tiered risk assessment is a feasible way to evaluate whether a pesticide will pose an unacceptable risk to aquatic organisms. Integr Environ Assess Manag 2024;20:1514-1528. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | | | - Michiel A Daam
- School of Science and Technology, Center for Environmental and Sustainability Research (CENSE) & Global Change and Sustainability Institute (CHANGE), NOVA University Lisbon, NOVA, Caparica, Portugal
- Federal University of Alfenas, Poços de Caldas, MG, Brazil
| | | |
Collapse
|
2
|
Ivanic FM, Butler M, Borón CI, Candal RJ. Assessing the transformation products and fate of Oxytetracycline by simulated aerobic degradation tests. CHEMOSPHERE 2023; 343:140284. [PMID: 37758075 DOI: 10.1016/j.chemosphere.2023.140284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Oxytetracycline (OTC) is a widely used broad-spectrum antibiotic, whose presence in water and sediments was reported in various regions of the world. The effects of OTC and other tetracyclines on the environment have been intensively studied although many of their transformation products (TPs) formed in the environment and their impact have not been yet fully characterized. Abiotic and biotic degradation tests under aerobic conditions at two pH values were carried out using OTC in artificial water/sediment systems to assess the effect of these variables on the environmental fate of the pollutant. HPLC-MSn was employed to detect and identify the main degradation products and pathways. Several transformations involved in the process were identified including alcohol oxidation, decarbonylation and hydroxylation. Differences in TPs and kinetics were found among degradation conditions, remarking a faster degradation of both OTC and TPs in the presence of microorganisms and at lower pH values. In summary, a total of 44 TPs were detected and structures were proposed for 20 of them, none of them having been previously reported. Furthermore, OTC degradation generated 24 TPs which remained in either solution or sediment, although none of them displayed higher algae toxicity than OTC. These results might be useful for planning future remediation and monitoring strategies.
Collapse
Affiliation(s)
- Federico M Ivanic
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| | - Matías Butler
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina.
| | - Carlos I Borón
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| | - Roberto J Candal
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| |
Collapse
|
3
|
Griffith DR, Carolan M, Gutierrez MM, Romig A, Garcia-Diaz N, Hutchinson CP, Zayas RL. Microbial Degradation of Free and Halogenated Estrogens in River Water-Sediment Microcosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37428977 PMCID: PMC10373497 DOI: 10.1021/acs.est.3c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Halogenated estrogens are formed during chlorine-based wastewater disinfection and have been detected in wastewater treatment plant effluent; however, very little is known about their susceptibility to biodegradation in natural waters. To better understand the biodegradation of free and halogenated estrogens in a large river under environmentally relevant conditions, we measured estrogen kinetics in aerobic microcosms containing water and sediment from the Willamette River (OR, USA) at two concentrations (50 and 1250 ng L-1). Control microcosms were used to characterize losses due to sorption and other abiotic processes, and microbial dynamics were monitored using 16S rRNA gene sequencing and ATP. We found that estrogen biodegradation occurred on timescales of hours to days and that in river water spiked at 50 ng L-1 half-lives were significantly shorter for 17β-estradiol (t1/2,bio = 42 ± 3 h) compared to its monobromo (t1/2,bio = 49 ± 5 h), dibromo (t1/2,bio = 88 ± 12 h), and dichloro (t1/2,bio = 98 ± 16 h) forms. Biodegradation was also faster in microcosms with high initial estrogen concentrations as well as those containing sediment. Free and halogenated estrone were important transformation products in both abiotic and biotic microcosms. Taken together, our findings suggest that biodegradation is a key process for removing free estrogens from surface waters but likely plays a much smaller role for the more highly photolabile halogenated forms.
