1
|
Liu S, Zhang X, Zeng K, He C, Huang Y, Xin G, Huang X. Insights into eco-corona formation and its role in the biological effects of nanomaterials from a molecular mechanisms perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159867. [PMID: 36334667 DOI: 10.1016/j.scitotenv.2022.159867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Broad application of nanotechnology inevitably results in the release of nanomaterials (NMs) into the aquatic environment, and the negative effects of NMs on aquatic organisms have received much attention. Notably, in the natural aquatic environment, ubiquitous ecological macromolecules (i.e., natural organic matter, extracellular polymeric substances, proteins, and metabolites) can easily adsorb onto the surfaces of NMs and form an "eco-corona". As most NMs have such an eco-corona modification, the properties of their eco-corona significantly determine the fate and ecotoxicity of NMs in the natural aquatic ecosystem. Therefore, it is of great importance to understand the role of the eco-corona to evaluate the environmental risks NMs pose. However, studies on the mechanism of eco-corona formation and its resulting nanotoxicity on aquatic organisms, especially at molecular levels, are rare. This review systemically summarizes the mechanisms of eco-corona formation by several typical ecological macromolecules. In addition, the similarities and differences in nanotoxicity between pristine and corona-coated NMs to aquatic organisms at different trophic levels were compared. Finally, recent findings about potential mechanisms on how NM coronas act on aquatic organisms are discussed, including cellular internalization, oxidative stress, and genotoxicity. The literature shows that 1) the formation of an eco-corona on NMs and its biological effect highly depend on both the composition and conformation of macromolecules; 2) both feeding behavior and body size of aquatic organisms at different trophic levels result in different responses to corona-coated NMs; 3) genotoxicity can be used as a promising biological endpoint for evaluating the role of eco-coronas in natural waters. This review provides informative insight for a better understanding of the role of eco-corona plays in the nanotoxicity of NMs to aquatic organisms which will aid the safe use of NMs.
Collapse
Affiliation(s)
- Saibo Liu
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xinran Zhang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Kai Zeng
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chuntao He
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
2
|
Yan N, Tsim SMJ, He X, Tang BZ, Wang WX. Direct Visualization and Quantification of Maternal Transfer of Silver Nanoparticles in Zooplankton. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10763-10771. [PMID: 32786596 DOI: 10.1021/acs.est.0c03228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The immense application of silver nanoparticles (AgNPs) in biomedical fields is likely to increase the exposure of humans. However, little is known about whether these nanoparticles can be maternally transferred, especially regarding their biodistribution in the younger generation, maternal transfer efficiency, and toxic effects. In the present study, maternal transfer of AgNPs in model zooplankton (Daphnia magna) was for the first time visualized and quantified. We found that AgNPs were transferred from mother to offspring and mainly accumulated in the lipids due to the strong colocalization with lipid droplets, which were the major energy sources of Daphnia embryos. In contrast, Ag+ was irregularly distributed in different sites, probably due to the mobility and reactivity of Ag+. The maternal transfer efficiency quantified by the radiolabeling methodology was 2.37 ± 0.25 and 6.05 ± 0.89% for 110mAgNPs and 110mAg, respectively. Furthermore, AgNPs and Ag+ significantly inhibited the reproduction capability of F0 and F1 generations, but such maternal toxic effect inhibition was only found within the first two broods of F0 and F1 generations. Our bioimaging findings demonstrated that AgNPs could be maternally transferred to the next generation; thus, it is critical to produce AgNPs with lower toxic effects, higher delivery efficacy, and more precise targeting.
Collapse
Affiliation(s)
- Neng Yan
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Hong Kong, China
| | - Synn Man Jennifer Tsim
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Hong Kong, China
| | - Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, HKUST, Clear Water Bay, Kowloon LG5313, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, HKUST, Clear Water Bay, Kowloon LG5313, Hong Kong, China
| | - Wen-Xiong Wang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Lekamge S, Ball AS, Shukla R, Nugegoda D. The Toxicity of Nanoparticles to Organisms in Freshwater. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 248:1-80. [PMID: 30413977 DOI: 10.1007/398_2018_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanotechnology is a rapidly growing industry yielding many benefits to society. However, aquatic environments are at risk as increasing amounts of nanoparticles (NPs) are contaminating waterbodies causing adverse effects on aquatic organisms. In this review, the impacts of environmental exposure to NPs, the influence of the physicochemical characteristics of NPs and the surrounding environment on toxicity and mechanisms of toxicity together with NP bioaccumulation and trophic transfer are assessed with a focus on their impacts on bacteria, algae and daphnids. We identify several gaps which need urgent attention in order to make sound decisions to protect the environment. These include uncertainty in both estimated and measured environmental concentrations of NPs for reliable risk assessment and for regulating the NP industry. In addition toxicity tests and risk assessment methodologies specific to NPs are still at the research and development stage. Also conflicting and inconsistent results on physicochemical characteristics and the fate and transport of NPs in the environment suggest the need for further research. Finally, improved understanding of the mechanisms of NP toxicity is crucial in risk assessment of NPs, since conventional toxicity tests may not reflect the risks associated with NPs. Behavioural effects may be more sensitive and would be efficient in certain situations compared with conventional toxicity tests due to low NP concentrations in field conditions. However, the development of such tests is still lacking, and further research is recommended.