Collapse
Affiliation(s)
- David R Griffith
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | - MacKayla Carolan
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | | | - Anya Romig
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | - Nathan Garcia-Diaz
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | | | - Rosa León Zayas
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| |
Collapse
|
4
|
Satyanarayana GNV, Kumar A, Pandey AK, Sharma MT, Natesan M, Mudiam MKR. Evaluating chemicals of emerging concern in the Ganga River at the two major cities Prayagraj and Varanasi through validated analytical approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1520-1539. [PMID: 35917068 DOI: 10.1007/s11356-022-22226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Evaluating environmental water quality means to assess and protect the environment against unfriendly impacts from various organic impurities emerging from industrial emissions and those released during harvesting. Potential risks related with release of polycyclic aromatic hydrocarbons (PAHs), pesticides and pharmaceuticals (PhAcs), and personal care products (PCPs) into the environment have turned into an increasingly serious issue in ecological safety. Monitoring helps in control of chemicals and ecological status compliance to safeguard specific water uses, for example, drinking water abstraction. A longitudinal review was carried out for 55 different persistent organic pollutants (POPs) for the Ganga River which passes through the urban areas of Prayagraj and Varanasi, India, through validated analytical approaches and measurement uncertainty (MU) estimation to assess their potential use for routine analysis. Furthermore, environmental risk assessment (ERA) carried out in the present study has revealed risk quotient (RQ) higher than 1 in a portion of the aquatic bodies. Using a conservative RQ strategy, POPs were assessed for having extensive risks under acute and chronic exposure, proposing that there is currently critical ecological risk identified with these compounds present in the Ganga River. In general, these outcomes demonstrate a significant contribution for focusing on measures and feasible techniques to minimize the unfavorable effects of contaminants on the aquatic environment.
Collapse
Affiliation(s)
- G N V Satyanarayana
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, M.G. Marg, Uttar Pradesh, P.O. Box-80, Lucknow, 226001, India
- Department of Chemistry, School of Basic Sciences, Babu Banarasi Das University, Uttar Pradesh, Lucknow, 226028, India
| | - Anu Kumar
- CSIRO Land and Water, Urrbrae, SA, 5064, Australia
| | - Alok K Pandey
- Nanomaterial Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, M. G. Marg, Uttar Pradesh, P. O. Box-80, Lucknow, 226001, India
| | - Manisha T Sharma
- Department of Chemistry, School of Basic Sciences, Babu Banarasi Das University, Uttar Pradesh, Lucknow, 226028, India
| | - Manickam Natesan
- Department of Environmental Biotechnology, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, M. G. Marg, Uttar Pradesh, P. O. Box-80, Lucknow, 226001, India
| | - Mohana Krishna Reddy Mudiam
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500 007, Telangana, India.
| |
Collapse
|
5
|
Odinga ES, Zhou X, Mbao EO, Ali Q, Waigi MG, Shiraku ML, Ling W. Distribution, ecological fate, and risks of steroid estrogens in environmental matrices. CHEMOSPHERE 2022; 308:136370. [PMID: 36113656 DOI: 10.1016/j.chemosphere.2022.136370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Over the past two decades, steroidal estrogens (SEs) such as 17α-ethylestradiol (EE2), 17β-estradiol (E2),17α-estradiol (17α-E2), estriol (E3) and estrone (E1) have elicited worldwide attention due to their potentially harmful effects on human health and aquatic organisms even at low concentration ng/L. Natural steroidal estrogens exhibit greater endocrine disruption potency due to their high binding effect on nuclear estrogen receptors (ER). However, less has been explored regarding their associated environmental risks and fate. A comprehensive bibliometric study of the current research status of SEs was conducted using the Web of Science to assess the development trends and current knowledge of SEs in the last two decades, from 2001 to 2021 October. The number of publications has tremendously increased from 2003 to 2021. We summarized the contamination status and the associated ecological risks of SEs in different environmental compartments. The results revealed that SEs are ubiquitous in surface waters and natural SEs are most studied. We further carried out an in-depth evaluation and synthesis of major research hotspots and the dominant SEs in the matrices were E1, 17β-E2, 17α-E2, E3 and EE2. Nonetheless, investigations of SEs in soils, groundwater, and sediments remain scarce. This study elucidates SEs distribution, toxicological risks, ecological fate and mitigation measures, which will be beneficial for future monitoring, management, and risk assessment. Further studies are recommended to assess the toxicological risks of different SEs in complex environmental matrices to pursue a more precise and holistic quantitative estimation of estrogenic risk.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Evance Omondi Mbao