Collapse
Affiliation(s)
- Sam Lekamge
- Ecotoxicology Research Group, Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia
| | - Ravi Shukla
- Nanobiotechnology Research Laboratory, RMIT University, Melbourne, VIC, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
4
|
Schür C, Rist S, Baun A, Mayer P, Hartmann NB, Wagner M. When Fluorescence Is not a Particle: The Tissue Translocation of Microplastics in Daphnia magna Seems an Artifact. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1495-1503. [PMID: 31009098 DOI: 10.1002/etc.4436] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 04/02/2019] [Indexed: 05/27/2023]
Abstract
Previous research reported the translocation of nano- and microplastics from the gastrointestinal tract to tissues in Daphnia magna, most prominently of fluorescent polystyrene beads to lipid droplets. For particles >300 nm, such transfer is biologically implausible as the peritrophic membrane retains these in the daphnid gut. We used confocal laser scanning microscopy to study tissue transfer applying the setup from a previous study (neonates exposed to 20 and 1000 nm polystyrene beads at 2 µg L-1 for 4 and 24 h), the same setup with a fructose-based clearing, and a setup with a 1000-fold higher concentration (2 mg L-1 ). We used passive sampling to investigate whether the beads leach the fluorescent dye. Although the 1000 nm beads were visible in the gut at both exposure concentrations, the 20 nm beads were detectable at 2 mg L-1 only. At this concentration, we observed fluorescence in lipid droplets in daphnids exposed to both particle types. However, this did not colocalize with the 1000 nm beads, which remained visible in the gut. We further confirmed the leaching of the fluorescent dye using a passive sampler, a method that can also be applied in future studies. In summary, we cannot replicate the original study but demonstrate that the fluorescence in the lipid droplets of D. magna results from leaching of the dye. Thus, the use of fluorescence as a surrogate for particles can lead to artifacts in uptake and translocation studies. This highlights the need to confirm the stability of the fluorescence label or to localize particles using alternative methods. Environ Toxicol Chem 2019;38:1495-1503. © 2019 SETAC OPEN PRACTICES: The present study has earned Open Data/Materials badges for making publicly available the digitally shareable data necessary to reproduce the reported results. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.
Collapse
Affiliation(s)
- Christoph Schür
- Department of Aquatic Ecotoxicology, Faculty of Biological Sciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Sinja Rist
- Department of Environmental Engineering, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Anders Baun
- Department of Environmental Engineering, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Nanna B Hartmann
- Department of Environmental Engineering, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Mehennaoui K, Cambier S, Serchi T, Ziebel J, Lentzen E, Valle N, Guérold F, Thomann JS, Giamberini L, Gutleb AC. Do the pristine physico-chemical properties of silver and gold nanoparticles influence uptake and molecular effects on Gammarus fossarum (Crustacea Amphipoda)? THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1200-1215. [PMID: 30189536 DOI: 10.1016/j.scitotenv.2018.06.208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/16/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
The specific and unique properties of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), make them of high interest for different scientific and industrial applications. Their increasing use will inevitably lead to their release in the environment and aquatic ecosystems where they may represent a threat to aquatic organisms. Being a widespread and important component of the aquatic macroinvertebrate assemblage, amphipods and more specifically Gammarus fossarum will certainly be exposed to AgNPs and AuNPs. For these reasons, G. fossarum was selected as model organism for this study. The aim of the present work was the evaluation of the influence of both size (20, 40 and 80 nm) and surface coating (citrate CIT, polyethylene glycol PEG) on the acute toxicity of AgNPs and AuNPs on G. fossarum. We investigated the effects of AgNPs and AuNPs on the uptake by G. fossarum, NP tissue distribution and the expression of stress related genes by the use of ICP-MS, NanoSIMS50, Cytoviva®, and Rt-qPCR, respectively. Ag and Au bioaccumulation revealed a significant surface-coating dependence, with CIT-AgNPs and CIT-AuNPs showing the higher bio-accumulation potential in G. fossarum as compared to PEG-NPs. Opposite to that, no size-dependent effects on the bioaccumulation potential was observed. SIMS imaging and CytoViva® revealed an influence of the type of metal on the tissue distribution after uptake, with AgNPs detected in the cuticle and the gills of G. fossarum, while AuNPs were detected in the gut area. Furthermore, AgNPs were found to up-regulate CuZnSOD gene expression while AuNPs led to its down-regulation. Modulation of SOD may indicate generation of reactive species of oxygen and a possible activation of antioxidant defence in order to prevent and defend the organism from oxidative stress. However, further investigations are still needed to better define the mechanisms underlying the observed AgNPs and AuNPs effects.