- Department of Geosciences and the Environment, The Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya
| | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Margaret L Shiraku
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Yang S, Yu W, Yang L, Du B, Chen S, Sun W, Jiang H, Xie M, Tang J. Occurrence and Fate of Steroid Estrogens in a Chinese Typical Concentrated Dairy Farm and Slurry Irrigated Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:67-77. [PMID: 33205963 DOI: 10.1021/acs.jafc.0c05068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Animal husbandry is the second largest source of steroid estrogen (SE) pollutants in the environment, and it is significant to investigate the occurrence and fate of SEs discharged from concentrated animal feeding operations. In this research, with a Chinese typical concentrated dairy farm as the object, the concentrations of SEs (E1, 17α-E2, 17β-E2, E3, and E1-S3) in slurry, lagoon water, and slurry-irrigated soil samples in summer, autumn, and winter were determined. The total concentrations of SEs (mainly E1, 17α-E2, and 17β-E2) in slurry were very high in the range of 263.1-2475.08 ng·L-1. In the lagoon water, the removal efficiencies of the aerobic tank could reach up to 89.53%, with significant fluctuation in different seasons. In the slurry-irrigated soil, the maximum concentrations of SEs in the topsoil and subsoil were 21.54 ng·g-1 to 6.82 g·g-1, respectively. Most of the SEs tended to transport downward and accumulate in the soil accompanied with the complex mutual conversion. Correlations and hierarchical clustering analysis showed a variety of intertransformation among SEs, and the concentrations of SEs were correlated with various physicochemical indexes, such as TN and NO3--N of the slurry, chemical oxygen demand of the lagoon water, and the heavy metals of soil. In addition, 17β-estradiol equivalency assessment and risk quotients indicated that the slurry irrigation and discharge of the lagoon water would cause potential estrogenic risks to the environment. Consequently, reasonable slurry irrigation and lagoon water discharge are essential to efficiently control SE pollution in the environment.
Collapse
Affiliation(s)
- Shuo Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Lun Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Banghao Du
- College of Civil Engineering, Fuzhou University, Fujian 350116, China
| | - Shiling Chen
- Risland Thailand Co., Ltd., Huai Khwang, Bangkok 10310, Thailand
| | - Weizhe Sun
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Hui Jiang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Mingyuan Xie
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jingjing Tang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
7
|
Rechsteiner D, Wettstein FE, Warren BP, Vermeirssen ELM, Simon E, Schneider MK, Hollender J, Bucheli TD. Natural estrogens in surface waters of a catchment with intensive livestock farming in Switzerland. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2244-2255. [PMID: 33034330 DOI: 10.1039/d0em00317d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Natural estrogens such as 17α-estradiol (E2α), 17β-estradiol (E2β), estrone (E1), and estriol (E3), released to surface waters from both urban and agricultural sources, are endocrine disrupting for fish. Here, we assess the prevalence of livestock farming derived natural estrogens in tributaries and ponds in the agriculturally dominated catchment of Lake Baldegg, Switzerland. Passive samplers were deployed in the main tributary and daily time-proportional water samples were collected in five tributaries for 30 days at the beginning of the vegetation period. Furthermore, we took grab samples of 12 ponds in the catchment. Aqueous samples were liquid-liquid extracted, derivatized, and analysed with LC-MS/MS and stream water samples additionally with ERα-CALUX, a bioassay for assessing total estrogenic activity. Natural estrogens were regularly detected, with mean concentrations ranging from below the limit of detection to 0.55 ng L-1 for E2β and E1, respectively, and passive sampling and bioassay results largely confirmed these findings. Monte Carlo simulated mean natural estrogen concentrations underestimated measured ones by a factor of three to 11. An agricultural area's hydrological contribution and connectivity to surface waters seemed to be more important for the development of estrogen concentrations in streams than livestock densities in a catchment or the actual loads of slurry applied. Pond water occasionally contained natural estrogens in concentrations up to 8.6 ng L-1 for E2α. The environmental quality standards of the European Union (0.4 ng L-1 for E2β and 3.6 ng L-1 for E1) were never exceeded for longer than a day in tributaries, but E1 reached critical concentrations for aquatic organisms in ponds.