Collapse
Affiliation(s)
- Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg; Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine, Metz, France
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - Johanna Ziebel
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - Esther Lentzen
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - Nathalie Valle
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - François Guérold
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine, Metz, France
| | - Jean-Sébastien Thomann
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - Laure Giamberini
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine, Metz, France.
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg.
| |
Collapse
|
6
|
Utembe W, Wepener V, Yu IJ, Gulumian M. An assessment of applicability of existing approaches to predicting the bioaccumulation of conventional substances in nanomaterials. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2972-2988. [PMID: 30117187 DOI: 10.1002/etc.4253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/24/2018] [Accepted: 08/11/2018] [Indexed: 06/08/2023]
Abstract
The experimental determination of bioaccumulation is challenging, and a number of approaches have been developed for its prediction. It is important to assess the applicability of these predictive approaches to nanomaterials (NMs), which have been shown to bioaccumulate. The octanol/water partition coefficient (KOW ) may not be applicable to some NMs that are not found in either the octanol or water phases but rather are found at the interface. Thus the KOW values obtained for certain NMs are shown not to correlate well with the experimentally determined bioaccumulation. Implementation of quantitative structure-activity relationships (QSARs) for NMs is also challenging because the bioaccumulation of NMs depends on nano-specific properties such as shape, size, and surface area. Thus there is a need to develop new QSAR models based on these new nanodescriptors; current efforts appear to focus on digital processing of NM images as well as the conversion of surface chemistry parameters into adsorption indices. Water solubility can be used as a screening tool for the exclusion of NMs with short half-lives. Adaptation of fugacity/aquivalence models, which include physicochemical properties, may give some insights into the bioaccumulation potential of NMs, especially with the addition of a biota component. The use of kinetic models, including physiologically based pharmacokinetic models, appears to be the most suitable approach for predicting bioaccumulation of NMs. Furthermore, because bioaccumulation of NMs depends on a number of biotic and abiotic factors, it is important to take these factors into account when one is modeling bioaccumulation and interpreting bioaccumulation results. Environ Toxicol Chem 2018;37:2972-2988. © 2018 SETAC.
Collapse
Affiliation(s)
- Wells Utembe
- National Institute for Occupational Health, Johannesburg, South Africa
| | - Victor Wepener
- Unit for Environmental Sciences and Management, North West University, Potchefstroom, South Africa
| | | | - Mary Gulumian
- National Institute for Occupational Health, Johannesburg, South Africa
- Haematology and Molecular Medicine, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| |
Collapse
|
7
|
Hartmann NB, Rist S, Bodin J, Jensen LH, Schmidt SN, Mayer P, Meibom A, Baun A. Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2017; 13:488-493. [PMID: 28440931 DOI: 10.1002/ieam.1904] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 01/20/2017] [Accepted: 02/07/2017] [Indexed: 05/18/2023]
Abstract
The occurrence and effects of microplastics (MPs) in the aquatic environment are receiving increasing attention. In addition to their possible direct adverse effects on biota, the potential role of MPs as vectors for hydrophobic organic chemicals (HOCs), compared to natural pathways, is a topic of much debate. It is evident, however, that temporal and spatial variations of MP occurrence do (and will) occur. To further improve the estimations of the role of MPs as vectors for HOC transfer into biota under varying MP concentrations and environmental conditions, it is important to identify and understand the governing processes. Here, we explore HOC sorption to and desorption from MPs and the underlying principles for their interactions. We discuss intrinsic and extrinsic parameters influencing these processes and focus on the importance of the exposure route for diffusive mass transfer. Also, we outline research needed to fill knowledge gaps and improve model-based calculations of MP-facilitated HOC transfer in the environment. Integr Environ Assess Manag 2017;13:488-493. © 2017 SETAC.
Collapse
Affiliation(s)
- Nanna B Hartmann
- Technical University of Denmark, Department of Environmental Engineering, Kgs Lyngby, Denmark
| | - Sinja Rist
- Technical University of Denmark, Department of Environmental Engineering, Kgs Lyngby, Denmark
| | - Julia Bodin
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering at Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Louise Hs Jensen
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering at Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stine N Schmidt
- Technical University of Denmark, Department of Environmental Engineering, Kgs Lyngby, Denmark
| | - Philipp Mayer
- Technical University of Denmark, Department of Environmental Engineering, Kgs Lyngby, Denmark
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering at Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anders Baun
- Technical University of Denmark, Department of Environmental Engineering, Kgs Lyngby, Denmark
| |
Collapse
|