Collapse
|
8
|
Yu W, Du B, Fan G, Yang S, Yang L, Zhang M. Spatio-temporal distribution and transformation of 17α- and 17β-estradiol in sterilized soil: A column experiment. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122092. [PMID: 31972526 DOI: 10.1016/j.jhazmat.2020.122092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/12/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The environmental behaviors of steroid estrogens (SEs) associated with land irrigation and application are of critical concern worldwide. Understanding the spatio-temporal distribution and transformation process of these estrogenic compounds in soil is greatly significant. In this study, laboratory soil column experiments were conducted to investigate and explore the migration and abiotic transformation of 17α-estradiol (17α-E2) and 17β-estradiol (17β-E2) over spatial and time scales. Results indicated that the migration tendency of 17α-E2 and 17β-E2 was similar. Discrepancies in transport for different SEs groups might be due to the competitive sorption and isomeric transformation in the binary-solute system. 17α-E2 and 17β-E2 can also undergo the abiotic transformation during soil column transport. The soil with naturally abundant mineral substances (e.g., iron and manganese oxides) indicated that E2 isomers tended to mineral-promoted racemization, oxidation, reduction, and radical coupling reactions. Some possible transformation products (e.g., SE239, E2378, and SE dimer476) were identified and proposed in soil samples. Compared to the single compound tests, the estimated 17β-estradiol equivalency (EEQ) values of E2 mixture were higher during SEs migration process.
Collapse
Affiliation(s)
- Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Banghao Du
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Shuo Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Lun Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Minne Zhang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
9
|
Yu W, Du B, Yang L, Zhang Z, Yang C, Yuan S, Zhang M. Occurrence, sorption, and transformation of free and conjugated natural steroid estrogens in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9443-9468. [PMID: 30758794 DOI: 10.1007/s11356-019-04402-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/25/2019] [Indexed: 05/06/2023]
Abstract
Natural steroid estrogens (NSEs), including free estrogens (FEs) and conjugated estrogens (CEs), are of emerging concern globally among public and scientific community due to their recognized adverse effects on human and wildlife endocrine systems in recent years. In this review, the properties, occurrence, sorption process, and transformation pathways of NSEs are clarified in the environment. The work comprehensively summarizes the occurrence of both free and conjugated estrogens in different natural and built environments (e.g., river, WWTPs, CAFOs, soil, and sediment). The sorption process of NSEs can be impacted by organic compounds, colloids, composition of clay minerals, specific surface area (SSA), cation exchange capacity (CEC), and pH value. The degradation and transformation of free and conjugated estrogens in the environment primarily involves oxidation, reduction, deconjugation, and esterification reactions. Elaboration about the major, subordinate, and minor transformation pathways of both biotic and abiotic processes among NSEs is highlighted. The moiety types and binding sites also would affect deconjugation degree and preferential transformation pathways of CEs. Notably, some intermediate products of NSEs still remain estrogenic potency during transformation process; the elimination of total estrogenic activity needs to be addressed in further studies. The in-depth researches regarding the behavior of both free and conjugated estrogens are further required to tackle their contamination problem in the ecosystem. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| | - Banghao Du
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China.
| | - Lun Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments of the Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Chun Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments of the Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Shaochun Yuan
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| | - Minne Zhang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| |
Collapse
|
10
|
Staveley JP. Environmental fate and effects of 17α-trenbolone and 17α-estradiol: Introduction. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:612. [PMID: 28234407 DOI: 10.1002/etc.3725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|